
Deep Permutations:
Deep Convolutional Neural Networks and

Permutation-Based Indexing

Giuseppe Amato, Fabrizio Falchi, Claudio Gennaro, and Lucia Vadicamo

ISTI-CNR, via G. Moruzzi 1, 56124 Pisa, Italy
<firstname>.<lastname>@isti.cnr.it

Abstract. The activation of the Deep Convolutional Neural Networks
hidden layers can be successfully used as features, often referred as Deep
Features, in generic visual similarity search tasks.
Recently scientists have shown that permutation-based methods offer
very good performance in indexing and supporting approximate similar-
ity search on large database of objects. Permutation-based approaches
represent metric objects as sequences (permutations) of reference ob-
jects, chosen from a predefined set of data. However, associating objects
with permutations might have a high cost due to the distance calculation
between the data objects and the reference objects.
In this work, we propose a new approach to generate permutations at
a very low computational cost, when objects to be indexed are Deep
Features. We show that the permutations generated using the proposed
method are more effective than those obtained using pivot selection cri-
teria specifically developed for permutation-based methods.

Keywords: Similarity Search, Permutation-Based Indexing, Deep Con-
volutional Neural Network

1 Introduction

The activation of the Deep Convolutional Neural Networks (DCNNs) hidden
layers has been used in the context of transfer learning and content-based image
retrieval [10, 23]. In fact, Deep Learning methods are “representation-learning
methods with multiple levels of representation, obtained by composing simple
but non-linear modules that each transform the representation at one level (start-
ing with the raw input) into a representation at a higher, slightly more abstract
level” [19]. These representations can be successfully used as features in generic
recognition or visual similarity search tasks. The first layers are typically use-
ful in recognizing low-level characteristics of images such as edges and blobs,
while higher levels have demonstrated to be more suitable for semantic similar-
ity search.

However, DCNN features are typically of high dimensionality. For instance,
in the well-known AlexNet architecture [18] the output of the sixth layer (fc6)
has 4,096 dimensions, while the fifth layer (pool5) has 9,216 dimensions. This

represents a major obstacle to the use of DCNN features on large scale, due to
the well-known dimensionality curse [13].

An effective approach to tackle the dimensionality curse problem is the appli-
cation of approximate access methods. Permutation-based approaches [4, 9, 11,
22] are promising access methods for approximate similarity search. They rep-
resent metric objects as sequences (permutations) of reference objects, chosen
from a predefined set of objects. Similarity queries are executed by searching for
data objects whose permutation representations are similar to the query permu-
tation representation. Each permutation is generated by sorting the entire set of
reference objects according to their distances from the object to be represented.

The total number of reference objects, to be used for building permutations,
depends on the size of the dataset to be indexed, and can amount to tens of
thousands [4]. In these cases, both indexing time and searching time is affected
by the cost of generating permutations for objects being inserted, or for the
queries.

In this paper, we propose an approach to generate permutations for Deep
Features at a very low computational cost since it does not require the distance
calculation between the reference objects and the objects to be represented.
Moreover, we show that the permutations generated using the proposed method
are more effective than those obtained using pivot selection criteria specifically
developed for permutation-based methods.

The rest of the paper is organized as follows. In Section 2, we briefly describe
related work. Section 3 provides background for the reader. In Section 4, we
introduce our approach to generate permutations for Deep Features. Section 5
presents some experimental results using real-life datasets. Section 6 concludes
the paper.

2 Related Work

Pivot selection strategies for permutation-based methods were discussed in [2].
In the paper the Farthest-First Traversal (FFT) technique was identified as the
one providing a set of reference objects such that the sorting performed with
similarity computed among the permutations was the most correlated to sorting
performed using the original distance. We will see that the techniques proposed
here for Deep Features outperform also the FFT technique.

The permutation-based approach was used in PPP-Codes index [21] to in-
dex a collection of 20 million images processed by a deep convolutional neural
network. However, no special techniques was used to generate permutations for
Deep Features.

Some recent works try to treat the features in a convolutional layer as local
features [5, 25]. This way, a single forward pass of the entire image through
the DCNN is enough to obtain the activation of its local patches, which are
then encoded using Vector of Locally Aggregated Descriptors (VLAD). A similar
approach uses Bag of Words (BoW) encoding instead of VLAD to take advantage
of sparse representations for fast retrieval in large-scale databases. However,

although authors claim that their approach is very scalable in terms of search
time, they did not report any efficiency measurements and experiments have
been carried out on datasets of limited size.

Liu et al. [20] proposed a framework that adapts Bag-of-Word model and
inverted table to DCNN feature indexing, which is similar to the one we propose.
However, for large-scale datasets, Liu et al. have to build a large-scale visual
dictionary that employs the product quantization method to learn a large-scale
visual dictionary from a training set of global DCNN features. In any case, using
this approach the authors reported a search time that is one order higher than
in our case for the same dataset.

An approach, called LuQ and introduced in [1], exploits the quantization of
the vector components of the DCNN features that allows one to use a text re-
trieval engine to perform image similarity search. In LuQ, each real-valued vector
component xi of the deep feature is transformed in a natural numbers ni given
by bQxic; where bc denotes the floor function and Q is a multiplication factor
> 1 that works as a quantization factor. ni are then used as term frequencies for
the “term-components” of the text documents representing the feature vectors.

3 Background

In the following we introduce the needed notions of permutation-based similarity
search approach and Deep Features.

3.1 Permutation-Based Indexing

Given a domain D, a distance function d : D×D → R, and a fixed set of reference
objects P = {p1 . . . pn} ⊂ D that we call pivots or reference objects, we define a
permutation-based representation Πo (briefly permutation) of an object o ∈ D
as the sequence of pivots identifiers sorted in ascending order by their distance
from o [4, 9, 11, 22].

Formally, the permutation-based representation Πo = (Πo(1), . . . ,Πo(n))
lists the pivot identifiers in an order such that ∀j ∈ {1, . . . , n−1}, d(o, pΠo(j)) ≤
d(o, pΠo(j+1)), where pΠo(j) indicates the pivot at position j in the permutation
associated with object o.

If we denote as Π−1
o (i) the position of a pivot pi, in the permutation of

an object o ∈ D, so that Πo(Π
−1
o (i)) = i, we obtain the equivalent inverted

representation of permutations Π−1
o :

Π−1
o = (Π−1

o (1), . . . ,Π−1
o (n)).

In Πo the value in each position of the sequence is the identifier of the pivot in
that position. In the inverted representation Π−1

o , each position corresponds to a
pivot and the value in each position corresponds to the rank of the corresponding
pivot. The inverted representation of permutations Π−1

o allows us to easily define
most of the distance functions between permutations.

Permutations are generally compared using Spearman rho, Kendall Tau, or
Spearman Footrule distances. As an example given two permutations Πx and
Πy, Spearman rho distance is defined as:

Sρ(Πx, Πy) =

√ ∑
1≤i≤n

(Π−1
x (i)−Π−1

y (i))2

Following the intuition that the most relevant information of the permutation
Πo is in the very first, i.e. nearest, pivots [4], the Spearman rho distance with
location parameter Sρ,l is a generalization intended to compare top-l lists (i.e.,
truncated permutations). It was defined in [12] as:

Sρ,l(Πx, Πy) =

√ ∑
1≤i≤n

(Π̃−1
x,l (i)− Π̃

−1
y,l (i))2

Sρ,l differs from Sρ for the use of an inverted top-l permutation Π̃−1
o,l , which

assumes that pivots further than pΠo(l) from o are assigned to position l + 1.

Formally, Π̃−1
o,l (i) = Π−1

o (i) if Π−1
o (i) ≤ l and Π̃−1

o,l (i) = l + 1 otherwise.
It is worth noting that only the first l elements of the permutation Πo are

used, in order to compare any two objects with the Sρ,l.

3.2 Deep Features

Recently, a new class of image descriptor, built upon Deep Convolutional Neu-
ral Networks, have been used as effective alternative to descriptors built using
local features such as SIFT, SURF, ORB, BRIEF, etc. DCNNs have attracted
enormous interest within the Computer Vision community because of the state-
of-the-art results [18] achieved in challenging image classification challenges such
as ImageNet Large Scale Visual Recognition Challenge (ILSVRC). In computer
vision, DCNN have been used to perform several tasks, including not only image
classification, but also image retrieval [10, 7] and object detection [14], to cite
some. In particular, it has been proved that the multiple levels of representation,
which are learned by DCNN on specific task (typically supervised) can be used
to transfer learning across tasks [10, 23]. The activation of neurons of a specific
layers, in particular the last ones, can be used as features for describing the
visual content.

In order to extract Deep Features, we used a trained model publicly available
for the popular Caffe framework [17]. Many deep neural network models, in
particular trained models, are available for this framework1 . Among them, we
chose the HybridNet for several reasons: first, its architecture is the very same
of the famous AlexNet [18]; second, the HybridNet has been trained not only
on the ImageNet subset used for ILSVRC competitions (as many others), but
also on the Places Database [26]; last, but not least, experiments conducted on
various datasets demonstrate the good transferability of the learning [26, 8, 6].

1 https://github.com/BVLC/caffe/wiki/Model-Zoo

We decided to use the activation of the first fully connected layer, the fc6 layer,
given the results reported on [10, 7, 8].

The activations at the fc6 layer is a vector of 4,096 of floats. Generally, the
rectified linear unit (ReLU) is used to bring to zero all negative activation values.
In this way, feature vectors contain only values greater or equal to zero. Feature
vectors are sparse, so that in average about 75% of elements are zero.

4 Permutation Representation for Deep Features

As introduced in Section 3.1 the basic idea of permutation-based indexing tech-
niques is to represent data objects with permutations built using a set of refer-
ence object identifiers as permutants. Given an object o, its permutation-based
representation Πo is the list of reference object identifiers, sorted in ascending
order with respect to the distance between o and the various reference objects.

Using the permutation-based representation, similarity between two objects
is estimated computing the similarity between the two corresponding permuta-
tions, rather than using the original distance function. The rationale behind this
is that, when permutations are built using this strategy, objects that are very
close one to the other, have similar permutation representations as well. In other
words, if two objects are very close one to the other, they will sort the set of
reference objects in a very similar way.

Notice however that, the relevant aspect, when building permutations, is the
capability of generating sequences of identifiers (permutations) in such a way
that similar objects have similar permutations as well. Sorting a set of reference
objects, according to their distance with the object to be represented is just one,
yet effective, approach.

Here, we propose an approach to generate sequence of identifiers, not nec-
essarily associated with reference objects, when objects to be indexed are Deep
Features. The basic idea is as follows. Permutants are the indexes of elements of
the deep feature vectors. Given a deep feature vector, the corresponding permu-
tation is obtained by sorting the indexes of the elements of the vector, in descend-
ing order with respect to the values of the corresponding elements. Suppose for
instance the feature vector is fv = [0.1, 0.3, 0.4, 0, 0.2]2. The permutation-based
representation of fv is Πfv = (3, 2, 5, 1, 4), that is permutant (index) 3 is in
position 1, permutant 2 is in position 2, permutant 5 is in position 3, etc. The
inverted representation, introduced in Section 3.1 is Π−1

fv = (4, 2, 1, 5, 3), that is
permutant (index) 1 is in position 4, permutant 2 is in position 2, permutant 3
is in position 1, etc.

The intuition behind this is that features in the high levels of the neural
network carry-out some sort of high-level visual information. We can imagine
that individual dimensions of the deep feature vectors represent some sort of
visual concept, and that the value of each dimension specifies the importance
of that visual concept in the image. Similar deep feature vectors sort the visual
concepts (the dimensions) in the same way, according to the activation values.

2 In reality, the number of dimensions is 4,096 or more.

More formally, let fv = [v1, . . . , vn] be a deep feature vector (where n =
4, 096, in our case). The corresponding permutation isΠfv = (Πfv(1), . . . ,Πfv(n))
such that ∀i ∈ {1, . . . , n−1}, fv[Πfv(i)] ≥ fv[Πfv(i+1)]. Using the inverted rep-
resentation, introduced in Section 3.1, we have thatΠ−1

fv = (Π−1
fv (1), . . . ,Π−1

fv (n))

such that if Π−1
fv (i) ≤ Π−1

fv (j) then fv[i] ≥ fv[j], that is if index i of the vector
appears before index j in the permutation, then the value of element i of the
vector is greater than that of element j.

Let us discuss more in details the process of creating permutations with the
activations of the deep neural network. Note that when two elements of a deep
feature vectors have the same value, their position in the permutation cannot
be uniquely assigned. This is very rare, with elements having a value different
than zero, since we are using real values. However, as we said in Section 3.2, on
average, 75% of the dimension have value equal to zero. This means that order
of these elements is not unique.

In order to face this problem, we define and compare two different strategies:

– The first strategy, which we call zeros-to-l, assigns all elements having value
equal to zero to position l + 1, where l is the location parameters.

– The second strategy, which we call no-ReLU does not use the ReLU (See
section 3.2) so that negative values are not flattened to 0 and vector com-
ponents with the same activation values occur very rarely.

If we restrict to the case of Sperman rho distance and considering deep feature
vectors L2-normalized to the unit length, it easy to see that our strategy of
generating permutations is equivalent to the following permutation generation
strategy.

– Create a set of 4,096 reference vectors (pivots) such that the i-th reference
object has 1 in dimension i and 0 in all other elements of the vectors.

– Given an object o sort all reference objects in ascending order to their dis-
tance from o, as described in Section 3.1.

A question that might arise after this description is what is the benefit of this
approach given that vector of permutations are of the same dimension of DCNN
vectors. The advantage of the proposed approach is that permutation vectors
can be easily encoded into an inverted index, which exhibits high efficiency as
shown in [3].

5 Experiments

The similarity search paradigm employs a similarity (or a distance) function to
retrieve objects similar to a query. The similarity function and the object repre-
sentations are chosen so that they reflect the user (or the application) require-
ments for the task being executed. However, generally, the similarity function
does not capture precisely the semantic of the indexed objects, and some errors
occur in the similarity search results.

In our case, we are testing an approximate similarity search algorithm. That
is, an algorithm that returns a result that is approximate with respect to the
exact similarity search result, which in turns tries to satisfy the user retrieval re-
quirements. The assumption is that, although the approximate similarity search
result is an approximation of the exact similarity search results, the user does not
notice the possible degradation of accuracy, given that also the exact similarity
search algorithm is already an approximation of his/her intuition of similarity.

In this respect, we performed two type of experiments. We first evaluated
the performance of the proposed technique in a pure similarity search task,
where we use an exact similarity search ground-truth to assess the quality of the
approximate similarity search, obtained with the permutation-based approach.
Then, we evaluated the performance in a multimedia information retrieval task.
Here, the ground-truth was manually generated associating each query with a set
of results pertinent to the query. In this way, we were able to evaluate both the
approximation introduced with respect to the exact similarity search algorithm,
and the impact of this approximation with respect to the user perception of the
retrieval task.

0.0

0.2

0.4

0.6

0.8

1.0

1 10 100 1,000

R
ec

al
l@

1
0

l

no-ReLu zeros-to-l

Fig. 1. Comparison between the no-ReLU and the zeros-to-l techniques, varying the
location parameter l (length of the truncated permutations).

5.1 Experimental Settings

For assessing the proposed technique in a pure similarity search task, we used
the Deep Features extracted as discussed in Section 3.2 from the Yahoo Flickr
Creative Commons 100 Million dataset (YFCC100M) [24].

The assessment of the proposed algorithm in a multimedia information re-
trieval task was performed using the Deep Features extracted from the INRIA
Holidays dataset [16].

The YFCC100M dataset [24] contains almost 100M of the images, all up-
loaded to Flickr between 2004 and 2014 and published under a CC commercial
or noncommercial license. The ground-truth was built selecting 1,000 different
queries and executing an exact similarity search on these queries using the eu-
clidean distance to compare Deep Features.

INRIA Holidays [16] is a collection of 1,491 images, which mainly contains
personal holidays photos. The images are of high resolution and represent a large
variety of scene type (natural, man-made, water, fire effects,etc). The authors
selected 500 queries and manually identified a list of qualified results for each of
them. As in [15], we merged the Holidays dataset with the distraction dataset
MIRFlickr including 1M images 3.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 10 100 1,000

R
ec

al
l@

1
0

l

Deep Permutations

FFT Pivots

Random Pivots

Fig. 2. Comparisons of the proposed Deep Permutation approach, with standard
permutation-based methods using random selection of pivots, and Farthest-First
Traversal (FFT) pivot selection strategy.

3 http://press.liacs.nl/mirflickr/

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 10 100 1,000

R
ec

al
l@

k

k

Deep Permutations

FFT Pivots

Random Pivots

Fig. 3. Recall@k varying k for our approach with l=800 and 4,096 random and FFT
pivots.

5.2 Evaluation in a Similarity Search Task

In order to assess quality of search results of our approach, we use the measure
called recall@k, which determines the ratio of correct results for a given query in
the top-k results returned. Let ERQ(k) and ARQ(k) be the top-k sets of results
returned by exact and approximate similarity search, respectively. The recall@k
is the ratio between the number of correct results in the approximate result set
and the number of correct results that should have been retrieved:

recall@k =
|ARQ(k) ∩ ERQ(k)|

|ERQ(k)|
.

Where | · | denote the size of a set.
We first discuss the comparison of the two approaches that we defined for

handling elements of the vectors having zero as value: no-ReLU and the zeros-to-
l. These tests were executed on a subset of the YFCC100M dataset of size 1M and
the results are shown in Figure 1. In experiments, we vary the location parameter
l, that is the length of the truncated top-l permutation, and we compute the
recall@10.

The figure shows that the plots corresponding to the two strategies are over-
lapped until l = 700. Them, the zeros-to-l degrades with respect to the other. At
l = 900 also the no-ReLU starts degrading, remaining always higher than the

other. This behavior is due to the presence of elements with value equal to zero.
As we said in Section 4, it is not possible to distinguish and to sort the elements
having value equal to zero and, on average, about the 75% of elements of fc6
vectors are zeros. This means that when l approaches to 1,000, there are no more
elements with non-zero values, which up to now were correctly sorted, and we
encounter elements having value equal to zero. These elements are all assigned
to position l+ 1 in the zeros-to-l approach, and are replaced by the negative ac-
tivation values, seen before applying the ReLU, in the no-ReLU approach. The
graphs show that using negative value for sorting these elements helps, until a
certain degree. For larger values of l the quality degrades. It is worth mention-
ing that when the neural network was trained, the ReLU was used. Therefore,
negative values were never seen at the output and they were always flattened to
zero. Therefore, the negative values were not subject of fine tuning during the
learning phase, and were always all treated as zeros. This is the reason why we
see a degradation also using negative values. It would be interesting comparing
with a network trained without using ReLU. However, this was out of the scope
of this paper, where we wanted to use a standard DCNN, and we leave it to
future investigation.

Figure 2 compares the proposed approach, with the no-ReLU strategy us-
ing a standard permutation-based approach, where pivots where both selected
randomly and using Farthest-First Traversal (FFT), which in [2] was shown to
be the best pivot selection method for permutation-based searching. Random
selection and FFT offer better performance for values of l up to 200. Then the
Deep Permutation approach is much better, reaching a recall of 80%. The FFT
approach is always lower than 60% and the random approach reaches just 45%
recall.

Figure 3 compares our approach against random selection and FFT, com-
puting the recall@k for k ranging from 1 to 1,000. Also in this case, we can see
that the new proposed approach outperforms the others and remains practically
stable for all ks.

Tests discussed above were executed on a subset of size 1M of the entire
YFCC100M dataset. Figure 4 shows the performance of the Deep Permutations
approach increasing the size of the indexed dataset up to 100M. Here, we com-
pute recall for k equal to 10, 100, and 1,000. Also in this case we do not see
significant differences for different values of k, and the recall remains also stable
around 80% for the various tested sizes of the dataset.

5.3 Evaluation in a Multimedia Information Retrieval Task

In this set of experiments, we only test the no-ReLU approach. Figure 5 shows
the graph of the mean average precision (mAP) varying the location param-
eter l, that is the length of the truncated permutation. We can see that the
mAP improves rapidly until l is 100, then remains stable slightly below 0.8. The
maximum is reached when l = 800, where the mAP is 0.77.

These values of mAP are rather surprising and competing with state of the
art methods tested on the INRIA Holidays dataset. To further investigate this

0.0

0.2

0.4

0.6

0.8

1.0

1 10 100

R
ec

al
l@

Millions of images

Recall@1000

Recall@100

Recall@10

Fig. 4. Recall@k for various k varying dataset size (expressed in millions) obtained by
the proposed approach for l=800.

we have compared the obtained results with the direct use of the Deep Features,
using the Eucledian distance (L2) as distance, and with the LuQ method [1]. The
comparison was performed on the INRIA Holidays dataset alone and together
with the MIRFlickr dataset.

Results are reported in Table 1. The direct use of the Deep Features on the
INRIA Holidays dataset, using the L2 distance, exhibits a mAP of 0.75 with
ReLU, 0.76 without ReLU. On the INRIA Holidays dataset with the MIRFlickr
distraction set, it exhibits a mAP of 0.69 with ReLU, 0.62 without ReLU.

Our approach on the INRIA Holidays dataset, exhibits a mAP of 0.75 with
full permutations, 0.77 with l = 800. On the INRIA Holidays dataset with
MIRFlickr distraction set, we obtain a mAP of 0.60 with with full permutations,
0.62 with l = 800. The results obtained using l = 800 are always greater or equal
to the one obtained directly using the Deep Features, and equal to the results
obtained by LuQ.

Looking at these results we can make an additional observation. Deep Fea-
tures are generally compared using the L2 distance. However, results above sug-
gest that possibly this is not the best distance function to be used. In fact,
transforming Deep Features into permutations and comparing them using the
Spearman rho distance has slightly better performance. Thus, investigations on
better distance functions to be used with Deep Features is worth being consid-
ered.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 10 100 1,000

m
A

P

l

Fig. 5. mAP obtained on INRIA Holidays varying l.

Table 1.

L2 Deep Permutations
LuQ[1]

ReLu no-ReLu full l = 800

Holidays 0.75 0.76 0.75 0.77 0.77

Holidays+MIRFlickr 0.60 0.62 0.60 0.62 0.62

6 Conclusion

In this paper, we presented an approach for representing and fast indexing Deep
Convolutional Neural Network Features as permutations. Compared to the clas-
sical approach based on permutation, this technique does not need computing
distances between pivots and data objects but uses the same activation values
of the neural network as a source for associating Deep Feature vectors with
permutations.

The proposed technique when evaluated in a pure similarity search task offers
a recall up to 80%, much higher than other permutation-based methods. We also
evaluated this technique in a multimedia information retrieval context. Here,
surprisingly, the proposed technique offers a mean average precision of 0.77,
slightly higher than the direct use of the Deep Features with the L2 distance.

This suggests that probably the L2 is not the most effective distance function
to be used with Deep Features, given that permutation representation together
with the Spearman rho distance provide better performance.

Note also that, probably, the same approach can be applied to any feature
represented as a vector, not just DCNN features, provided its dimensionality is
high. We are going to investigate how this idea generalizes to other features and
to other distance functions as future work.

Acknowledgments

This work was partially founded by: EAGLE, Europeana network of Ancient
Greek and Latin Epigraphy, co-founded by the European Commission, CIP-
ICT-PSP.2012.2.1 - Europeana and creativity, Grant Agreement n. 325122; and
Smart News, Social sensing for breakingnews, co-founded by the Tuscany region
under the FAR-FAS 2014 program, CUP CIPE D58C15000270008.

References

1. Amato, G., Debole, F., Falchi, F., Gennaro, C., Rabitti, F.: Large scale indexing
and searching deep convolutional neural network features. In: Proceeding of the
18th International Conference on Big Data Analytics and Knowledge Discovery
(DaWaK 2016). Springer (2016), to appear

2. Amato, G., Esuli, A., Falchi, F.: Pivot selection strategies for permutation-based
similarity search. In: Brisaboa, N., Pedreira, O., Zezula, P. (eds.) Similarity Search
and Applications: 6th International Conference, SISAP 2013, A Coruña, Spain,
October 2-4, 2013, Proceedings. pp. 91–102. Springer Berlin Heidelberg, Berlin,
Heidelberg (2013), http://dx.doi.org/10.1007/978-3-642-41062-8_10

3. Amato, G., Gennaro, C., Savino, P.: Mi-file: using inverted files for scalable ap-
proximate similarity search. Multimedia Tools and Applications pp. 1–30 (2012)

4. Amato, G., Gennaro, C., Savino, P.: MI-File: using inverted files for scalable ap-
proximate similarity search. Multimedia Tools and Applications 71(3), 1333–1362
(2014), http://dx.doi.org/10.1007/s11042-012-1271-1

5. Arandjelović, R., Gronat, P., Torii, A., Pajdla, T., Sivic, J.: Netvlad: Cnn archi-
tecture for weakly supervised place recognition. arXiv preprint arXiv:1511.07247
(2015)

6. Azizpour, H., Razavian, A., Sullivan, J., Maki, A., Carlsson, S.: From generic to
specific deep representations for visual recognition. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops. pp. 36–45
(2015)

7. Babenko, A., Slesarev, A., Chigorin, A., Lempitsky, V.: Neural codes for image
retrieval. In: Computer Vision–ECCV 2014, pp. 584–599. Springer (2014)

8. Chandrasekhar, V., Lin, J., Morère, O., Goh, H., Veillard, A.: A practical
guide to cnns and fisher vectors for image instance retrieval. arXiv preprint
arXiv:1508.02496 (2015)

9. Chávez, E., Figueroa, K., Navarro, G.: Effective proximity retrieval by ordering
permutations. Pattern Analysis and Machine Intelligence, IEEE Transactions on
30(9), 1647–1658 (2008)

10. Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.:
Decaf: A deep convolutional activation feature for generic visual recognition. arXiv
preprint arXiv:1310.1531 (2013)

11. Esuli, A.: Use of permutation prefixes for efficient and scalable approximate simi-
larity search. Information Processing & Management 48(5), 889–902 (2012)

12. Fagin, R., Kumar, R., Sivakumar, D.: Comparing top k lists. In: Proceedings of
the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms. pp. 28–36.
SODA ’03, Society for Industrial and Applied Mathematics (2003)

13. Ge, Z., McCool, C., Sanderson, C., Corke, P.: Modelling local deep convolutional
neural network features to improve fine-grained image classification. In: Image
Processing (ICIP), 2015 IEEE International Conference on. pp. 4112–4116. IEEE
(2015)

14. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for ac-
curate object detection and semantic segmentation. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. pp. 580–587 (2014)

15. Jégou, H., Douze, M., Schmid, C.: Packing bag-of-features. In: Computer Vision,
2009 IEEE 12th International Conference on. pp. 2357 –2364 (29 2009-oct 2 2009)

16. Jégou, H., Douze, M., Schmid, C.: Hamming embedding and weak geometric con-
sistency for large scale image search. In: Forsyth, D., Torr, P., Zisserman, A. (eds.)
Computer Vision – ECCV 2008, Lecture Notes in Computer Science, vol. 5302,
pp. 304–317. Springer Berlin Heidelberg (2008), http://dx.doi.org/10.1007/

978-3-540-88682-2_24

17. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadar-
rama, S., Darrell, T.: Caffe: Convolutional architecture for fast feature embedding.
arXiv preprint arXiv:1408.5093 (2014)

18. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in neural information processing systems.
pp. 1097–1105 (2012)

19. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015)

20. Liu, R., Zhao, Y., Wei, S., Zhu, Z., Liao, L., Qiu, S.: Indexing of cnn features for
large scale image search. arXiv preprint arXiv:1508.00217 (2015)

21. Novak, D., Batko, M., Zezula, P.: Large-scale image retrieval using neural net
descriptors. In: Proceedings of the 38th International ACM SIGIR Conference on
Research and Development in Information Retrieval. pp. 1039–1040. ACM (2015)

22. Novak, D., Kyselak, M., Zezula, P.: On locality-sensitive indexing in generic metric
spaces. In: Proceedings of the Third International Conference on Similarity Search
and Applications. pp. 59–66. SISAP ’10, ACM (2010)

23. Razavian, A.S., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf:
an astounding baseline for recognition. In: Computer Vision and Pattern Recogni-
tion Workshops (CVPRW), 2014 IEEE Conference on. pp. 512–519. IEEE (2014)

24. Thomee, B., Elizalde, B., Shamma, D.A., Ni, K., Friedland, G., Poland, D., Borth,
D., Li, L.J.: Yfcc100m: The new data in multimedia research. Communications of
the ACM 59(2), 64–73 (2016)

25. Yue-Hei Ng, J., Yang, F., Davis, L.S.: Exploiting local features from deep networks
for image retrieval. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops. pp. 53–61 (2015)

26. Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., Oliva, A.: Learning deep features
for scene recognition using places database. In: Advances in neural information
processing systems. pp. 487–495 (2014)

