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Abstract. Prominent examples of collective systems are often encountered when
analysing smart cities and smart transportation systems. We propose a novel
modelling and analysis approach combining statistical model checking, spatio-
temporal logics, and simulation. The proposed methodology is applied to mod-
elling and statistical analysis of user behaviour in bike sharing systems. We present
a tool-chain that integrates the statistical analysis toolkit MultiVeStA, the spatio-
temporal model checker topochecker, and a bike sharing systems simulator
based on Markov renewal processes. The obtained tool allows one to estimate, up
to a user-specified precision, the likelihood of specific spatio-temporal formulas,
such as the formation of clusters of full stations and their temporal evolution.
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1 Introduction

This paper studies the application of statistical model checking techniques to spatio-
temporal verification, in the context of smart transportation systems. Statistical model
checking (e.g., [29, 28]) permits the quantitative estimation of the likelihood of events
in a simulated system. In this paper we use a boolean model checker to evaluate qual-
itative properties over single runs of a probabilistic simulator, and exploit statistical
model checking to estimate, via repeated simulations, the probability that such proper-
ties hold for the model. Spatio-temporal verification is a recent development in Com-
puter Science, inspired by spatial logics for topological spaces [7]. The modal logics
and model-checking perspective is enhanced with spatial information, such as proxim-
ity or reachability properties. This methodology is able to capture subtle differences in
behavioural analysis, such as “the points that are now close to a point that will be green
tomorrow” vs. “the points that tomorrow will be close to a point that is green now”.
In [10], the logic STLCS (Spatio-Temporal Logic for Closure Spaces) was introduced.
The topological approach of spatial logics is retained, but models are generalised to clo-
sure spaces, in order to include finite graphs in the landscape of the considered models.

? Research partially funded by the EU project QUANTICOL (nr. 600708).
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STLCS model checking has been explored in the context of smart cities and smart
transportation, with applications in smart public bus services [12] and smart bike shar-
ing systems (BSS) [15]. The latter have recently become a popular public transport
mode in many cities [17, 31] operating from a few (e.g. Pisa) up to several hundreds of
docking stations (e.g. Hangzhou, Paris, or London3). The BSS concept is quite simple.
A number of stations with docks partially filled with bicycles are placed throughout
a city. Users of the service may hire any bicycle at any station at any time, and must
return it at some station of their choice. The initial period of, typically, thirty minutes is
free of charge, after which an hourly fee is charged. To maintain a high level of usage
of the system it is important to keep the service attractive to its users. User satisfac-
tion is difficult to evaluate quantitatively using only data obtained from real systems,
as such data does not assess predictability of the service from a users point of view. A
model-based approach was presented in [30] using Markov Renewal Processes (MRP)
as the underlying probabilistic model. The model provides insight in the frequency and
plausible causes for undesired delays in returning bikes and in the efficiency of bike
sharing from a user’s point of view. The model includes spatial aspects related to the
presence of large groups of commuters in the morning and afternoon that go to a limited
number of specific areas. Including commuters in the model turned out to be crucial to
reproduce, up to a certain level of accuracy, actually observed cycling duration data
for a large city such as London. In [15] we applied STLCS model checking on single
simulation traces of the model. As expected, the introduction of commuter populations
led to a larger number of stations being completely full in some places and empty in
others. Spatio-temporal model checking also showed a number of more complex prop-
erties such as the emergence and persistence of regions in which all stations were full
for some time (full clusters) and the development over time of such clusters. However,
the results were only shown for individual simulation traces.

In this paper we generalise the approach of [15] to infer statistical properties of the
system behaviour, rather than purely quantitative observations. We propose a methodol-
ogy to quantify the likelihood of spatio-temporal properties in the system. We introduce
a tool chain that integrates the simulator of [30], the spatio-temporal model checker
topochecker ([13]) and MultiVeStA [35], a statistical model checker for discrete event
simulators. Using MultiVeStA, multiple (spatio-temporal) properties can be analysed
simultaneously, i.e. all estimators are updated at once for all points of the space during
a single simulation, instead of performing one simulation for each point. In this paper
this is used to obtain separate observations on all points of the space, using the same
set of simulations. The obtained performance speed-up is directly responsible for the
feasibility of statistical spatio-temporal model checking.

2 Bike Sharing Simulation Model

We briefly recall the main aspects of the bike sharing model that was introduced in [30]
and that forms the basis for the stochastic simulator that we use here in combination

3 Pisa: http://www.pisamo.it, Hangzhou: http://www.publicbike.net; Paris:
http://www.velib.paris.fr, London: https://tfl.gov.uk/modes/cycling/
santander-cycles
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Fig. 1. Left: cycling duration histograms (Data) in London, using 831,754 trip records in October
2012, and results of simulation of the uniform model (dark lines) and the flow model (light lines).
Maintenance trips are not considered. Right: total bike rentals over 100 minutes.

with the spatio-temporal model checker briefly described in the next section. The bike
sharing model is intended to serve as an explanatory model for some of the salient
aspects of the distribution of cycling times observed in real bike sharing systems. In
particular, such distributions show a considerable number of surprisingly long cycling
trips that cannot be attributed to maintenance events.

An illustration of such a distribution for the bike sharing systems in London is
provided in Fig. 1 (Data). There, 7% of all cycling trips are longer than thirty minutes,
some extending up to two hours, which is more than the time necessary to traverse
the complete service area in London (about fifteen kilometres). This range coincides
with the so-called ‘algebraic tail’ of the distribution, the range in which the probability
density function (PDF) is well approximated by ∝ t−a with some exponent a> 0 (Fig. 1,
inset). Such “algebraic tails” were found in data from all considered cities. Simulation
results of the bike sharing model of [30] suggest that this phenomenon is a consequence
of a form of risk-taking behaviour of users of bike sharing systems. Most users use bike
sharing to reach a planned destination at a planned time and use an estimate of the time
it will take them from their origin to their destination to know when to leave. Users risk,
of course, that no parking place is found at or close to the destination in which case they
would have to extend the travel itinerary to find another station where to deposit their
bike. Such risk-taking behaviour can be shown to actually reduce the mean trip duration
when considering the overall system [30]. The bike sharing model takes this risk-taking
user behaviour explicitly into account, as well as other human factors such as speed of
walking and biking.

The model is composed of two populations: a population of stations and a popula-
tion of agents, the latter representing relevant user behaviour. Both can schematically
be represented as automata as shown in Fig. 2. Users can take or return bikes from/to
a station via the actions ‘take’ and ‘return’, respectively. Each station has a particular
capacity c and a number of bikes parked in it n, as well as a position. To keep the model
simple, stations are situated on a regular grid as shown in the left panel of Fig. 3. Users
are modelled as agents that pass repeatedly through four different states as shown in
Fig. 2. Each agent is parameterised by two addresses on the grid in an area at walking
distance from a station which we will denote by origin and destination, respectively.
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Fig. 2. Models of a bicycle station (left) and user agent (right).

Their behaviour is as follows. From the origin they walk to the nearest station where
they take a bike (H), then they bike to the station close to the destination, return the bike
(R) and walk to the destination. Upon arrival, the user process is re-instantiated (M).

The mathematical framework is that of Markov Renewal Processes (MRP), which
are a generalisation of Continuous Time Markov Chains allowing for non-Markovian
events and non-exponential distributions of inter-event times [9]. This approach was
chosen in particular to reflect more accurately trip durations and agent’s decisions. In
particular, in MRPs the sojourn time has a distribution that depends both on the origin
and the destination. In the model a user always finds a parking place, but this may not be
in the preferred station if there are no places available. This then is reflected in a longer
trip duration for the ‘return’ transition. The ‘take’ and ‘return’ transitions between users
and stations are synchronised. The ‘arrive’ and ‘mutate’ transitions are not synchronised
with stations but re-initialise the agent’s states. For more details about the model, the
Reader is invited to consult [30].

A model for station utility perception is used in which agents that want to take
little risk tend to search for suitable stations in a larger area surrounding their target
destination, whereas agents that take a higher risk search in a smaller area, risking not
to find a parking place. Higher risk should lead to shorter trips in general when there
are enough parking places available, but occasionally to much longer trips when this
is not the case (see [30] for further details). The cycle time distribution obtained via
simulation (Fig. 1) shows that such events affect only a small fraction of all trips if the
distribution of agents’ origins and destinations is spatially homogeneously distributed,
as in Fig. 1, the ‘uniform model’ (Pr{cycling trip > 30min | uniform} = 0.01) which
increases sevenfold if there are larger destination concentrations as in the ‘flow model’
(Pr{cycling trip > 30min | flow}= 0.07). The flow model reflects the presence of areas
that attract more users than other areas at certain times of the day. This is a reasonable
assumption about real cities. An obvious consequence is that also the areas of full sta-
tions will be, as a rule, larger. As shown in Fig. 1 the flow model approximates rather
closely the actual distribution of cycling times in London.

Fig. 3 shows a spatial simulation set-up for a grid of stations of the size of that of the
London area. The panels in the middle and on the right show an artificially introduced
probability distribution for the request for bikes and parking places, respectively.

The set-up of the model follows the principle that the total service area, the number
and capacities of stations, the number of bicycles, and the average number of hourly
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Fig. 3. Spatial set-up to simulate the London data-set. Left panel: The map of randomly generated
stations and a snapshot of their filling degree (circle size ∝ c, shade ∝ n). Middle, right: distribu-
tions of the demand origin and destination locations, respectively.

trips should be close to those in London, but without pursuing a photographic accuracy
of the underlying topography of the city. The result is a 7×13 km2 area with a 19×38
array of stations with randomly perturbed locations, random capacities between 15 and
40 docks. Two groups of agents are injected into this model. The first group of 400
agents are sampled with uniformly distributed spatial and temporal demand profiles,
simulating the homogeneous component of the overall demand. The second group of
2000 agents are sampled from topical spatial demand distributions that contribute to
the visible peaks in Fig. 3. This group is requested to honour a kind of appointment
that requires the agent to arrive at a destination by a certain epoch (time). These arrival
times are sampled from U(50,60). The actual arrival time does not coincide with the
appointment time, almost certainly, because the travel process is stochastic (cf. Fig. 1).

MRPs can be simulated using the methodology of ‘exact stochastic simulation’ of
chemical reaction networks, substituting agents for ‘molecules’ [21], adapting it to a
non-Markovian modelling framework. Among the known simulation methods, the high-
est efficiency was achieved by adapting a version of the ‘next reaction method’ [20].
Such simulations generate a stochastic trajectory Y (ω) = {Ti,Xi, i ∈ {0, . . . ,N}} where
{Ti} is a series of epochs of events, and the state space of Xi = {⊗a∈A αa(i),⊗s∈S σs(i)}∈
X = {H,R,A,M}A ×⊗s∈S {0, . . . ,cs} is a product space of the agent states {H,R,A,M}
for all agents A , and the number of parked vehicles σs ∈ {0, . . . ,cs}, where cs is the
capacity of station s, for each bike-sharing station s ∈S . This trajectory is then trans-
formed into a snapshot sequence. A snapshot sequence Σ(ω) is defined as a projec-
tion of Y (ω) to the station-only component, cut at regular time intervals ∆ > 0. Thus
Σ(ω) = {⊗s∈S σ̂s( j), j = 0, . . .}, where σ̂s( j) = {σs(i) : Ti ≤ ∆ j < Ti+1}. Each se-
quence (σ̂s(0), σ̂s(1), . . .) is interpreted as a sequence of independent random numbers,
which are integral and bounded by 0 and cs (see Fig. 4 for a graphical illustration).
The interpretation of all stations’ sequences is clearly a complicated task for analysis.
In the following sections, we will show the application of statistical spatio-temporal
model checking to identify problematic stations and areas. Note that by virtue of the
Hoeffding’s theorem [36], such sequences are Monte Carlo-compatible [25], justifying
the deployment of SMC, as described in Sect. 4.1.

3 Spatio-temporal Model Checking

Spatio-temporal model checking is a variant of classical model checking where spatial
logical reasoning is combined with classical temporal operators. In this work we use
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Fig. 4. Linear snapshot model based on single-simulation traces.

Φ ::= TT [TRUE]
| [p] [ATOMIC PREDICATE]
| !Φ [NOT]
| Φ |Φ [OR]
| Φ & Φ [AND]
| N Φ [NEAR]
| Φ SΦ [SURROUNDED]
| Aϕ [ALL FUTURES]
| Eϕ [SOME FUTURE]

ϕ ::= X Φ [NEXT]
| FΦ [EVENTUALLY]
| GΦ [GLOBALLY]
| Φ U Φ [UNTIL]

Fig. 5. STLCS syntax

the spatio-temporal logic of closure spaces (STLCS) of [13]. The temporal fragment
of the logic consists in Computation Tree Logic [16], whereas the spatial fragment is
that of [10], comprising a spatial near modality, expressing topological proximity, and
a binary spatial surrounded operator.

STLCS is interpreted over so-called snapshot models [27]. A snapshot model is a
triple consisting of a Kripke frame (S,R) with states in S, accounting for the temporal
evolution of a system, a closure space4 (X ,C ) that represents space, and a valuation
function V : X × S→ 2P assigning to each pair of a point in X , and a state in S, the
boolean valuation 2P of a finite set of atomic propositions P. Although using closure
spaces for spatial logics is relevant in order to link it to the topological interpretation
of [2], for the purpose of this paper, looking at so-called quasi-discrete closure spaces
[19] is sufficient. In other words, the reader may consider X to be the nodes of a finite
directed graph G, and, given A⊆ X , let C (A) be A itself, plus the nodes b in X such that
there is a node a in A, with a→ b an edge of G.

The formal syntax of formulas is described by the grammar in Fig. 5, where p ranges
over a finite or countable set of atomic propositions. The truth value of formula φ is de-
fined at a point in space x and state s, written (x,s) |= φ . The full semantics of the logic
is provided in [13], whereas a tutorial-type introduction to spatial (and spatio-temporal)
logics and their model checking can be found in [11]. We briefly comment on the spa-
tial operators, that are less known. A pair (x,s) satisfies φ1 surrounded by φ2 (written
φ1S φ2) whenever, in the graph associated to (X ,C ), it is not possible to find a path p

4 A closure space is a pair (X ,C ) where X is a set, and the closure operator C : 2X → 2X assigns
to each subset of X its closure, obeying to the following laws, for all A,B ⊆ X : 1) C ( /0) = /0;
2) A⊆ C (A); 3) C (A∪B) = C (A)∪C (B). We refer to [10] for an introduction.
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from x to a point y, with (x,s) 2 φ1, unless path p passes first by point z with (z,s) |= φ2.
For interpreting the temporal operators, one uses the traditional interpretation of CTL,
so that, for example, (x,s) |= EXφ whenever there is a path p in the Kripke frame (S,R)
with (x, p(1)) |= φ . This simple, orthogonal definition of space and time is typical of
snapshot models (an example of a linear5 snapshot model for BSS is shown in Fig. 4).
However, arbitrary nesting of spatial and temporal formulas allows one to express quite
complex assertions (e.g. a point x at state s being surrounded by points that will even-
tually satisfy a certain property). In STLCS, the temporal and spatial fragment can be
freely nested; the computational complexity of the global model checking algorithm of
[13] is linear in the product of the size of S, X , and the number of sub-formulas of the
checked formula.

As an example, consider the STLCS formula EF [full]S(AX [!full]) where atomic
proposition [full] is satisfied by full stations. The formula is satisfied by a point (sta-
tion) x in state s if the point x possibly (E ) satisfies [full] in some future (F ) state s′,
and in that state, it is not possible to leave the area of points satisfying [full] unless
passing by a point that will necessarily (A) satisfy [!full] (not full station) in the next
(X ) time step. In other words, a situation in which there is a contiguous area of full
stations surrounded by stations that are not full.

4 A Tool-chain for Statistical Spatio-Temporal Model Checking

In this section we detail the implementation of our tool-chain. One interesting aspect
of MultiVeStA [35] is its modularity. By implementing specific plugins, the tool acts as
an orchestrator for running a simulator and observing its results. In statistical spatio-
temporal model checking, MultiVeStA invokes several runs of the simulator of [30],
which is deployed as a separate executable. The simulator outputs a spatio-temporal
model in the format of topochecker. A special functionality has been added to the
model-checker, permitting MultiVeStA to invoke it several times over the same model,
while keeping topochecker running, to avoid reloading of the model and recomputa-
tion of the intermediate results. This permits one to define a large number of statistical
observations in MultiVeStA, corresponding to the truth value of spatio-temporal for-
mulas at each point of space, in an efficient way. We remark that, since the simulator is
a separate executable, it is straightfoward to reuse the same tool-chain for simulations
coming from other domains, as long as the simulation process formats its results using
the input language of topochecker.

4.1 Multivesta

We briefly present the tool for distributed statistical model checking MultiVeStA6. The
tool can be easily integrated with any existing discrete event simulator, or formalism
that provides probabilistic simulation. It has been successfully used in the analysis of
many scenarios, including public transportation systems [22], volunteer clouds [34],

5 Note that snapshot models may also be branching models.
6 Available at http://sysma.imtlucca.it/tools/multivesta/
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crowd-steering [33], swarm robotics [6], opportunistic network protocols [3], contract-
oriented middlewares [4], and software product lines [5]. Here MultiVeStA is used to
estimate quantitative spatio-temporal properties of bike sharing systems. The integra-
tion is performed by instantiating a Java Interface exposing simple methods used by
MultiVeStA to interact with the considered simulator (such as reinitialize the simula-
tor to perform a new simulation, perform one step of simulation, or perform a whole
simulation, depending on the specific use case).

Model specification is delegated to the integrated simulator, while MultiVeStA of-
fers a simple and flexible property specification language, MultiQuaTEx (which extends
QuaTEx [1]). MultiQuaTEx consists of a few ingredients: (i) real-valued observations
on the system states, such as the number of bikes in a bike station at a certain point in
time, its current full/empty status, or the truth value of a spatio-temporal property (0
for false and 1 for true); (ii) arithmetic expressions and comparison operators; (iii) a
one-step next operator (which triggers the execution of one step of a simulation); (iv)
if-then-else statements; (v) recursion. MultiQuaTEx is used to define random variables,
associating a real value to each simulation. Then, MultiVeStA estimates the expected
value of such random variable. Note that in case we get 0 or 1 upon the occurrence of
a certain event (e.g., when considering the truth value of a spatio-temporal property),
we get a Bernoulli random variable, and MultiVeStA hence estimates the probability
of such an event. An in depth discussion of MultiVeStA’s architecture and of Multi-
QuaTEx is provided in [35, 33]. Estimations are computed according to a user specified
confidence interval (CI) (α,δ ). In particular, the mean value of n samples is computed,
with n minimal but large enough to guarantee that the size of the (1−α)×100% CI is
bounded by δ . In other words, if a MultiQuaTEx expression is estimated as x ∈R, then
its actual expected value belongs to the interval (x− δ

2 ,x+
δ

2 ), with probability (1−α).
In all the experiments discussed in the next section we focus on the probabilities of bike
station properties, fixing α = 0.1 and δ = 0.05. A single MultiQuaTEx query may ad-
dress many different properties simultaneously, such as the number of bikes in each bike
station at a certain point in time, or even at the varying of time. All such properties are
analysed reusing the same simulation traces, leading to huge analysis speed ups. Note
that the estimation of each property might require a different number of simulations.
MultiVeStA performs only n simulations, with n the maximum number of simulations
required by each individual property (see [33] for full details).

4.2 Statistical Spatio-temporal Model Checking using topochecker

Statistical spatio-temporal model checking assumes an underlying simulation model of
a spatio-temporal system (that can be described as a snapshot model, see Section 3).
The methodology is aimed at estimating the likelihood, at each point of space, that a
given formula (with boolean valuation) is true, with a user-specified global confidence
interval – that is, the same interval is used for all points. By this, a heat-map is pro-
duced that associates to each point of space a probability value. In principle, to achieve
this, standard techniques from statistical model checking might be used. For each pair
(x,s) to be observed and each formula φ , a series of simulations of a system should be
executed, computing the (boolean) satisfaction value of (x,s) |= φ (see Section 3 for the
meaning of this notation) in each specific simulation. A probability estimate can then be
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computed by keeping the cumulative account of the number of times the formula is sat-
isfied, until the specified confidence interval is reached. However, such naive approach
is not feasible on all but the simplest models, due to the already cpu-hungry simulation
and model checking processes being iterated not only for the number of simulations that
are necessary to achieve the required confidence, but also for each point of space. The
proposed tool-chain turns the theoretical approach of statistical spatio-temporal model
checking into a feasible analysis methodology. Input to the tool-chain are: (i) The pa-
rameters of the simulation, describing relevant features of a bike sharing system, such
as the position and capacity of stations, and the number of users etc.; (ii) A set of quali-
tative or quantitative spatio-temporal formulas, characterising features of interest of the
behaviour of the system, such as the formation of clusters of full stations; (iii) A set of
quantitative queries whose evaluation is based on the outcome of the spatio-temporal
model checking process. The approach used in this paper exploits the “multi” in Multi-
VeStA, by using an observation for each point of the space, resulting in a large number
of random variables – one for each point of space and formula – being analysed at
once reusing the same simulations. Since each observation in MultiVeStA corresponds
to a different query in its internal language, we also adapted the spatio-temporal model
checker topochecker to be run as a server for each bike sharing simulation. The server
receives queries from MultiVeStA in the form of pairs (x,φ) where x is a point of space,
and φ is a spatio-temporal formula. The value of (x,0) |= φ , where 0 is the first point
of the trace obtained from the simulator, is computed and returned to MultiVeStA. The
sophisticated global model checking algorithm of topochecker uses a cache that stores
the intermediate computations of the model checker for each formula. As a result, the
time required to compute the satisfaction value (x,φ) for all points of space x is just a
fraction more of the time required to compute the same value on one point. Such ma-
chinery speeds up statistical model checking of a factor which is proportional to the
number of points of the space. In our case, such speed-up is the key to actually be able
to run our experiments. The output from MultiVeStA consists in a list of estimates of all
the queries used (as we mentioned above, one for each formula and point of space). To
actually produce a heat-map, the result is transformed by a simple rendering script, that
colours the graph representing space, using the results from MultiVeStA. The resulting
collaboration pattern is depicted in Figure 6. We remark that the total execution time for
all the properties we consider is in the order of around five hours on a standard laptop;
this hints at the importance of observing multiple points at the same time (exploiting the
specific capabilities of MultiVeStA); the size of the considered space is 722 points, and
running the statistical model checking sequentially for each point would multiply our
execution times accordingly, changing the approach from “feasible” to “unfeasible”.

5 Properties and Results

In this section we revisit some of the spatio-temporal properties of bike sharing sys-
tems that were presented in [15]. Therein, some of the authors used spatio-temporal
model checking on single traces of the BSS simulator. A regular grid representing bike
sharing stations was coloured with two colours, representing the boolean satisfaction
value of properties. As discussed, using statistical spatio-temporal model checking we
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Fig. 6. Collaboration in the tool-chain used for statistical spatio-temporal model checking.

can collect information about single simulations to assess the probability with which
each station satisfies the property of interest in the entire system behaviour. We will
visualise such probability by means of a colouring of the stations in a grid according to
a sequential colour palette of 10 uniform steps ranging from light grey (denoting low
probability) to dark red (denoting high probability). We use this visualisation to facili-
tate the quick analysis of the results. Detailed values of the probabilities, variance and
size of the confidence interval δ are indeed produced by MultiVeStA. Let us first recall
some basic spatio-temporal properties of bike sharing systems. Note that, throughout
this section, all simulations start from an initial state in which all stations are half full.

Full stations and clusters. We characterise stations that are full, that is, with no vacant
parking places, and clusters of full stations, that is, stations that are full, and are only
connected to adjacent stations that are full in turn. These two (purely spatial) properties
are formalised in STLCS below:

full = [vacant==0]
cluster = I(full)

Connectivity between stations is expressed using the derived interior operator IΦ =
!(N(!Φ)). Informally speaking, in an undirected graph, points satisfying IΦ are only
connected to points satisfying Φ . The smallest possible cluster in the regular grid that
was used for the simulation is therefore composed of a full station such that its direct
neighbours in the north, south, east and west directions (also called its von Neumann
neighbourhood) are also full. Note that the definition of cluster only identifies (on
purpose) these “inner” full stations and not their direct full neighbours. The abbreviation
full uses a boolean predicate (equality), applied to the quantitative value of the atomic
property [vacant].

Let us now consider probability that a station will eventually be full, formalised as:

eventuallyFull = (EF full)

MultiVeStA evaluates the property for all stations simultaneously, using the same set of
generated simulations. As discussed in Section 4.1, we used α = 0.1 and δ = 0.05. The
simulations cover a period of 100 minutes in steps of 2 minutes each. This includes the
morning period in which there is a peak of requests for bikes and parking places due
to a large group of commuters leaving from home. The results are shown in Figure 7
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that depicts the grid of stations, and for each station a colour indicating the approximate
probability with which the property holds according to the colour scale shown on the
right of the grid. The results clearly show that the stations that have a high probability
to get full during this period of the simulation correspond to the areas in the model
that have been assigned a high attractiveness for commuters as shown in Figure 3 in a
pattern that is easy to recognise.
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Fig. 7. Probability of stations to be eventually full within the maximal length of the simulations
considered (100 minutes), starting from an initial situation in which all stations are 50% full.

We can identify stations belonging to clusters that persist for some amount of time,
that is, they last for a specific number of time steps. The following formulas specify the
persistence of such a situation for two and three time steps:

cluster2steps = cluster&(AXcluster)
cluster3steps = cluster&(AXcluster2steps)

By combining these formulas with the eventually operator, as before, we can assess the
probability of stations to eventually become a cluster and remain so for 3 consecutive
steps. The results are shown in Figure 8.
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Fig. 8. Probability of stations that eventually become a cluster and remain a cluster for 3 steps.
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Problematic user experience. The next property we consider is related to problematic
user experience, namely not to find a parking place in a suitable station. When a user
wants to leave a bike at a specific station, and such station is full, she may try to find
a nearby station with available parking slots, or she may wait for some time in the
same station hoping that someone is needing a bike. This behaviour may be typically
sufficient to solve the problem, at the expense of a longer trip duration. One may want
to check how effective this procedure is. In the following formula, we check whether it
is possible that, in three time steps of 2 minutes each, the user is still unable to leave the
bike in the same or a nearby station because they are full when she arrives. The formula
tripEnd characterises this situation. It expresses a nested spatio-temporal situation
where the user arrives at a full station, and in the next step, while possibly moving
to another neighbouring station, finds it full again, being unlucky this way for three
consecutive attempts. In terms of the STLCS logic, this is expressed as follows:

tripEnd = full&(N(AX(full&(N(AX(full&N(AX full)))))))

Combining this formula with the eventually operator provides an overview of the prob-
ability that such an unlucky series of events may happen to a user at a particular station.
The results are shown in Figure 9. The resulting probabilities for the stations are very
close to those for property eventuallyFull, but they are slightly lower.

0
1

19

2

20

3

21

4

22

5

23

6

24

7

25

8

26

9

27

10

28

11

29

12

30

13

31

14

32

15

33

16

34

17

35

18

36
37

38
39

40
41

42
43

44
45

46
47

48
49

50
51

52
53

54
55

56

57
58

59
60

61
62

63
64

65
66

67
68

69
70

71
72

73
74

75

76
77

78
79

80
81

82
83

84
85

86
87

88
89

90
91

92
93

94

95
96

97
98

99
10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

11
0

11
1

11
2

11
3

11
4

11
5

11
6

11
7

11
8

11
9

12
0

12
1

12
2

12
3

12
4

12
5

12
6

12
7

12
8

12
9

13
0

13
1

13
2

13
3

13
4

13
5

13
6

13
7

13
8

13
9

14
0

14
1

14
2

14
3

14
4

14
5

14
6

14
7

14
8

14
9

15
0

15
1

15
2

15
3

15
4

15
5

15
6

15
7

15
8

15
9

16
0

16
1

16
2

16
3

16
4

16
5

16
6

16
7

16
8

16
9

17
0

17
1

17
2

17
3

17
4

17
5

17
6

17
7

17
8

17
9

18
0

18
1

18
2

18
3

18
4

18
5

18
6

18
7

18
8

18
9

19
0

19
1

19
2

19
3

19
4

19
5

19
6

19
7

19
8

19
9

20
0

20
1

20
2

20
3

20
4

20
5

20
6

20
7

20
8

20
9

21
0

21
1

21
2

21
3

21
4

21
5

21
6

21
7

21
8

21
9

22
0

22
1

22
2

22
3

22
4

22
5

22
6

22
7

22
8

22
9

23
0

23
1

23
2

23
3

23
4

23
5

23
6

23
7

23
8

23
9

24
0

24
1

24
2

24
3

24
4

24
5

24
6

24
7

24
8

24
9

25
0

25
1

25
2

25
3

25
4

25
5

25
6

25
7

25
8

25
9

26
0

26
1

26
2

26
3

26
4

26
5

26
6

26
7

26
8

26
9

27
0

27
1

27
2

27
3

27
4

27
5

27
6

27
7

27
8

27
9

28
0

28
1

28
2

28
3

28
4

28
5

28
6

28
7

28
8

28
9

29
0

29
1

29
2

29
3

29
4

29
5

29
6

29
7

29
8

29
9

30
0

30
1

30
2

30
3

30
4

30
5

30
6

30
7

30
8

30
9

31
0

31
1

31
2

31
3

31
4

31
5

31
6

31
7

31
8

31
9

32
0

32
1

32
2

32
3

32
4

32
5

32
6

32
7

32
8

32
9

33
0

33
1

33
2

33
3

33
4

33
5

33
6

33
7

33
8

33
9

34
0

34
1

34
2

34
3

34
4

34
5

34
6

34
7

34
8

34
9

35
0

35
1

35
2

35
3

35
4

35
5

35
6

35
7

35
8

35
9

36
0

36
1

36
2

36
3

36
4

36
5

36
6

36
7

36
8

36
9

37
0

37
1

37
2

37
3

37
4

37
5

37
6

37
7

37
8

37
9

38
0

38
1

38
2

38
3

38
4

38
5

38
6

38
7

38
8

38
9

39
0

39
1

39
2

39
3

39
4

39
5

39
6

39
7

39
8

39
9

40
0

40
1

40
2

40
3

40
4

40
5

40
6

40
7

40
8

40
9

41
0

41
1

41
2

41
3

41
4

41
5

41
6

41
7

41
8

41
9

42
0

42
1

42
2

42
3

42
4

42
5

42
6

42
7

42
8

42
9

43
0

43
1

43
2

43
3

43
4

43
5

43
6

43
7

43
8

43
9

44
0

44
1

44
2

44
3

44
4

44
5

44
6

44
7

44
8

44
9

45
0

45
1

45
2

45
3

45
4

45
5

45
6

45
7

45
8

45
9

46
0

46
1

46
2

46
3

46
4

46
5

46
6

46
7

46
8

46
9

47
0

47
1

47
2

47
3

47
4

47
5

47
6

47
7

47
8

47
9

48
0

48
1

48
2

48
3

48
4

48
5

48
6

48
7

48
8

48
9

49
0

49
1

49
2

49
3

49
4

49
5

49
6

49
7

49
8

49
9

50
0

50
1

50
2

50
3

50
4

50
5

50
6

50
7

50
8

50
9

51
0

51
1

51
2

51
3

51
4

51
5

51
6

51
7

51
8

51
9

52
0

52
1

52
2

52
3

52
4

52
5

52
6

52
7

52
8

52
9

53
0

53
1

53
2

53
3

53
4

53
5

53
6

53
7

53
8

53
9

54
0

54
1

54
2

54
3

54
4

54
5

54
6

54
7

54
8

54
9

55
0

55
1

55
2

55
3

55
4

55
5

55
6

55
7

55
8

55
9

56
0

56
1

56
2

56
3

56
4

56
5

56
6

56
7

56
8

56
9

57
0

57
1

57
2

57
3

57
4

57
5

57
6

57
7

57
8

57
9

58
0

58
1

58
2

58
3

58
4

58
5

58
6

58
7

58
8

58
9

59
0

59
1

59
2

59
3

59
4

59
5

59
6

59
7

59
8

59
9

60
0

60
1

60
2

60
3

60
4

60
5

60
6

60
7

60
8

60
9

61
0

61
1

61
2

61
3

61
4

61
5

61
6

61
7

61
8

61
9

62
0

62
1

62
2

62
3

62
4

62
5

62
6

62
7

62
8

62
9

63
0

63
1

63
2

63
3

63
4

63
5

63
6

63
7

63
8

63
9

64
0

64
1

64
2

64
3

64
4

64
5

64
6

64
7

64
8

64
9

65
0

65
1

65
2

65
3

65
4

65
5

65
6

65
7

65
8

65
9

66
0

66
1

66
2

66
3

66
4

66
5

66
6

66
7

66
8

66
9

67
0

67
1

67
2

67
3

67
4

67
5

67
6

67
7

67
8

67
9

68
0

68
1

68
2

68
3

68
4

68
5

68
6

68
7

68
8

68
9

69
0

69
1

69
2

69
3

69
4

69
5

69
6

69
7

69
8

69
9

70
0

70
1

70
2

70
3

70
4

70
5

70
6

70
7

70
8

70
9

71
0

71
1

71
2

71
3

71
4

71
5

71
6

71
7

71
8

71
9

72
0

72
1 0.9-1.0

0.8-0.9
0.7-0.8
0.6-0.7
0.5-0.6
0.4-0.5
0.3-0.4
0.2-0.3
0.1-0.2
0.0-0.1

Fig. 9. Probability that a user willing to park her bike in a station finds it full and cannot find a
parking place within three consecutive attempts in neighbouring stations.

As a hint on the feasibility of the approach, we remark on the execution times. On
a high-end laptop, the computations of the example of Figure 9 take around 5 hours,
analysing 77 batches of 20 simulations each.

6 Related Work

The field of spatial logics is as old as modal logics itself, with early logicians such as
Tarski already laying the foundations of a topological interpretation of modal operators
and of the completeness of the logic S4 for the class of topological spaces [7]. Research
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efforts in spatial and spatio-temporal model checking are far more recent, and often tai-
lored to specific applications. In [23] a linear spatial superposition logic is defined for
the specification of emergent behaviour. The logic is applied to pattern recognition in
the context of medical image analysis. The Mobile Stochastic Logic (MoSL) [18] has
been proposed to predicate on mobile processes in models specified in StoKLAIM, a
stochastic extension of KLAIM based on the tuple-space model of computation. Other
variants of spatial logics concern the symbolic representation of the contents of images,
and, combined with temporal logics, for sequences of images [8]. In [24], the approach
of [23] has been further extended, defining the spatio-temporal logic SpaTeL, and a
statistical model checking algorithm. The algorithm estimates the probability of events
that relate different regions of space at different times. Regions are identified by spatial
partitioning using quad trees. In SpaTeL, spatial formulas can only be nested below
temporal formulas. In contrast, STLCS can arbitrarily nest spatial and temporal for-
mulas, at the expenses of using simpler models that do not explicitly describe regions,
but only deal with points. The spatio-temporal logic STLCS used in the current paper
addresses properties of discrete, graph-based models that, in our case study, reflect the
geographical position of docking stations in a city. The spatial fragment of STLCS, and
related model-checking algorithms, were introduced in [10] and have also inspired the
work on Spatial Signal Temporal Logics in [32], where a linear time logic is introduced
to reason about properties of signals, considering both their truth values and their ro-
bustness in the presence of local perturbations of the signals. The spatial fragment has
also been used to analyse aspects of public bus transportation systems [12].

7 Conclusions

We have discussed the general idea of statistical spatio-temporal model checking as
a form of statistical model checking applied to points of the space. A tool-chain has
been developed to study the feasibility of the approach. Future work tailored to bike
sharing systems analysis will extend the simulator by modelling incentives to analyse
their usage in improving the overall performance of such systems. The effectiveness of
incentives can be then captured by logic formulas and assessed statistically before their
deployment.

More generally, statistical spatio-temporal model checking can be used in any kind
of simulation scenario for spatio-temporal systems. As MultiVeStA can be integrated
with discrete event simulators that allow for probabilistic simulation and the spatio-
temporal model checker just needs spatial snapshot models in a very general format, the
approach can be applied to other systems. We plan to use the approach also in modelling
mitigation strategies for problems of smart bus networks, continuing the work of [12].

These developments are part of a more general effort in statistical spatio-temporal
model checking aimed at investigating global properties of collective-adaptive systems
(CAS), taking spatial aspects into account. In this light, it will be relevant to propose
variants of statistical spatio-temporal model checking that operate over the semantic
domains of process calculi with spatial aspects, such as [14]. A further interesting issue
would be the extension of the statistical spatio-temporal model checking approach to
handle rare events [26].
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