
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ??, ??? 1

A Tool-supported Methodology for Validation
and Refinement of Early-stage Domain

Models
Marco Autili, Antonia Bertolino, Guglielmo De Angelis, Davide Di Ruscio, Alessio Di Sandro

Abstract—Model-Driven Engineering (MDE) promotes automated model transformations along the entire development process.
Guaranteeing the quality of early models is essential for a successful application of MDE techniques and related tool-supported
model refinements. Do these models properly reflect the requirements elicited from the owners of the problem domain? Ultimately,
this question needs to be asked to the domain experts. The problem is that a gap exists between the respective backgrounds
of modeling experts and domain experts. MDE developers cannot show a model to the domain experts and simply ask them
whether it is correct with respect to the requirements they had in mind. To facilitate their interaction and make such validation more
systematic, we propose a methodology and a tool that derive a set of customizable questionnaires expressed in natural language
from each model to be validated. Unexpected answers by domain experts help to identify those portions of the models requiring
deeper attention. We illustrate the methodology and the current status of the developed tool MOTHIA, which can handle UML
Use Case, Class, and Activity diagrams. We assess MOTHIA effectiveness in reducing the gap between domain and modeling
experts, and in detecting modeling faults on the European Project CHOReOS.

Index Terms—Domain Modeling, Early Stage Model, Model Driven Engineering, Model Refinement, Model Validation, Natural
Language Questionnaires, Semantic Model Quality

F

1 INTRODUCTION

Models and abstractions are essential means in the
development of modern complex software systems. A
model offers an abstract representation of a system by
focusing on concepts that are of relevance in a specific
domain context and for a specific goal, while hiding
away technical details that are out of scope for that
context and goal.

In Model-Driven Engineering (MDE) [1], models are
the first-class artifacts along a system life-cycle, and
the concrete system implementation is supported by
systematic model refinement and automated transfor-
mations. MDE aims at reducing the wide conceptual gap
between the problem and the implementation domains [2].
Following an MDE approach, developers can work
close to the problem domain. Once they have specified

• A. Bertolino is with the CNR–ISTI of Pisa, Italy.
E-mail:antonia.bertolino@isti.cnr.it

• G. De Angelis is with the CNR–ISTI of Pisa, Italy. Since Jan. 2014,
he has been posted to CNR–IASI.
E-mail:guglielmo.deangelis@{isti.cnr.it, iasi.cnr.it}

• A. Di Sandro is with the Department of Computer Science from
University of Toronto, Canada. He mainly contributed to this paper
while he was a researcher at CNR–ISTI of Pisa, Italy.
E-mail: adisandro@cs.toronto.edu

• M. Autili, and D. Di Ruscio are with the Department of Informa-
tion Engineering Computer Science and Mathematics University of
L’Aquila, Italy.
E-mail:{marco.autili, davide.diruscio}@univaq.it.

This paper describes work undertaken in the context of the European
Project FP7 IP 257178: CHOReOS. The authors would like to thank
Alessandro Baroni for his important contribution to the implementation
of the web-based engine supporting MOTHIA.

a high-level model of the system to be developed,
more detailed models can be obtained using model
transformation tools. In the MDE vision, we can
get rid of any potential problems of consistency or
traceability between different projections or layers of
a system design, as all transformations among the
different artifacts will rely on verified technologies.
Aiming at such a vision, research in MDE is very ac-
tive, addressing challenges relative to modelling lan-
guages, separation of concerns, model evolution [3],
manipulation and management [4], [2].

However, a weak link remains in the MDE chain
of tool-supported model refinement: we are referring
to the definition of the very first models, those that
do not descend from another more abstract model
by transformation. They need to be manually created
from requirements already elicited from the interac-
tion with the owners of the problem domain. We call
this the step zero of model-driven development.

There is not much research in ensuring the validity
of models built at step zero: how can we ensure
that the manually created models properly meet the
requirements elicited for the system to be built?

Today, the quality of conceptual models is still an
immature notion whose definition is evolving [5].
A highly referenced quality framework is the one
initially introduced in [6] and further extended in [7].
In this quality framework, different views of a model
quality are introduced. Many existing model valida-
tion tools address the syntactic quality of a model,
i.e., the correspondence between the model and the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ??, ??? 2

language in which the model is written. The above
question refers to a different dimension for model
quality, i.e., the relationship between the model and
the domain that is modeled. This is called the seman-
tic quality of a model. Semantic quality aims at valid-
ity, meaning that all elements in the model are correct
and relevant for the domain, and at completeness,
meaning that the model contains all the elements that
would be correct and relevant about the domain.

Clearly, semantic quality is more difficult to as-
certain than syntactic quality. Although some recent
work [8], [9], [10] tries to mitigate this problem by
allowing uncertainty to be expressed in early models,
no tool could ever verify that a (syntactically correct)
model properly represents all and only the concepts
that are in the problem owner’s mind.

Considering the step zero modeling activity, on the
one hand there are the MDE developers who are the
experts of modeling languages and tools; in this paper
we refer to them as the Modeling Experts or MEs. On
the other hand, there are the experts of the domain
who know the system requirements very well, but are
not necessarily experts of MDE approaches; we refer
to them as the Domain Experts or DEs. As introduced
in [11], to validate that the model rightly captures
the intended domain knowledge, MEs and DEs need
to mutually understand each other. The issue is that
a gap in knowledge, background, and skills exists
between MEs and DEs [2], [11]. In general, we cannot
assume that the DEs yield the expertise required to
directly inspect and navigate the models created by
the MEs. Models can be convoluted notwithstanding
the high abstraction level, especially for the repre-
sentation of complex systems that involve different
views and combinations of both static and behavioral
models. Considering UML-based models, class dia-
grams can quickly scale up and become intractable for
humans that are not experts of modeling notations.
Visual aids and animation can be of help, but the
ultimate means to validate that we are specifying
the right model is to “ask the expert” [11]. The MEs
talk to the DEs in natural language (NL) explaining
what they are going to represent in the models, and
collecting and processing DEs feedback. Tool support
in this step can be extremely valuable, especially
when models are large and span over many different
conceptual domains.

Our work has been addressing the problem of
validating the semantic quality of domain models
for some time. Triggered by the need to validate a
conceptual model in a real project, we have previously
developed a prototype tool to help reduce the gap
between MEs and DEs [11]. In its first version, our
tool MOTHIA (standing for Model Testing by Human
Interrogations & Answers) only processed UML Class
Diagrams. Since then, with the purpose of validating
multi-view system models, the tool has been exten-
sively revised and extended in order to be able to

handle two more diagrams, namely Use Case Diagrams
and Activity Diagrams.

Our approach consists of the automatic derivation
of a set of customizable questionnaires expressed
in NL, from a model to be validated. Using such
questionnaires, the MEs can interview the DEs and
identify suspect portions of the models whenever the
actual answer differs from the expected one. Notably,
such approach aims at supporting MEs during their
interaction with DEs. In this sense, the aim is to ex-
ploit the information in the artifacts to gather insights
on some elements deserving to be carefully discussed,
rather than to propose a framework as an alternative
to the actual interaction among MEs and DEs.

The advantages of our approach are multiple. First,
since we facilitate the interaction between the model-
ers and the problem owners, we get closer to the true
semantic quality, in contrast with the perceived semantic
quality as defined by Krogstie and Sølvberg [7]. They
observed how any attempt to validate the semantic
quality of a model always resolves to the comparison
between two imperfect interpretations: on the one
hand how the model is understood, and on the other
the current knowledge of the domain, both of which
could be wrong. This is always true: our approach
mitigates the issue because it refers to MEs for in-
terpreting the model and to DEs for drawing the
domain knowledge, i.e., for each interpretation side,
we consult the most competent stakeholder. Secondly,
by using an inference engine that explores automati-
cally and exhaustively all model elements according
to some defined criteria, we make DEs interviews
systematic. Finally, we can tune the questionnaires
on specific portions of the model and regulate the
number of questions we want.

The first results we reported in [11] about the appli-
cation of a preliminary version of the tool MOTHIA
in the Project IPERMOB1 were encouraging. In this
paper we repeat the assessment of the approach on
a different, more extensive case study within the
context of the European Project CHOReOS2. We agree
with [12] that repeating the empirical assessment of
research results is important. We aimed at verifying
whether the approach confirmed its usefulness in
revealing issues about the validity and completeness
of conceptual models derived by MEs on behalf of the
DEs. We also wanted to ascertain whether MOTHIA’s
enhanced features improved the performance of the
approach in terms of reducing the gap between MEs
and DEs.

Summarizing, the contributions of this work in-
clude:

• a detailed description of the improved tool
MOTHIA, enhancing the previous version in [11]
with the capability to process Use Case and Ac-

1. http://www.ipermob.org/
2. http://www.choreos.eu/

http://www.ipermob.org/
http://www.choreos.eu/

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ??, ??? 3

tivity Diagrams, and with a web-based engine
to distribute the questionnaires and collect the
answers;

• the application of MOTHIA to the domain model
relative to the Integrated Development and Run-
time Environment (IDRE) [13] delivered by the
CHOReOS project;

• a repeated assessment of MOTHIA following the
same process outlined in [11];

• a detailed comparison of the results in the two
projects IPERMOB and CHOReOS.

The paper is structured as follows. We start by
providing a brief overview of the methodology (Sec-
tion 2). We continue with a more detailed description
of the MOTHIA tool (Section 3), covering its archi-
tecture, our reference implementation and the Web
distribution engine. We then present the application
used for assessment, namely the CHOReOS IDRE
conceptual model, along with the case study settings
(Section 4), and discuss the obtained results (Sec-
tion 5). We illustrate the process followed for model
refinement, with examples of errors found (Section 6).
We complete the assessment with a comparison be-
tween these results and those from our previous expe-
rience (Section 7), and a discussion of validity threats
(Section 8). Related work is given in Section 9, and
conclusions in Section 10 close the paper. An appendix
provides further raw data from the case study.

2 OVERALL METHODOLOGY

As explained in the introduction, this work stems
from the realization that a knowledge gap often exists
between DEs and MEs. Although DEs possess the
domain knowledge needed to validate a candidate
solution proposed by MEs, they can hardly do so,
because the modeling artifacts are not easily compre-
hensible to them.

Thus, we introduce our approach and tool aiming
at facilitating the mutual comprehension between DEs
and MEs during the model validation phase. MEs
remain free to pursue any strategy they deem appro-
priate in the interaction with DEs (e.g., arbitrarily ask-
ing about some model element). The results obtained
from the application of MOTHIA can be used as an
additional piece of information that MEs can exploit
in such a strategy.

In the following, we overview our methodology for
validation of model semantic quality that was origi-
nally proposed in [11]. The UML Activity Diagram in
Fig. 1 models the steps involved in a domain model-
ing process, with an emphasis on the communications
occurring between DEs and MEs.

A common practice in the definition of a domain
model is to start from the specification of require-
ments already elicited for the domain to be modeled.
In the hands of DEs, these requirements describe
the domain (see the activity Describe the Domain in

Fig. 1) and, as such, must be leveraged to constitute a
common view of the domain. MEs can then propose
an initial model of the domain, which needs to be
validated by the DEs. To this purpose, an iterative
process starts. Along the process iterations, the MEs
try to make the model comprehensible to the DEs by
generating and explaining appropriate model views.
Based on such views, MEs request, collect, and ana-
lyze the feedback from the DEs to refine the initial
model.

Although it is difficult to imagine these steps to
be fully automated, MDE can support their imple-
mentation to achieve effective results in a more sys-
tematic way. With reference to Fig. 1, we support
the automatic transformation of the model into views
comprehensible by DEs (the dark-shaded activity in
the figure). Precisely, we automatically generate a
configurable list of simple questions expressed in NL,
spanning over all the model elements. In principle, the
questions just require a Yes/No answer; in practice
(as we describe in Section 4.2), we also consider the
case in which the DE is not able to answer, and
provide more choices.

The idea is that at each iteration of the model vali-
dation process, MEs can interview the DEs by means
of such automatically generated questionnaires. Thus,
MEs are spared the difficult and cumbersome task of
manually translating the model into NL descriptions.
Furthermore, even though the capability of modelers
should not be underestimated, this could also be an
error-prone task due to potential ambiguities or biases
in interpreting the semantics of the adopted modeling
language (a good overview of threats is given in [14]).

Our approach relies on a formalization of the se-
mantics of the modeling language the MEs chose.
Thus, for each generated question it is possible to
predict its expected answer by applying semantics in-
ference on the current version of the domain model. A
detailed description of the generation process of both
the questions and their expected answers is reported
in Section 3.

The subsequent steps concern the analysis of the
feedback and their impact on the domain model.
Specifically, if feedback reveal some mismatches be-
tween the domain model and the DEs intents (see the
gateway after the activity Analyze The Feedbacks), the
MEs should understand the nature of each mismatch
and address it. We admit that in some cases it may
be useful to validate the domain model by directly
asking the DEs without the support of any additional
information driving the discussion. However, we ar-
gue that our tool can help the MEs to focus the
discussion on those parts of the model that contain is-
sues and propose a new version of the domain model.
This process can be iterated until all stakeholders are
satisfied with the domain model. The resolution of
the identified issues is performed in the Domain Model
Refinement activity consisting of a number of steps, as

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ??, ??? 4

Fig. 1. Overview of a generic domain modeling process

we show in Fig. 7 and detail in Section 6.

3 MODEL TESTING BY HUMAN INTERROGA-
TIONS & ANSWERS

In this section we describe first a generic architec-
ture for the MOTHIA framework that supports the
proposed methodology, and then the reference imple-
mentation for both the core framework and its web-
based distribution engine.

3.1 The Architecture
As already introduced, MOTHIA deals with the
knowledge gap that separates MEs and DEs: it takes
a domain model as input and produces a set of NL
questions as output. MOTHIA works on a formal
logic representation of the input model, using an
InferenceEngine to check for the satisfiability of de-
sired properties. Fig. 2 depicts the internal structure
of MOTHIA (left-hand side), how it interacts with the
model (right-hand side) and with the Web Distribu-
tion Engine (bottom). The KnowledgeBaseGenerator
converts the input domain model into the internal
representation, describing the domain entities and
their relations as facts. The InferenceEngine loads such
facts and the set of rules representing the semantics
of the input modeling language. By querying the
InferenceEngine, MOTHIA checks whether a given
property is valid in the input domain model. Also,
the InferenceEngine can return all the entities in the
domain model satisfying a given property.

The QuestionnaireGenerator loads the configura-
tions that drive the queries to the InferenceEngine and
the creation of the questionnaire. The configurations
of the QuestionnaireGenerator are expressed in term
of patterns and criteria:

- the patterns represent syntactical combinations
of elements in the input domain model that are
deemed relevant, i.e., portions of the specific
input domain model.

- the criteria define the properties that MOTHIA
uses to explore and query the input domain
model; in other words, a criterion abstracts a type
of question in the questionnaire, the NL question
template, and the strategy to compose patterns.

The NL Analyzer aids the creation of NL questions
by querying a domain ontology. It can either enrich
and refine the text of a question, or try to infer
entities and relationships that are not in the input
model. Generated questions fall into three categories:
a Deduction is inferred from true predicates on the
input domain model, a Distractor from false predi-
cates, a Hypothesis from predicates obtained through
the domain ontology. From this classification we can
argue that both Deductions and Distractors are means
to validate the proper representation of the domain
model (i.e., the validity goal of semantic quality [6]),
while Hypotheses aim at validating its completeness
(the second goal of semantic quality [6]).

Querying the input domain model from the set
of criteria usually leads to a questionnaire with an
intractably large number of questions. To reduce the
number of questions, or even to focus only on specific
areas of the domain model, a MOTHIA user can
choose among several strategies. For example, experi-
enced MEs could specialize the definitions of patterns
and criteria and narrow the possible matching in the
domain model. If such solution is not practical, the
QuestionnaireGenerator uses the configurable Filters
component. A filtering policy can be a sub-part selec-
tion of the input domain model, a random selection
of questions, a word-based selection of questions or
model elements, or a combination of them (other
filterings can be devised).

Finally, the EmittersContainer component deals
with the output format of the questionnaire. It can
interact with a WebDistributionEngine in order to
publish questionnaires on a web page and collect
answers in a Database. This is especially useful in ge-
ographically distributed projects to ease and enhance

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ??, ??? 5

Fig. 2. The architecture of MOTHIA

cooperation among remote partners.
It is worth clarifying that the previous version of the

tool presented in [11] only derived questionnaires for
the validation of Class Diagrams, and only included
Deductions and Distractors. All other features de-
scribed below, including the derivation of Hypotheses
for Class Diagrams, the validation of Use Case Dia-
grams, the validation of Activity Diagrams, as well as
the Web-based Distribution Engine, constitute novel
contributions of this work.

3.2 The Reference Implementation

MOTHIA is an Eclipse-based plugin, written using
Java and EMF technologies [15]. MOTHIA can gen-
erate questions in NL from a variety of models:
ECore diagrams, UML Class, Use Case and Activity
diagrams. Even though MOTHIA supports multiple
diagrams, the current version of the implementation
does not handle cross-relationships among them. Ex-
tensions on this direction are planned as future work.

According to the abstract architecture described in
Section 3.1, the reference implementation uses SWI-
Prolog as the InferenceEngine and WordNet [16] as
the lexical ontology for the NL Analyzer. The Knowl-
edgeBaseGenerator currently handles a selection of
the most relevant types of model elements and con-
verts them to Prolog facts. As an example, the class
Mayoral Candidate and its inheritance relation-
ship from Authority in the Class Diagram of Fig. 3
are converted into the Prolog facts :

i) class(’Mayoral Candidate’, false)
ii) generalization(’Authority’, ’Mayoral

Candidate’)

where: the first atom of the fact i) is the class name,
the second a flag for its abstract modifier; the first
atom of the fact ii) is the superclass name, the second
the subclass name.

In addition, the KnowledgeBaseGenerator can also
codify sets of Prolog rules implementing the seman-
tics of the supported input languages (e.g., the Liskov
substitution principle for generalizations in both Class
and Use Case diagrams). Thanks to this feature,
arbitrary or domain-specific semantic interpretations
of the model can be implemented (in Prolog) and
plugged in this component.

The facts in the knowledge base are the building
blocks to create patterns. As previously stated, a pat-
tern is a syntactic structure in the input model. Facts
are therefore composed together to form a pattern
by means of a Prolog query. A pattern constructed
this way can itself be used to incrementally compose
subsequent patterns, allowing for arbitrarily complex
yet manageable structures.

After patterns are identified in the model, criteria
can use them to construct a set of NL questions. The
criteria can be considered as the equivalent of a fault
model in testing [17], hence the importance to identify
a set of criteria that is as complete as possible. In our
reference implementation, we defined criteria based
on both the literature on model validation [18], [19]
and on our own experience in modeling (e.g., [3],
[20]).

The reference implementation, as well as the set of
patterns and criteria we adopted, are available under
an open-source licence3. To make the description con-
crete, in the following we discuss examples of patterns

3. http://labsedc.isti.cnr.it/tools/mothia

http://labsedc.isti.cnr.it/tools/mothia

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ??, ??? 6

Fig. 3. The Class Diagram about an imaginary mayoral
election

and criteria for each supported input model. These
examples continue to be based on the already used
model of an imaginary mayoral election.

3.2.1 Validating Class Diagrams
The reference implementation handles the following
model elements: uml:association, uml:class,
uml:classAttribute, uml:dependency,
uml:generalization, uml:package. Table 1
reports the most relevant patterns defined in the
reference implementation.

Three noteworthy patterns apply to Fig. 3:
the marriage pattern that matches classes
Person, Authority (i.e., super-class-A and
super-class-B respectively), Citizen (i.e.,
sub-class-A) and Mayoral Candidate (i.e.,
sub-class-AB); the subclassesAssociation pattern
that matches classes Authority, Party (i.e., super-
classes), Mayoral Candidate and Lawful Party
(i.e., sub-classes); the indirectAssociation pattern that
matches classes Citizen, Mayoral Candidate and
Lawful Party, connected through the associations
voted and political party.

A criterion can combine the three patterns together
by means of a join operation (i.e., combining together
the overlapping model elements). For example, let us
define Crit1c as the criterion that looks for a class C
that, according to the patterns in Table 1, is acting:
as a sub-class in the pattern subclassesAssociation; as
sub-class-AB in the pattern marriage; and also as
an intermediate class in the pattern indirectAssociation.
By querying the model in Fig. 3 with Crit1c, the class
C would match with the class Mayoral Candidate ;
Deductions (marked with 3) and Distractors (marked
with 7) can be derived from the associations of the
matched class as follows:

3 Can the relation from Citizen to Mayoral
Candidate exist, where Mayoral Candidate
is voted by Citizen?

7 Can the relation from Citizen to Lawful
Party exist, where Lawful Party is the politi-
cal party of Citizen?

A Hypothesis (marked with ?) may instead be
built by looking for a relevant hyponym of (i.e.,
a kind-of) the noun Party in WordNet (e.g., in
the following the bogus, and politically-correct,
FreeMonkeyIslandParty), and creating a new
class for the latter that inherits from the former:

? Can the relation from Mayoral Candidate
to FreeMonkeyIslandParty exist, where
FreeMonkeyIslandParty is the political party
of Mayoral Candidate?

Notably, the main difference in the above exam-
ples is that both the Deductions and Distractors
use the entity Lawful Party, which was explic-
itly modeled within the domain model; on the con-
trary, in the case of the Hypotheses the concept
FreeMonkeyIslandParty was not included at all.
As described above, MOTHIA infers these new en-
tities by querying an external source of information
(i.e., WordNet) on some elements already represented
in the domain model.

Further insights about the derivation of questions
for the validation of Class Diagrams can be found
in [11].

3.2.2 Validating Use Case Diagrams

The reference implementation for Use Case
Diagrams handles the following model elements:
uml:actor, uml:association, uml:component,
uml:package, uml:usecase, uml:extend,
uml:include, uml:generalization. Use Case
diagrams may be coupled with some textual
descriptions that clarify the functionalities or
the services provided by the modeled system.
Currently, MOTHIA only deals with the modeling
elements represented within the diagrams alone;
any corresponding textual description is currently
discarded.

The most relevant patterns defined in the reference
implementation can be found in Table 2. It is
interesting to note that some patterns are reused from
the Class Diagrams, e.g., the family, marriage, siblings
patterns. Whenever UML has abstractions across mul-
tiple diagram types (i.e., the uml:generalization
in this case), a single pattern can be shared for all such
diagrams.

Using the illustrative scenario of Fig. 4, in the
following we will focus on the inclusion and extension
relationships. These relationships are often misused
or combined to form a complicated hierarchy, hence
the need to stress them during the validation phase.
For example, the extensionInclusion pattern can be
found in Fig. 4, matching the use case Vote Mayoral
Candidate, which extends Vote and is included by
Endorse Mayoral Candidate.

Let us define a simple criterion Crit1uc that uses
only the extensionInclusion pattern. Deductions can be
derived from the inclusion and extension relation-
ships of the matched use cases; Distractors can swap
the semantics of these relationships:

3 Is the use case Vote Mayoral Candidate
a part of the use case Endorse Mayoral
Candidate?

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ??, ??? 7

Pattern Description
attributeNotAssociation matches class attributes that are not used as association member ends
chain matches all sort of information about a class, to rank its relevance (attributes, associations from

and to the class, multiplicities, parent and child classes)
family matches a super-class (super-class-A) with sub-classes, some of which (class-A) have other

sub-classes (sub-class-A)
indirectAssociation matches all classes that are reachable from a certain class by navigating associations, with a

configurable amount of intermediate classes
marriage matches a class (sub-class-AB) that inherits from two super-classes (super-class-A and

super-class-B), one of which has other sub-classes (sub-class-AC)
multiplicityRandom generates a positive random integer between lower and upper bounds of an association

multiplicity
siblings matches sibling classes that inherit from the same super-class
subclassesAssociation matches an association between two classes that are each derived from a distinct super-class
superclassesAssociation matches an association between two classes that have each a distinct sub-class
unrelatedAssociation matches two classes in an association relationship and a third class, with no association

relationships to and/or from the previous two classes
unrelatedDependency matches two classes in a dependency relationship and a third class, with no dependency

relationships to and/or from the previous two classes
unrelatedInheritanceAssociation matches two classes in a super/sub-class relationship and a third class, with no association

relationships to the previous two classes
unrelatedInheritanceDependency matches two classes in a super/sub-class relationship and a third class, with no dependency

relationships to the previous two classes

TABLE 1
Summary of patterns for Class Diagram

Pattern Description
chain matches all sort of information about an actor or a use case, to rank its relevance (associations

from and to the node, super and sub generalizations, included and extended use cases)
extensionInclusion matches a use case that extends a second use case and is included by a third use case
family matches a super-entity (super-usecase-A) with sub-entities, some of which (usecase-A) have

other sub-entities (sub-usecase-A)
inclusionExtension matches a use case that includes a second use case and is extended by a third use case
marriage matches an entity (sub-usecase-AB) that inherits from two super-entities (super-usecase-A

and super-usecase-B), one of which has other sub-entities (sub-usecase-AC)
siblings matches sibling entities that inherit from the same super-entity
subActorUsecaseAssociation matches an association between an actor and a use case that inherit from a super-actor and a

super-use case
superActorUsecaseAssociation matches an association between an actor and a use case that have a sub-actor and a sub-use case
unrelatedActors matches two unrelated actors
unrelatedAssociation matches an actor and a use case with no associations
unrelatedUsecases matches two unrelated use cases

TABLE 2
Summary of patterns for Use Case Diagram

Fig. 4. The Use Case Diagram about an imaginary
mayoral election

3 Can the use case Vote Mayoral Candidate
increment the behavior of the use case Vote?

7 Can the use case Endorse Mayoral
Candidate increment the behavior of the
use case Vote Mayoral Candidate?

7 Is the use case Vote a part of the use case
Endorse Mayoral Candidate?

A Hypothesis can instead be made by looking
for a synonym of the verb Vote in Vote Mayoral
Candidate (Choose is the first synonym in Word-
Net), and referring to a new use case Choose
Mayoral Candidate included by it:

? Is the use case Choose Mayoral Candidate
a part of the use case Vote Mayoral
Candidate?

A slightly more complex criterion Crit2uc can com-
bine the previous extensionInclusion pattern with the
uml:association fact. Note that such a combi-
nation is possible because a fact is the smallest

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ??, ??? 8

possible pattern, since it strictly matches a model
element. The elements that appear in both pat-
terns will be joined together through Prolog uni-
fication. This means that a use case in this crite-
rion will act both as a member of the extension-
Inclusion pattern and as the use case endpoint of
the uml:association model element. Moreover,
the actor endpoint of the uml:association model
element becomes available, i.e., the actors Person,
Citizen and SomePartyMember are associated with
their respective use cases. For example, the following
questions can be created:

3 Can the actor Lawful Party Member get
involved in the use case Vote Mayoral
Candidate because it is part of the use case
Endorse Mayoral Candidate?

3 Can the actor Person optionally get involved
in the use case Vote Mayoral Candidate in-
stead of the use case Vote?

7 Can the actor Citizen get involved in the
use case Vote Mayoral Candidate because
it is part of the use case Endorse Mayoral
Candidate?

7 Can the actor Citizen optionally get involved
in the use case Vote Mayoral Candidate in-
stead of the use case Vote?

? Can the actor Citizen get involved in the
use case Choose Mayoral Candidate because
it is part of the use case Vote Mayoral
Candidate?

3.2.3 Validating Activity Diagrams
The reference implementation for the Activity
Diagrams handles the following model elements:
uml:action, uml:decision, uml:event,
uml:flow, uml:fork, uml:join, uml:merge,
uml:object, uml:signal. The most relevant
patterns defined in the reference implementation can
be found in Table 3.

The illustrative scenario of Fig. 5 details the use case
Vote Mayoral Candidate of Fig. 4 for an elec-
tronic voting machine. In this scenario three notewor-
thy patterns can be found: the alternativeActions pat-
tern that matches with both the set {Vote Mayoral
Candidate, Notify Authorities}, and the set
{Vote Mayoral Candidate, Notify Citizen};
the concurrentActions pattern that matches with the set
{Notify Authorities, Notify Citizen}; the
graphFlow pattern that can match with any flow in
the activity graph from a node to another one, where
each node in a flow matches with a given set of node
types.

Specifically, let us consider the graphFlow pattern
implemented as a Prolog predicate with the following
signature:

graphFlow(NodeTypesSet, StartNode,
EndNode, IntermediateNodesSet)

Fig. 5. The Activity Diagram about an imaginary may-
oral election

By specifying one or both the endpoints (i.e.,
StartNode and EndNode), the pattern will narrow
down the results making the predicate true or possi-
bly returning an empty set. The flows matched by the
pattern are equivalent to graph paths e.g., no attempt
is made to address the scheduling of actions in a
concurrent section. For example, by specifying the
model element uml:action as first parameter, and
the starting and final activity nodes as second and
third parameters, respectively, the graphFlow pattern
will match the following ordered sets:

• {Enter ID, Vote Mayoral Candidate,
Retrieve ID}

• {Enter ID, Notify Authorities, Retrieve
ID}

• {Enter ID, Notify Citizen, Retrieve ID}
In the same example, by changing the third pa-

rameter to be the node Retrieve ID, the graphFlow
pattern would match the following ordered sets:

• {Enter ID, Notify Citizen}
• {Enter ID, Notify Authorities}
• {Enter ID, Vote Mayoral Candidate}

The current implementation of MOTHIA also de-
fines querying criteria on the Activity Diagrams, in-
spired by Temporal Logic operators and well-known
qualitative patterns for property specifications in
finite-state systems [21]. NL questions are loosely
based on successive work on structured English gram-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ??, ??? 9

Pattern Description
alternativeActions matches two alternative actions
alternativeDecision matches the alternative guards of a decision
chain matches all sort of information about a node, to rank its relevance (type, flows from and to the

node, signals, events and loops in which the node can be involved)
concurrentActions matches two concurrent actions
graphFlow matches a flow based on multiple node types
graphLoopFlow matches a loop flow based on multiple node types
graphShortFlow matches a short flow with regards to intermediate node types
notInFinalFlow matches a node that is not in a flow to the final node
notInFullFlow matches a node that is not in a flow from the initial node to the final node
notInInitialFlow matches a node that is not in a flow from the initial node
unrelatedActions matches an action with no flows to and from another action

TABLE 3
Summary of patterns for Activity Diagram

mar for such properties in real-time systems [22].
Specifically, the criteria have been implemented by
referring to the Next, Future, Always, and All opera-
tors. Each criterion has been defined by composing
together the graphFlow pattern and some first order
predicates.

Deductions can be created by using the actions
that are matched, Distractors instead by using any
combination of the unmatched actions. Similarly
to the example given in Section 3.2.2, the Hy-
potheses can be created by introducing a new ac-
tion Choose Mayoral Candidate preceding Vote
Mayoral Candidate. In the following, each crite-
rion is formally defined and a number of example
questions are shown.

Let A(ad) = {a1, ..., an} ∪ {aI} ∪ {aF } be the set
of actions (i.e., activities) of an activity diagram ad,
where aI is the activity initial node, and aF the
activity final node.

The Next criterion creates questions about strictly
consecutive actions and is defined as:

Next(ai) = aj ⇐⇒
graphFlow({uml:action}, ai, aj , ∅) = true

(1)

Note that, by specifying an empty intermediate
set as fourth parameter, the graphFlow predicate is
true if, in the activity diagram ad, no other action is
specified in between ai and aj . Applying this criterion
against the scenario in Fig. 5 generates, among the
others, the following questions:

3 Can Vote Mayoral Candidate be the next ac-
tion to be executed after the action Enter ID?

7 Could Enter ID be the previous action executed
before the action Retrieve ID?

? Can Vote Mayoral Candidate be the next
action to be executed after the action Choose
Mayoral Candidate?

Extending the notion of Next criterion, the Future
criterion creates questions about actions that are not
necessarily (strictly) consecutive. Thus, let T (ad) be
the set of totally ordered subsets ofA(ad) representing
all the possible (sub)traces of actions, as ordered
according to the action flows imposed by the activity

diagram ad. Each trace ti,j = {ai, . . . , aj} ∈ T (ad) is
such that ti,j [k+1] = Next(ti,j [k]), ∀0≤k<|ti,j |, where
ti,j [k] is the k-th action of the trace ti,j .

Given a trace ti,j , another trace tini,j is said to be a
strict inner trace of ti,j , denoted as tini,j ≺ ti,j , iff:

• either tini,j = ∅ and ti,j = {ai, aj},
• or tini,j = {ak} and ti,j = {ai, ak, aj},
• or tini,j = {ap, . . . , aq} and ti,j = {ai, ap, . . . , aq, aj}.
With these premises, for a given activity diagram

ad, the Future criterion is defined as:

Future(ai) = aj ⇐⇒ ∃ tini,j ≺ ti,j ∈ T (ad) |
graphFlow({uml:action}, ai, aj , tini,j) = true

(2)

As already introduced above, the Next criterion is a
special case of the Future criterion, where tini,j = ∅.
Applying the Future criterion against the scenario
generates, among the others, the following questions:

3 Can the action Retrieve ID be executed after
the action Enter ID?

7 Could the action Notify Citizen be executed
before the action Notify Authorities?

? Could the action Choose Mayoral Candidate
be executed before the action Retrieve ID?

Extending the notion of Future criterion, the Always
criterion creates questions about actions that, through
all possible flows, must be necessarily followed by
a specified action in the future. Given an activity
diagram ad, the Always criterion is defined as:

Always(ai) = aj ⇐⇒ ∀ tini,F ≺ ti,F ∈ T (ad), aj ∈ tini,F

∧ graphFlow({uml:action}, ai, aF , tini,F) = true
(3)

Note that ti,F = {ai, . . . , aF } represents a trace that
goes from the action ai to the activity final node aF .
Applying the Always criterion against the scenario
generates, among the others, the following questions:

3 Is the action Retrieve ID always executed after
the action Enter ID?

3 Is Enter ID always the previous action executed
before the action Vote Mayoral Candidate?

7 Is the action Vote Mayoral Candidate al-
ways executed before the action Retrieve ID?

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ??, ??? 10

7 Is Notify Authorities always the next action
to be executed after the action Enter ID?

? Is Choose Mayoral Candidate always the
previous action executed before the action Vote
Mayoral Candidate?

The All criterion creates questions about actions that
must occur in all possible traces from the activity
initial node aI to the activity final node aF . It is
defined as:

All(ai) = true⇐⇒ ∀ tinI,F ≺ tI,F ∈ T (ad), ai ∈ tinI,F

∧ graphFlow({uml:action}, aI , aF , tinI,F) = true
(4)

Applying this criterion against the scenario cannot
generate any Deduction; it generates, among others,
the following Distractor:

7 Is the action Notify Authorities always ex-
ecuted?

For the sake of completeness we point out that
none of these patterns has been reused from Class or
Use Case Diagrams. In fact, the syntactical definition
of Activity Diagrams reflects their behavioral nature,
making it harder to benefit from the reuse mechanism
outlined at the beginning of Section 3.2.2. This would
change if, for example, MOTHIA were to support
State Machine or Sequence Diagrams.

3.3 The Web-based Distribution Engine
Another new feature offered by MOTHIA is abQues-
tionnaire4, a web-based engine supporting the distri-
bution of questionnaires to the DEs and the collection
of their feedbacks. This engine is the reference imple-
mentation of the abstract component WebDistributio-
nEngine, presented in Section 3.1.

In practice, this component becomes an important
asset for our approach when the people involved
in the modeling activity belong to different organi-
zations, and limited face-to-face interactions can be
organized (this was the case in the context of the
European Project CHOReOS in which we applied the
approach).

Specifically, abQuestionnaire is a plugin for Word-
press5. Like most web-based applications, it is struc-
tured into two main components: a back end and a
front end.

In the back-end component, registered users can ad-
ministrate the questionnaires generated by MOTHIA.
The plugin provides canonical functionalities such as
uploading, publishing, and unpublishing a question-
naire. In addition, it also gives support to invite the
interviewed persons, and to report useful statistics
about the published questionnaires.

After the publishing phase, the front end of
abQuestionnaire allows invited persons (i.e., the DEs)

4. http://labsedc.isti.cnr.it/tools/abquestionnaire
5. http://wordpress.com/

Fig. 6. abQuestionnaire

to fill in their questionnaires. Fig. 6 shows a screen-
shot of the abQuestionnaire’s front end on a generated
questionnaire.

4 CASE STUDY

This section reports our experience in applying
MOTHIA in the context of the CHOReOS project. The
case study was structured to deal with two different
aspects: validate and refine the CHOReOS domain
model; evaluate the performance of MOTHIA in re-
ducing the gap between MEs and DEs, when used
to support the former activities. As detailed in the
following, DEs were only aware of collaborating to the
application of the methodology in Fig. 1; but actually
they were involved in two different experiences that
could not be distinguished by them.

It is worth to clarify that our experimental setting
differs from a "real-life" scenario due to many aspects
and constraints that are discussed in Section 8. Among
the others: the selection of the DEs, the size of the
questionnaires, the absence of a reference baseline and
the way the authors compensated it.

In the following, we first introduce the reference
scenario. Then, we report the case study settings and
the conducted activities.

4.1 Scenario
The CHOReOS project investigates a set of core
methodologies and tools for the development of large-
scale distributed applications obtained from the loose
interaction among independent third-party services.
The project binds such type of applications to the no-
tion of a service choreography [23], defined as the high-
level specification of the desired (functional and non-
functional) interaction protocol, but without a con-

http://labsedc.isti.cnr.it/tools/abquestionnaire
http://wordpress.com/

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ??, ??? 11

crete refinement of services implementation and inter-
nals. Precisely, the CHOReOS project targets scalable
solutions for the ultra-large scale challenges of Future
Internet [24] choreographies taking into account size,
distribution, heterogeneity, and dynamism [25].

From a technical point of view CHOReOS has
developed and promoted a model-driven develop-
ment process of choreographies, and a supporting
framework referred to as the CHOReOS IDRE [13].
Specifically, the CHOReOS IDRE relies on the inte-
gration, interoperability, and large scale distribution
capabilities provided on the Enterprise Service Bus
middleware paradigm. Such a paradigm has been
enhanced in order to cope with the heterogeneous
interaction semantics and the sophisticated service
discovery mechanisms; it has been also configured
to deal with assets ensuring the quality of services
and choreographies through the governance and the
verification & validation (V&V) approaches at both
design and run-time [26] [27].

Independently from the above hinted implementa-
tion and technological details, the CHOReOS project
has developed a specific domain model (also referred
to as the CHOReOS conceptual model) abstracting the
facilities offered by the IDRE.

The version of the CHOReOS IDRE domain model
preceding its validation was specified by means of 22
diagrams, counting: a) 62 classes, 89 associations, 4
dependency relationships, 16 inheritance relationships
in 4 Class Diagrams; b) 14 actors, 28 use cases, 38
relationships in 4 Use Case Diagrams; c) 105 object
and activity nodes, 38 control nodes, 166 flows in 14
Activity Diagrams. The final release of the CHOReOS
Conceptual Model is accessible through the official
project web-site6.

4.2 Case Study Design and Collected Answers
We used MOTHIA to generate 18 different question-
naires. This number corresponds to the number of
DEs from partners having both expertise and effort
for validating the CHOReOS domain model on behalf
of the whole project. Due to the size of the con-
sortium, the criteria adopted to select the DEs were
mainly based on requesting the partners to candidate
some reference person in their organization/institu-
tion competent in designing, developing, validating,
or governing distributed and service oriented appli-
cations.

Each questionnaire contained 30 questions, span-
ning over all the areas of concern in the domain
model. The number of questions was fixed so to keep
the estimated time for filling in a questionnaire under
one hour. The questions included both Deductions
and Distractors.

Note that, even though the current version of
MOTHIA also supports the generation of Hypotheses

6. http://www.choreos.eu/bin/Download/Deliverables

(see Section 3), we decided not to use this feature in
the case study. In fact, including Hypotheses would
refer to the assessment of ontological aspects in vali-
dating semantic quality that by itself would deserve
a dedicated study. We deemed that even without
considering Hypotheses, the case study was already
dense enough with novel aspects to be evaluated.
Nevertheless, Section 6 speculates on how the adop-
tion of Hypotheses can support the detection of some
of the most common errors that the domain model
could include.

As described in Section 2, MOTHIA produces NL
questions ideally requiring a Yes/No answer. In prac-
tice, the questions actually propose a multiple-choice
answer based on four possible, and exclusive, cases:
(1) Yes, (2) No, (3) “I’m not an expert of this specific
subject” (NE), and (4) “I’m an expert of the subject but
I’m not sure what to answer” (in brief, DK for don’t
know).

The rationale behind the four choices is as fol-
lows. Answers (1) and (2) constitute the basic choices:
through them we can assess a concept that a DE
would like to formalize in the domain model (i.e., its
properties, relations with other concepts, etc) against
its actual representation in the model. Option (3) has
been introduced because, especially for large mod-
els, a DE may not be knowledgeable of all features.
Finally, option (4) is quite useful for dealing with
questions whose formulation can be confusing, like
Distractors (we recall from Section 3.1 that a Distractor
is created from false predicates on the input model,
e.g., a non-existent relationship among two or more
entities). We admit that an expert could also answer
DK because the question is not clear: in this case effort
would be wasted in the post-analysis of the model
(see Section 6). Nevertheless, in general we noticed
that an answer (4) can stimulate the discussion on
aspects that were not directly included in the domain
model.

At the time the questionnaires were generated, the
errors included in the input domain model were
obviously unknown. In addition, no reference base-
line of the CHOReOS domain model was available
in order to compare the errors discovered by using
MOTHIA. Therefore, we were not able to formulate
any performance indicator measuring the percentage
of errors revealed by MOTHIA.

The absence of a reference baseline could have
been compensated by creating two separate working
groups: one where DEs and MEs interact without
any specific guidance; the other where MEs plan the
discussion with DEs focusing on those portions of the
domain model that MOTHIA suggested as including
potential issues.

On the one hand, MOTHIA’s performance indi-
cators could have been estimated by comparing the
results obtained from both these working groups.
On the other hand, such comparative analysis would

http://www.choreos.eu/bin/Download/Deliverables

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ??, ??? 12

not have been able to estimate the percentage of the
detected errors, as the total number of errors in the do-
main model would have still been unknown. Further-
more, the overall commitment from the CHOReOS
project was to validate the domain model rather than
assess a novel validation approach. The setup of the
experience had to deal with the limitations in both
budget and available professionals always imposed in
any projects (in our case, only 18 DEs, and few MEs).

Based on these observations, we deemed improper
to split the available resources in two separate work-
ing groups. As in [11], we exploited the idea to submit
to each DE a single questionnaire targeting two dif-
ferent experiences: a first set of questions aiming at
validating the CHOReOS domain model (on average
25 questions), a second set of questions aiming at
evaluating the fault detection capability of MOTHIA
(on average 5 questions).

In [11], we found it useful to adopt an approach
similar to that of mutation testing [17][28], which
creates mutants (i.e., slightly different versions) of
source artifacts by injecting artificial faults. In such
a way, the total number of injected faults is known,
so it is possible to calculate the percentage of mutants
that are identified during the validation step.

In a similar way to mutation testing, we modified
the domain model by injecting random, yet controlled
faults. Consequently, we wanted to obtain an estima-
tion of how good is MOTHIA in detecting real (and
unknown) faults that the domain model may contain
by observing how good it is in detecting the injected
artificial faults.

However, note that for the already mentioned rea-
sons of limitedness of resources, we could not faith-
fully follow the mutation testing paradigm in our
evaluation of MOTHIA capability to detect injected
faults. In software mutation testing, a program is
subject to a systematic mutation process in all and
every possible code element that could be mutated in
several different ways (ending up with producing an
experimental basis of typically thousands or hundred
thousands mutants). Then, a test suite generated ac-
cording to a given test technique is executed on the
golden version and on all mutants, and the fault de-
tection capability of the testing technique is assessed
by the proportion of killed mutants.

In our study, where the “testing technique” under
evaluation is MOTHIA and the “test subject” is a
model, to faithfully follow the mutation paradigm
would have required first to perform a systematic
mutation of all elements in the model, second to
apply MOTHIA on each obtained mutant to derive
a questionnaire and finally that every questionnaire
from each mutated model is answered by an expert.
Doing so was clearly beyond our available resources:
as said, we could only ask 18 DEs. Speaking in terms
of mutation testing, our situation was like if given the
many (thousands of) mutants that could be obtained

Fault Id Description
F1 Add Edge
F2 Change Edge Endpoint
F3 Change Edge Direction
F4 Change Edge Type/Annotation
F5 Delete Edge

TABLE 4
Kinds of generic faults mutating the diagrams

from a program, we could only run the test suite on
a very few (18) of them.

Therefore, in a similar way to mutation testing
we inserted some random faults, but after this the
similarity becomes looser: to be certain to get some
data on fault detection, we ensured that each of the
18 DEs was exposed to a few questions derived from
some mutated models (in addition to those questions
truly aimed at validating the model). More precisely,
for the purpose of this case study, MOTHIA was used
on both the mutated models and the original models.
Then, each questionnaire was configured to contain a
mix of questions affected by the artificial faults (i.e.,
faulty questions) and questions not involved in the
mutation process (i.e., genuine questions). The mean
number of faulty questions per questionnaire was set
to 5, using a filter to randomly choose from those
generated on the mutated models (see Section 5.1 for
further details).

In this way, strictly speaking, what we can assess
through the faulty questions we introduced is the
likeliness that a fault in a certain element of a model
is identified given that a question about that element
is asked to a DE. Due to lack of resources (i.e., DEs)
we could not also assess the effectiveness of MOTHIA
concerning the likeliness that such a faulty element
would be hit when generating a questionnaire.

The definition of proper mutation operators is a
critical task. We based this activity on examples dis-
cussed in the literature about mutation testing for
both models and model transformations [28]. We
also abstracted this process to make the mutation
operators applicable to generic graphs, i.e., to any of
the evaluated diagrams. Specifically, in the CHOReOS
domain model we applied five types of mutations that
are reported in Table 4.

The introduced mutations only affect the edges
contained in the diagrams (i.e., either relations, or
flows). In fact, any modification of the entities in
the diagrams (i.e., classes, actors, use-cases, actions)
was not considered as an interesting mutation. In
particular, deleting any entity would only imply that
no question will cover it, and the modification would
be invisible. Similarly, the inclusion of a new entity,
which has no relations (i.e., navigable edges in the
graph the diagram subsumes) with the rest of the
model elements, would not match any realistic pat-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ??, ??? 13

(a) Results for the genuine questions.
Questionnaire #Pass #Fail #NE #DK

PART_1 12 9 3 3
PART_2 14 5 2 4
PART_3 13 5 5 0
PART_4 11 3 10 0
PART_5 17 6 0 0
PART_6 11 2 0 12
PART_7 14 7 0 7
PART_8 13 6 6 0
PART_9 20 4 3 0

PART_10 16 9 1 0
PART_11 19 6 0 0
PART_12 7 3 14 0
PART_13 17 4 0 4
PART_14 18 5 0 0
PART_15 8 8 11 0
PART_16 19 3 2 0
PART_17 3 5 17 0
PART_18 2 4 20 0
TOTALS 234 94 94 30

(b) Results for the faulty questions.

Questionnaire # Faulty
Questions #UN #DK #K

(#UN+#DK) #NK #NE

PART_1 3 2 0 2 0 1
PART_2 5 0 0 0 4 1
PART_3 7 3 0 3 1 3
PART_4 6 2 0 2 2 2
PART_5 7 6 0 6 1 0
PART_6 5 2 1 3 2 0
PART_7 2 1 1 2 0 0
PART_8 5 0 0 0 2 3
PART_9 3 2 0 2 0 1
PART_10 4 1 0 1 3 0
PART_11 5 3 0 3 2 0
PART_12 6 2 0 2 1 3
PART_13 5 3 1 4 1 0
PART_14 7 3 0 3 4 0
PART_15 3 0 0 0 0 3
PART_16 6 2 0 2 1 3
PART_17 5 1 0 1 0 4
PART_18 4 2 0 2 1 1
TOTALS 88 35 3 38 25 25

K The mutant is Killed.
NK The mutant is Not Killed.
UN Unexpected – the DE gave an answer different

from MOTHIA.
DK Don’t Know – the DE missed some information.
NE The DE is Not Expert of this topic.

TABLE 5
The experts’ answers

tern. Finally, the modification of the name (i.e., a label)
of an entity would concern ontological aspects that, as
already said, are not covered by this case study.

We notice once again that the mutation process was
introduced with the purpose of evaluating MOTHIA
and not the domain model. Thus, on the one hand, the
interviewees were ignoring that some of the questions
they answered were subject to such adulteration; on
the other hand, during the post-processing of the
questionnaires, we actually pulled apart the questions
originated from any of the injected faults and pro-
cessed them separately as a different study.

The answers we collected for genuine and faulty
questions are summarized in Table 5(a) and in Ta-
ble 5(b), respectively. Each row refers to a question-
naire (and hence to a participant DE).

As already said, in this case study we refer to
a question as to a test on the input model; with
reference to Table 5(a), a test is said to Pass if the
answer of the DE matches the answer expected by
MOTHIA; to Fail otherwise.

In mutation testing, a mutant is said to be “killed”
when its outcome on a test case is different from the
outcome of the original program on the same test
case [29]. Similarly, here the notion of killing a mutant
corresponds to the identification of an introduced
fault. A model mutation is “killed” (for brevity K,
see Table 5(b)) when the answer to one of the faulty
questions affected by it is different from the answer
inferred by MOTHIA (i.e., UN-expected column in
Table 5(b)), or if the answer is DK. The reason why
we marked a DK-answered faulty question as killed
stems from the following reasoning: for any question
on which a DE declares him(her)self as an expert and
not able to express an opinion at the same time, it is
likely that the MEs will want to look closer to those
model elements that originated the question. The tool
might have in fact generated a confusing question due
to the presence of a model error (an injected fault in
this case). The consequent analysis on those elements
will likely lead to the discovery of the problem.

5 EVALUATION OF THE RESULTS

This section evaluates the results collected in the case
study.

It is worth considering that our experience refers to
a real European project, and not a simulated study.
The partners involved in the use of MOTHIA were
contributing on a voluntary basis. Certainly, their
participation was helpful and valuable. Nevertheless,
as a well-known issue in empirical software engineer-
ing [12], we experienced the difficulties and costs of
experimenting with professionals within development
projects. Indeed, the results we collected should be
considered as a valuable step towards dealing with
the research questions we are trying to address, rather
than the “final proof”. A critical discussion about the
factors that may threaten the validity of our conclu-
sions are presented separately in Section 8.

As described in Section 4.2, we submitted to each
interviewee a questionnaire including questions that
target two separate studies: measuring the ability of
MOTHIA questionnaires to reveal errors, and assess-
ing if MOTHIA reduced the knowledge gap between
DEs and MEs. The former study is presented in
Section 5.1, the latter in Section 5.2.

5.1 Can MOTHIA questionnaires help detect mod-
eling errors?
Section 4.2 described the settings of the study aimed
at assessing the ability of MOTHIA to detect modeling
faults based on mutations of the original domain
model. Specifically, with respect to the type of faults

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ??, ??? 14

presented in Table 4, we randomly mutated a single
element of each diagram of the CHOReOS domain
model. These mutations in turn generated 88 faulty
questions. Please refer to Table 5(b) for a detailed
breakdown, and to dimension D5 in Section 7 for a
detailed analysis of the rationale behind such num-
bers.

A first notable result is that all five fault types
described in Table 4 were detected at least once.
Furthermore, the ex-post analysis revealed that more
than half of the faulty questions were killed (i.e.,
60.32% if we exclude those questions in which the
DEs declared themselves not expert), allowing the
detection of almost all the introduced faults (i.e., 16
faults found of the 19 considered in total, or 84.21%) .
The detailed presentation of these results can be found
in Section 7, dimension D7.

Evidence that MOTHIA helps in detecting model
errors was also collected in the second study. As
reported in the column Fail in Table 5(a), the DEs
collected several answers from the MEs that differed
from the ones expected by MOTHIA. The discussion
stimulated by such conflicts allowed for the detection
of real errors that had slipped into the model, as more
deeply described in Section 6.

In addition, we compared the faulty questions that
had been generated and killed from the Class Dia-
grams with the ones from both the Activity and Use
Case Diagrams (i.e., the new features of MOTHIA).
The data relative to this case study shows that, ex-
cluding questions for which the MEs declared them-
selves not expert, the new features scored a better
result with respect to the faulty questions killed (i.e.,

24
49−15 = 70.59% against 14

39−10 = 48.27% – see Table 6).

5.2 Does MOTHIA help to reduce the gap between
DEs an MEs?

In order to assess how our approach supports the
interaction between DEs and MEs, we formulated two
metrics to estimate the efficacy and the adequacy of the
questionnaires generated with MOTHIA.

As explained in Section 4.2, the questionnaire an-
swers can be divided into those classifying the inter-
viewee as an “expert” of the specific topic tackled by
the question (i.e., Yes, No, DK), and those classifying
him/her as “not expert” (i.e., NE).

To assess efficacy, we defined a metric evaluating
the number of questions on which the interviewees
were able to express an opinion (i.e., answer Yes or
No), over the total number of questions for which they
classified themselves as “experts” of the topic:

#Pass+#Fail

#Total −#NE
× 100 (5)

The metric in Equation 5 estimates the efficacy of
MOTHIA in formulating questions as it reflects the

Questionnaire Class Diagrams Activity and Use Case
Diagrams

Faulty
Questions #K #NE # Faulty

Questions #K #NE

PART_1 2 1 1 1 1 0
PART_2 3 0 0 2 0 1
PART_3 2 2 0 5 1 3
PART_4 4 1 1 2 1 1
PART_5 2 2 0 5 4 0
PART_6 1 0 0 4 3 0
PART_7 2 2 0 0 0 0
PART_8 4 0 3 1 0 0
PART_9 0 0 0 3 2 1
PART_10 2 0 0 2 1 0
PART_11 4 2 0 1 1 0
PART_12 0 0 0 6 2 3
PART_13 4 3 0 1 1 0
PART_14 3 0 0 4 3 0
PART_15 1 0 1 2 0 2
PART_16 0 0 0 6 2 3
PART_17 4 1 3 1 0 1
PART_18 1 0 1 3 2 0
TOTALS 39 14 10 49 24 15

K The mutant is Killed.
NE The DE is Not Expert of this topic.

TABLE 6
Comparison between faulty questions by diagrams

Questionnaire Efficacy
Efficacy on

Class
Diagrams

Efficacy on
Activity and

Use Case
Diagrams

PART_1 87.50% 88.89% 86.67%
PART_2 82.61% 90.00% 76.92%
PART_3 100.00% 100.00% 100.00%
PART_4 100.00% 100.00% 100.00%
PART_5 100.00% 100.00% 100.00%
PART_6 52.00% 58.33% 46.15%
PART_7 75.00% 88.89% 68.42%
PART_8 100.00% 100.00% 100.00%
PART_9 100.00% 100.00% 100.00%

PART_10 100.00% 100.00% 100.00%
PART_11 100.00% 100.00% 100.00%
PART_12 100.00% 100.00% 100.00%
PART_13 84.00% 100.00% 76.47%
PART_14 100.00% 100.00% 100.00%
PART_15 100.00% 100.00% 100.00%
PART_16 100.00% 100.00% 100.00%
PART_17 100.00% 100.00% 100.00%
PART_18 100.00% 100.00% 100.00%

Confidence low 86.95% 90.81% 84.31%
AVERAGE 93.40% 95.90% 91.92%

Confidence up 99.84% 100.00% 99.54%

TABLE 7
Efficacy per questionnaire

number of the “expert responders” that, thanks to the
questions, can contribute to the validation of the input
domain model.

Table 7 reports the data we obtained studying
the efficacy of MOTHIA on the CHOReOS domain
model. The average efficacy is associated with 95%
confidence intervals, calculated using the Student’s t-
distribution. Overall, we see that for this case study
MOTHIA scored a good result in terms of efficacy,
with confidence intervals that span only ±6% around
the average values.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ??, ??? 15

Questionnaire Adequacy
Adequacy on

Class
Diagrams

Adequacy on
Activity and

Use Case
Diagrams

PART_1 88.89% 90.00% 80.00%
PART_2 92.00% 90.91% 85.71%
PART_3 78.26% 100.00% 54.55%
PART_4 58.33% 37.50% 64.29%
PART_5 100.00% 100.00% 100.00%
PART_6 100.00% 100.00% 100.00%
PART_7 100.00% 100.00% 100.00%
PART_8 76.00% 87.50% 58.33%
PART_9 88.89% 100.00% 78.57%
PART_10 96.15% 100.00% 91.67%
PART_11 100.00% 100.00% 100.00%
PART_12 41.67% 50.00% 30.77%
PART_13 100.00% 100.00% 100.00%
PART_14 100.00% 100.00% 100.00%
PART_15 59.26% 72.73% 33.33%
PART_16 91.67% 100.00% 84.62%
PART_17 32.00% 33.33% 7.14%
PART_18 23.08% 10.00% 15.38%

Confidence low 66.57% 67.48% 55.77%
AVERAGE 79.23% 81.78% 71.35%

Confidence up 91.90% 96.08% 86.94%

TABLE 8
Adequacy per questionnaire

For the sake of completeness, Table 7 also reports
a comparison between the efficacy obtained from the
Class Diagrams only and the efficacy resulting from
both the Activity and Use Case diagrams. In this case,
the data revealed that the average efficacy on the Class
Diagrams scored slightly better than the others.

From a deeper analysis of the collected data we
identified that such a result is due to the fact that
expert users were not sure what to answer (i.e., DK)
more often to questions about Activity and Use Case
diagrams (i.e., 22 times over a total of 30). This
does not mean that people misclassified themselves
as experts when they answered questions. Our justi-
fication is that during the definition of the CHOReOS
domain model MEs and DEs spent more effort having
common discussions on structural aspects (i.e., mainly
modeled with the Class Diagrams) rather than on
behavioral aspects (i.e., mainly modeled with the
Activity Diagrams).

The adequacy of a generated questionnaire has been
defined considering the number of questions classi-
fying the interviewee as an “expert” of the specific
topic addressed, over the total number of questions
contained in the questionnaire. This metric is formu-
lated in Equation 6:

#Total −#NE

#Total
× 100 (6)

Table 8 reports data about the adequacy of
MOTHIA on the CHOReOS domain model. Even
though some of the interviewees (e.g., questionnaires
“PART_12”, “PART_17”, and “PART_18”) marked
quite a few answers with NE, most of the questions
automatically generated using MOTHIA were in line
with the expertise of the DEs. The adequacy for the

Fig. 7. Model refinement activities performed with the
questionnaires interviewees

rest of the questionnaires ranged between 58.33% and
100%, while the average score obtained considering
the whole set of questionnaires is 79.23%, with a
confidence range of ±13%.

Although we cannot ignore the singularity reported
by the three questionnaires referred above (which
is also highlighted by the span of the confidence
intervals), we cannot exclude that an extensive mark-
ing of the NE option can be ascribed to a lack of
effort invested by some of the DEs in answering the
questionnaires.

6 CORRECTING THE MODEL FROM THE EX-
PERTS’ FEEDBACK

The CHOReOS domain model has been refined by
considering the feedback provided by DEs when an-
swering the questionnaires. It is important to mention
that during one of the CHOReOS project meetings
some weeks before distributing the questionnaires, the
involved partners were informed about the experi-
mentation, and explanatory material was shown and
distributed. In particular, different kinds of diagrams
were discussed in order to show the corresponding
questions that MOTHIA is able to generate. Question-
naires were distributed by means of the Web-based
abQuestionnaire engine that permits to stop and
recover working sessions. In this way interviewees
had the possibility to have a look at the CHOReOS
domain model or refer to additional material before
answering questions. The refinement process per-
formed after having collected all the answers, which
is depicted in Fig. 7, corresponds to the sub-process
Domain Model Refinement of the overall methodology
shown in Fig. 1.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ??, ??? 16

The refinement process focused on the answers that
differed from the expected ones, more precisely on
those categorized as Fail or DK in Table 5(a). Both
types of answers could hint at possible modeling
errors: Fail refers to a DE conceiving some of the do-
main entities/relationships differently from the ones
modeled by the MEs, whereas DK presumes some odd
or unexpressed aspect of the model for an expert not
to be able to express an opinion.

A phone call was set up with each DE who gave
unexpected answers. This type of interaction between
MEs and DEs, driven by the outcomes of the ques-
tionnaires, was necessary since we could not rely
on the existence of an oracle as usually occurs in
traditional testing processes. The discussion was fo-
cused on groups of questions, clustered according to
the domain elements involved. The discussion started
by asking feedback on the given answers, in order
to identify whether the DE had misunderstood the
question. If a real error was identified, its causes
were investigated and discussed. The domain model
was then refined accordingly. Interestingly, in some
cases an error triggered modifications of elements
that were not included in the original question(s).
The discussion then continued with the next group
of questions, until all the questions were analysed.

In line with the overall considerations on the vali-
dation of a system context given in [30], we identified
four causes behind the most common errors. Specifi-
cally:

• incorrect information: the representation of some
element was based on incorrect information
about the domain; the MEs made wrong assump-
tions about the concepts presented by the DEs.

• tacit assumptions: most of the relevant elements
of the domain model were modeled, but some
aspects were not adequately considered; for ex-
ample, the DEs did not mention an evident re-
lationship among some domain elements, or a
major property of one of them, taking them for
granted.

• semantic ambiguities: the DEs underestimated the
potential misunderstanding of the semantics of
the terms used during the discussion with the
MEs; for example, using either synonymous or
improper terms that are similar but denote dif-
ferent domain elements.

• unstated features: one or multiple aspects of the
domain model were overlooked since the early
description of the model; for example, the DEs
initially preferred to postpone their inclusion
(e.g., to simplify the domain model), but then
these aspects were left unstated.

In few cases, the discussion revealed that unex-
pected answers were not due to errors, rather to
unclear formulation of questions. In such cases, DEs
amended the previous given answer by recognizing

that the model was correct and they gave the wrong
answer. We provide in the following a qualitative
analysis of errors detected in the model. We did not
perform a detailed quantitative analysis. Just to give
a measure of the impact that the questions among
the genuine ones that were classified Fail had in
the whole refinement process, 49 questions out of 94
generated ones (≈52%) triggered modifications of the
model. We did not collect in this study precise metrics
about effort spent on discussing unexpected answers
not caused by a modeling error. However, their impact
appeared limited. The discussion on such unclear
DK answers was nevertheless useful to improve the
formulation of NL questions; it is expected that as
the tool matures, less and less DK answers should be
collected.

In the remainder of the section we discuss some
sample errors fitting the above classification. For each
of them we also present the consequent refinements
on the CHOReOS domain model.

6.1 Incorrect Information
A first example of wrong assumption made by the
MEs, which led to incorrect information in the domain
model, is in the definition of the concepts about
service compositions [13].

In the preliminary version of the domain
model the ME kept the Enactment of Service
Choreography as an independent behavior that
could be used to augment the definition of the
Execution of Service Composition use case
(see Fig. 8(a)). Nevertheless, a positive answer to the
Distractor:

Is the use case Execution of
Service Composition a part of
the use case Enactment of Service
Choreography ?

(Q1)

revealed the DE was considering the enactment of a
choreography as including the execution of a generic
service composition. As a consequence, the domain
model was refined and the relation connecting the two
use cases was updated.

Another example about this category of errors lies
in the definition of a continuous design process [13],
and in particular, in the test activation functionality.
Specifically, the model in Fig. 9(a) has been refined by
discussing the Distractor:

Is Verification Event always the pre-
vious action executed before the action
Activation Evaluation?

(Q2)

The answer to Question Q2 given by the DE was
Yes, since the selection and the execution of a test
can be done only after the verification of the event
that triggered its activation. However, the expected
answer computed by MOTHIA was No, because of
an inaccuracy in the model. In particular, the initial

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ??, ??? 17

(a) Initial model. (b) Refined model.

Fig. 8. Service Compositions features

(a) Initial model. (b) Refined model.

Fig. 9. Test Activation functionality

node of the model has a direct link with the activity
Activity Evaluation. According to the semantics
presented in Section 3.2.3, which interprets multiple
incoming flows as an implicit merge, such activity may
become the first one to be performed, even before
Verification Event. The ME represented this sce-
nario as she unilaterally assumed that the activation of
test functionalities without any specific event was also
admissible. This required a modification of the model
by changing the connection of the initial node, which
has to point to Verification Event (see Fig. 9(b)).

Note that the adoption of a single incoming and
outgoing flow to/from an action is strongly recom-
mended, showing all joins and merges explicitly [31].
In this sense, the refined model is even more robust
to the possible semantics misunderstanding.

6.2 Tacit Assumptions

An example about the identification of a tacit assump-
tion concerns the concepts that model the service
compositions.

The initial version of the model is presented
in Fig. 8(a). During the resolution of the is-
sue revealed by Question Q1, the discussion with
the DE led to realize that, while not modeled,
the actor Choreography Developer could be in-
volved in the use case Creation of Service
Choreography. The DE asserted that this relation
was for him intuitive and therefore not worth to be
explicitly mentioned, while on their side the MEs did
not spot this information. Fig. 8(b) depicts the refined
version of the diagram.

For the sake of completeness it is important to
remark that MOTHIA has been designed in order to
address those errors that are mostly due to communi-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ??, ??? 18

cation failures between DEs and MEs. In some cases,
the errors that MOTHIA helps to discover can also be
revealed by means of other approaches/techniques. In
this specific scenario, as the use case Creation of
Service Choreography in Fig. 8(a) does not have
any relation with any actor, a static validation of the
domain model would have been sufficient.

6.3 Semantic Ambiguities
Semantic ambiguities are the most common and dif-
ficult kind of errors that may happen in the com-
munication between DEs and MEs. Considering the
complexity of the problem [30], our work in MOTHIA
does not pretend to provide a general or definitive so-
lution to it. Nevertheless, in our case study we found
that the discussion we foresee in the validation steps
can contribute to highlight some of those problems.

As deeply investigated in the field of requirement
engineering [30], these errors are often due to an
awkward reference to different concepts by means
of either terms that look similar, or synonymous.
Specifically, let us refer to the diagrams modeling
the functionalities that are needed to support the
discovery of services [13]. Here, in the source model
in Fig. 10(a), an unexpected answer was received for
the Distractor:

Can a relation from Service
Description to an unlimited number
of Facet exist?

(Q3)

After investigating the domain model, we realized
that the MEs defined two entities, both named as
Facet but located in two different packages, to ex-
press two different concepts. Note that in the model
of Fig. 10(a) the two entities appear close in the same
diagram only for the sake of presentation.

When generating Question Q3, MOTHIA consid-
ered the left-side element called Facet, thus the ex-
pected answer it computed was No. When answering
the question, the DEs assumed that the element was
the right-side one. Even more, during the following
discussion it was clear that the two concepts were
actually describing the same abstract entity. Conse-
quently, they have been unified in the refined version
of the domain model (see Fig. 10(b)).

For the sake of completeness, we remark that
the predicates obtained through a domain ontology
(i.e., Hypotheses) could improve the effectiveness
of MOTHIA in dealing with semantic ambiguities.
According to the examples given in Section 3.2, an
ontology that organizes lexicon into a structured set of
words, using relations among word meanings, could
help to probe the real meaning of a word within the
context of the domain model.

6.4 Unstated Features
The last category of errors is mainly due to some
preliminary simplification of the domain model that

then led to unstated features. For most of these errors,
there were no questions generated by MOTHIA that
supported their direct identification. In fact, most of
the concepts fitting in this category were not included
in the model at all. Nevertheless, the combination
of the methodology presented in this paper and the
systematic generation of questionnaires by MOTHIA,
triggered a thorough discussion about the produced
artifacts. Through that, a few errors related to un-
stated features could be revealed.

As an example, while tackling the incorrect in-
formation included in the model in Fig. 8(a) (see
Section 6.1), the discussion led to realize that the
enactment of a service choreography (as modeled)
may implicitly assume that all the services are already
available. This is not true in the general case, thus
DEs preferred to explicitly model a separated use
case dedicated to the verification of the availability of
all the required services as part of the choreography
enactment (see Fig. 8(b)).

Similarly, the discussion with the DE about the in-
correct information revealed by Question Q2 pointed
out some other issues in the model in Fig. 9(a).
In fact, the DE completely omitted the specification
of a decision branch about the derivation of new
test suites, which can be required to test a given
choreography specification. Thus, the model has been
corrected as in Fig. 9(b), by adding the new activities
Test Derivation and Add new Test suite in
the Test Repository, and connecting them to the
rest of the diagram. The concept is that, given a
choreography specification to be tested, a first check
is performed in order to see if the relative test suite is
available in test repository. If it is not available, it is
derived instead and added to the repository. The new
test suite can then be executed.

Interestingly, the discussion on the models in Fig. 9
also led to refine the model in Fig. 11, in order
to explicitly represent the Test Case Derivation
functionality. The actor Run-time System has been
modified by removing the association with the Test
Activation use case (which is performed only by
the Service Provider), and by adding the relation
with the use case Test Case Selection.

As discussed in Section 6.3, we foresee that also
for this class of errors the use of Hypotheses should
mitigate the risk of missing unstated concepts in the
domain model, as they leverage on psycholinguistic
theories of human lexical memory [16]. Specifically,
the adoption of relationships between concepts (e.g.,
hyponym relations) are used to expand and disam-
biguate clustered concepts, in order to increase the
likelihood of an accurate domain model exploration.

7 COMPARISON WITH THE PREVIOUS EX-
PERIENCE
The results discussed so far have to be interpreted in
the context of the CHOReOS case study and are not

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ??, ??? 19

(a) Initial model. (b) Refined model.

Fig. 10. Structural entities supporting Service Discovery

(a) Initial model. (b) Refined model.

Fig. 11. The Use Cases enabling the testing activities

supposed to be used for formulating generally valid
considerations. Nevertheless, as our goal is to get
some empirical validation of our approach, repeating
the validation on more case studies becomes neces-
sary [12]. In the already cited previous paper [11] we
reported about a similar yet independent case study
conducted in the context of the IPERMOB project. An
ex-post comparison of the results obtained for IPER-
MOB and CHOReOS can be interesting to evaluate
both the methodology and the framework we devel-
oped. Furthermore, as in this paper we extend the
original framework, such a comparison provides also
a way to evaluate if/how such extensions improve the
effectiveness and applicability of the approach.

7.1 Dimensions

We identified 8 different dimensions along which to
compare the two experiences, and highlight differ-
ences and similarities.

D1 – Size: The IPERMOB domain model con-
sisted of 50 conceptual entities (modeled as classes)
grouped in 6 different packages. The overall amount
of relationships modeling the semantics connection
(i.e., associations) among such conceptual entities was
68, 14 of which represented special kind of semantic
interconnections that relate to structural aspects of the

entities (i.e., compositions). Finally, the domain model
included 23 relations denoting a taxonomic relation-
ship between a more general entity and some specific
ones (i.e., generalizations). All such aspects concerned
only the structural specification of the domain model.

As already introduced in Section 4.1, the domain
model in CHOReOS was roughly double in size when
compared with IPERMOB. Furthermore, the new fea-
tures added to MOTHIA supported a wider validation
of how MEs modeled the behavioral aspects intended
by the DEs.

D2 – Number of Questionnaires: In the two
case studies, the number of projects partners avail-
able for the validation of the domain models were
close. Specifically, with respect to IPERMOB we were
able to enroll 14 interviewees, while in CHOReOS
we counted on 18.

In our view, this dimension defines our capability
in validating both the input domain model and the
framework we are proposing (with respect to the
faulty questions). In relative terms, based on the
considerations given in the dimension D1, we can
assert that the CHOReOS case study addressed a
wider problem with almost the same resources as the
IPERMOB one.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ??, ??? 20

D3 – Distribution of Questionnaires: The IPER-
MOB project was composed of partners from a limited
geographical area (i.e., a 100 Km radius). This context
made it easy to set up in-person meetings with DEs,
where the submission of questionnaires was aided
by examples. Nevertheless, DEs were supposed to
answer each question on the basis of their knowledge,
without consulting any kind of associated documen-
tation.

On the contrary, CHOReOS is a European project,
with partners located all over Europe, and in Brazil.
The availability of a Web-Engine such as abQuestion-
naire was a crucial asset in making MOTHIA effective
in such a distributed scenario. In addition, due to
the increased complexity of the CHOReOS domain
model, it was not realistic to assume that the DEs were
able to promptly remember all its details. Thus, we
introduced a framework to store partial sessions over
time, giving the possibility to DEs to pause their com-
pilation, consult any project documentation, reflect
on the context of the question, and then resume the
answering of the questionnaire. In our opinion, this
feature contributed to the good results that MOTHIA
showed in this case study.

Finally, another important distinction between the
two distribution processes is that in IPERMOB all
the partners were committed to take part in the case
study by project agreements, whereas in CHOReOS
the partners took part in the case study on a voluntary
basis. Thus, we did not have full control over the skills
that were actually dedicated to the case study.

D4 – Fault Types: During the definition of the
case study on IPERMOB, we developed an engine
to automatically create mutants of the input domain
model by randomly inserting faults in it. Specifically,
such engine was able to deal with 5 types of faults:
four of them were altering the semantic connection
among the domain entities (i.e., the associations),
while one was dealing with the generalization rela-
tion.

With respect to the mutation of the associations, the
engine was able to create new relationships, invert
the direction of an existing association, change its
cardinality, or specialize a regular association into a
composition and vice versa. With respect to the gen-
eralization, the engine supported either the creation of
a new generalization connection, or the replacement
of an element with a parent or sibling.

In this work, we improved the mutation engine to
support abstract faults, applicable on a graph-based
abstraction of the diagrams. Indeed, as reported in Ta-
ble 4, in CHOReOS we used 5 types of abstract faults:
specifically, the creation, the modification (in terms of
endpoint, direction and type), and the deletion of any
relationship represented by an edge.

In this way, the mutations are agnostic with respect
to the considered elements. Thus, their application can
span over the whole domain model. This contributes

towards the mitigation of the bias in the validation of
the methodology (see Section 5).

D5 – Number of Faults: Considering the types
of faults described above, in IPERMOB we introduced
5 mutations into the input domain model (one per
fault type). For each type of fault at least one question
was generated covering the mutation. The number of
faulty questions generated by those faults is described
in the next dimension.

In this case study the mutation engine was config-
ured to introduce 22 mutations in the model. Such
a number of mutations was obtained by planning
a single alteration for each diagram contained in
the CHOReOS domain model, in order to evenly
distribute them across the domain. This decision
was made because, unlike the IPERMOB model (a
purely structural diagram where every entity could
potentially be interconnected with each other), the
CHOReOS model includes various independent be-
havioral diagrams, so that a fault is isolated within its
own diagram. Both the type of fault and the model
element designed for the modification were randomly
drawn, but we ensured that every type of fault was
applied at least once.

Nevertheless, after the execution of MOTHIA we
noticed that only 19 of those mutations were actually
reflected in the generated questionnaires. In other
words, for 3 instantiations of the mutations there
was no faulty question generated from the mutated
domain model. This can be justified by means of the
Faults Density metrics in the dimension D8.

D6 – Faulty Questions: In both case studies we
tried to keep a fixed rate of errors per questionnaire
(approximately 5 questions per questionnaire). Such
procedure was achieved by fine tuning the filtering
rules of MOTHIA, following the actual generation
process (see Section 3.1). In IPERMOB the total num-
ber of faulty questions was 78, while in this case study
was 88.

The 88 faulty questions were originated due to the
mutations discussed by dimension D5; in other words,
each mutation affected one or more faulty questions.

D7 – Faults Found: According to the data pre-
sented in [11], we can summarize that, with regards
to the artificial faults in IPERMOB, the answers to
the questionnaires were able to: a) detect all types of
faults (i.e., 5 types of faults); b) detect all the faults
that mutated the domain model (i.e., 5/5 faults); c)
kill around half of the faulty questions (i.e., 58%).

In this case study: a) all the types of faults were de-
tected (i.e., 5 types of faults); b) most of the mutations
were revealed (i.e., 16/19 faults, 84.21%); c) s60.32%
of faulty questions were killed. For the sake of clarity
we remark that, according to dimension D5, after the
execution of MOTHIA three of the mutations did not
appear in any of the generated questionnaires. Thus,
the total amount of discoverable mutations were 19
rather than 22.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ??, ??? 21

In this sense, considering the increase in complexity
of the CHOReOS case study (see dimensions Size,
and Number of Questionnaires), we can assert
that the improvements added to MOTHIA have led
to comparable good results to those in IPERMOB,
even though the framework was applied with similar
resources on a wider (and more complex) domain
model.

D8 – Faults Density: We elaborated a final di-
mension to contribute in interpreting positively the
results discussed in the previous dimensions. Specifi-
cally, we introduced two new metrics:

Faulty Questions Density :
#FaultyQuestions

#Questions
× 100 (7)

Fault Impact :
#FaultyQuestions

#Faults
(8)

The Faulty Questions Density (i.e., Equation 7) de-
notes the percentage of faulty questions in the gener-
ated questionnaires. According to the data reported in
the previous dimensions, in IPERMOB we had 18.57%
(i.e., 78/420), while in CHOReOS 16.30% (i.e., 88/540).

The Fault Impact (i.e., Equation 8) estimates the
number of faulty questions dedicated to each fault
that mutated the domain model. The greater this
factor, the higher the chances to kill the mutation
each faulty question subsumes. With respect to this
metric, IPERMOB has 15.6 (i.e., 78/5) faulty questions
per fault, and CHOReOS has 4.63 (i.e., 88/19) faulty
questions per fault.

Thus, from a comparable overall potential for fault
detection (i.e., Equation 7), the scenario run within
CHOReOS was more difficult than the one run within
IPERMOB with respect to the detectability of each
single fault (i.e., Equation 8).

7.2 Lessons Learned
From the application of MOTHIA to two similar but
different contexts, as well as from the observation of
the additional features compared to [11], we learned
several interesting lessons.

First of all, supporting the validation of behavioral
diagrams helped DEs and MEs in getting a better
knowledge of the modeled domain entities. Even
though we plan to further extend MOTHIA to sup-
port other kinds of notations and cross relationships
between them, we could probably investigate first
other sets of taxonomies for both patterns and criteria,
especially when considering behavioral diagrams.

Also, we clearly confirm the fact that the interaction
with human subjects requires a strong motivation and
commitment for all the involved people. In both our
experiences we somehow noticed that DEs perceived
these validation steps as an additional wearing task;
thus, they usually tend to postpone it as much as pos-
sible. The lesson learned: it is important to let the DEs
understand how fundamental is their cooperation, but

also activating the validation process as soon as an
iteration of the modeling phase ends.

The adoption of a web-based distribution engine
for the questionnaires was perceived in a quite pos-
itive way. Off-line, aside from the experiment, DEs
reported that it gave them time to actually understand
the questions, and to consult other documentation
(e.g., emails exchanged) about the entities related to
the questions; on the contrary in IPERMOB, with face-
to-face sessions, they had the perception to be exam-
ined. From our perspective, it is also important to
agree with the DEs on some kind of remote assistance
service, due to the possible misunderstandings (e.g.,
naturalness of the questions in Section 8).

The results from each experiment, as well as the
comparison with results from different experiences,
can be used to iteratively fine-tune the many con-
figurations allowed by MOTHIA. The filtering of the
generated questions is an area that could particularly
benefit from such approach. For example, the impact
of each model element on the number of Fail ques-
tions, or its coverage on the total number of questions
are interesting aspects to potentially investigate. Simi-
larly, the same procedure could be also applied to the
impact and coverage of each criterion.

This paper has mainly focused on both efficacy
and adequacy metrics, as defined in Section 5.2.
Clearly, additional metrics such as the ones hinted
above could be adopted to judge the quality of the
questionnaires, and to further assess MOTHIA. A
triangulation of metrics would support the evolution
of the approach from the current version that adopts
a random-based selection, to a version that adopts
weighted criteria, based on the impact in discovering
errors and the coverage of elements in the model.

8 THREATS TO VALIDITY

In this section we discuss the threats to validity that
could affect our results by distinguishing threats to
construct, external, and internal validity.

Threats to construct validity concern the appropri-
ateness of our measures for capturing our depen-
dent variables. In our study, we targeted two dif-
ferent objectives: validating the CHOReOS domain
model, and evaluating MOTHIA. To this end, we
generated questionnaires consisting of 25 questions
for the validation of the CHOReOS domain model,
and 5 questions for evaluating the percentage of faults
revealed by MOTHIA (given that a fault is covered
by a questionnaire). In this respect, we identify the
following threats to construct validity:

Number of questions: the number of questions (i.e.,
30) composing each questionnaire was decided in
order to have a questionnaire requiring less than
one hour to be filled. A longer questionnaire could
compromise the quality of the answers due to the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ??, ??? 22

reduction of attention and concentration of the people
involved in the case study.

Proportion of the two different kinds of questions: be-
cause of the dual nature of our study, changing the
proportion of the two kinds of questions would affect
the focus of the experiment. Since our main goal was
to validate the CHOReOS domain model, we decided
to produce more questions for that purpose (450 of
540 questions) and to limit the number of questions
related to the validation of MOTHIA to 90.

Evaluation metrics: as discussed in Section 5, the
evaluation of the results collected in the presented
case study relies on the efficacy and adequacy metrics.
This choice impacts the conclusions that can be drawn
from our study. Among the lessons learned presented
in Section 7, we argued that further metrics could be
adopted. Nevertheless, we decided to focus on effi-
cacy and adequacy since they permitted to compare
the results of the experience presented in this paper
with that discussed in [11].

Threats to external validity refer to the extent to
which the results of our study can be generalized.
In this respect, we identify the following threats to
external validity:

Number of DEs: the performed experience is affected
by the number of DEs who have been interviewed
and the number of questions composing each ques-
tionnaire. In this respect, the collected data can have
a reduced validity from a statistical point of view.
However, as discussed in the paper, the experience
has been done in the context of a large European
project, where partners involvement in activities that
are marginal to the central objectives of the project has
been difficult. This motivates why we tried to define
a trade-off in terms of number of people involved in
the case study, their expertise in the field, and number
of questions.

MEs Background: MEs belonged to those partners
of the consortium that explicitly introduced modeling
phases within the CHOReOS’s activities. As MEs were
member of the project as well, it is undeniable that
they had some previous knowledge about the target
domain model.

Naturalness of the questions: sometimes the NL ques-
tions produced by the approach can appear not re-
alistic, i.e., it is evident that they have been gen-
erated by an automated process. This aspect might
hamper the comprehension of the questions and thus
the validity of the given answers. For instance, the
question shown in Figure 6 “Can the relation ’Notifies’
from Event Broker to V&V Manager exist?” might be
better rephrased as “Can the Event Broker notify the
V&V Manager?” in order to have it closer to the
application domain. To deal with such a problem,
the approach can be extended by borrowing concepts
and techniques coming from the area of Computa-
tional Linguistics. For instance, there are methods

to fingerprint the structure of English sentences that
might be adopted to extend the question generator
of MOTHIA in order to generate sentences closer to
natural language.

Medium for questions: DEs were interviewed by
means of Web-based questionnaires. The alternative
would have been running personal interviews. As
discussed among the lessons learned in Section 7.2,
having used the Web as the medium for performing
the case study allowed DEs to take their time to
answer questions, to view the documentation about
the model fragments involved in the questionnaires,
and think about them without any time pressure.
Once all the answers were collected and analysed, we
contacted DEs by phone or by email to discuss the
answers that were different from the expected ones.
We recognise that the access to supplementary doc-
umentation could have threatened the performance
of MOTHIA to reveal errors. Nevertheless, we also
consider useful the fact the DEs were stimulated in
revising any additional elaboration about the domain
model.

Type of projects: the case study we have discussed in
the paper has been done in the context of CHOReOS
i.e., a large EU project consisting of 15 partners having
different expertise and involvement in the project.
Performing similar case studies in projects that are
different from CHOReOS in terms of size or partners
inclination towards modeling activities might produce
different results. To deal with such a problem, before
distributing questionnaires it is important to instruct
partners by showing representative diagrams and
discussing the corresponding questions generated by
MOTHIA. In this respect, during one of the CHOReOS
meetings we informed the partners that they will
be involved in the case study we were setting up,
we showed a number of sample diagrams of the
CHOReOS conceptual model, and discussed the cor-
responding questions generated by MOTHIA.

Choice of patterns and criteria: the generation of ques-
tions in MOTHIA relies on a set of patterns and
criteria that were selected according to the experience
of the authors. Considering other patterns and criteria
would imply the generation of different question-
naires. For this reason, the patterns and criteria used
are generic, not domain specific, and based on the
structure of the diagrams rather than their semantics.
As said in Section 4.2, in this paper we proposed a
general methodology and related supporting tools,
without pretending to generalize the results to any
set of patterns/criteria.

Filtering of questions: in the reported case study
we have filtered questions to ensure that a certain
number of faulty questions was included in each
questionnaire. As the number of questions that can
be generated by MOTHIA are infeasible to answer by
DEs within a reasonable time, in real-life situations

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ??, ??? 23

filtering of questions is necessary to select questions
that are likely to address potential issues in the ex-
amined model. Currently we are not providing indi-
cations about any filtering policy, this is a limitation
of the approach and future work will need to explore
effective filtering techniques.

Threats to internal validity refer to the extent to
which the results obtained are function of the vari-
ables that have been systematically manipulated, mea-
sured, and observed in the study. In this respect, we
identify the following threats to internal validity:

Kinds of faults mutating the diagrams: the faults in-
troduced in the case study were related to structural
defects in the model, rather than its semantics. In
other words, we did not consider the meaning of the
involved model elements when applying the muta-
tions. This is in line with the principle of mutation in
testing.

Diagram mutations: we randomly mutated each di-
agram of the CHOReOS domain model on a single
element in order to generate faulty questions. As we
described in Section 4.2, our strategy was to generate
questionnaires characterized by a fixed rate of injected
errors (i.e., 5 faulty questions per questionnaire). This
might have created a bias, which we tried to limit by
uniformly distributing the faults, and by formulating
general principles according to the know-how gained
in the IPERMOB project. Also, we did not use the
obtained results to infer a generic percentage of faults
detection capability.

Completeness of the results: one last threat to validity
is related to the completeness of the results; in this
sense, we are not able to assess neither that we have
discovered all the problems, nor how many and what
faults remain undiscovered. However, this is a typical
problem affecting any approach that, like the one
presented in the paper, is not exhaustive.

9 RELATED WORK

Other works exist that use questionnaires for model
validation. The work in [32] proposes questionnaire-
based models that, including order dependencies and
domain constraints, allows for customizing config-
urable business processes. Analysis techniques are
proposed for detecting circular dependencies and
contradictory constraints in the questionnaire models
and for preventing invalid configurations. For each
question, the proposed techniques restrict the space
of allowed answers based on previous answers.

In [33], the authors propose a technique to gen-
erate multiple-choice tests starting from electronic
questions. The approach differs from ours in several
aspects: their goal is to produce tests that are useful to
test the expertise of the responders in the area covered
by the questionnaire; they use NL analysis to extract
knowledge from a corpus and to formulate questions

related to that corpus. Our goal is to test the model,
not the responder’s knowledge.

The approach proposed in [34] uses machine learn-
ing techniques to generate questions of fill-in-the-
blank type, in order to allow the testing of any kind
of knowledge, rather then for a specific purpose like
our approach.

The automatic creation of NL multiple-choice ques-
tions from domain ontologies is proposed in [19]. The
goal is to create a questionnaire for educational pur-
poses, rather than validation, since the input knowl-
edge base is considered as correct. While we focused
on simpler Yes/No questions, strategies to create dis-
tractors can be seen as the equivalent of our criteria.

Considering goal models and business process
models as complementary artifacts when capturing
the requirements and their execution flow, in [35], the
authors make use of Description Logics (DL) [36] and
automated reasoners to validate mappings between
goals and their realization in term of activities in
business process models. The approach uses DL to
model workflow patterns and automatically check
if executable processes do not meet user intentions
and needs, or lead to undesired executions. A set of
predefined realization inconsistencies is used.

Differently from us, most of the above mentioned
approaches only consider the structural part of system
modelling, except for the approaches in [35], [32] that
consider only business process models. In line with
software engineering best practices, which tend to dis-
tinguish system descriptions into structure, behaviour,
and functions [30], our approach can validate multi-
views system models, being able to handle Use Case
and Activity Diagrams, in addition to Class Diagrams.

If we consider a broader perspective about the
definition of domain models, the literature comes with
many evidences of how some kinds of properties/-
constraints require other mechanisms than only UML
Diagrams to be properly expressed. For example, do-
main engineers usually express constraints in OCL be-
cause multiplicities are not enough to represent them
in the UML Class Diagrams. In this sense, domain
engineers that aims at validating such constraints
have to rely on some kind of complementary means.

Several approaches attempt at formalising (part of)
UML for the purpose of (possibly) automatic reason-
ing. Considering a decomposition of the quality of
conceptual schemas at syntactic level, semantic level,
and pragmatic level (as in [6]), the work in [37] focuses
on early assessment of semantic qualities of UML con-
ceptual schemas, with OCL integrity constraints. Two
different perspectives are considered: from an internal
point of view verification techniques are applied to
check whether the schema contains contradictions
and redundancies; from an external point of view
validation techniques are applied to check whether
the schema fulfills the requirements of the application
it is being built for, while properly representing the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ??, ??? 24

knowledge about the application domain. Consider-
ing the undecidability of the problem of automati-
cally reasoning with arbitrary OCL constraints, the
proposed approach is a compromise between dealing
with arbitrary constraints, for which decidability is
not guaranteed, and checking whether termination is
ensured or not. To assess correctness while ensuring
termination, a first-order logic formalization is used to
encode the structural part of a UML schema together
with its OCL constraints. Then, according to the logic
representation, a set of questions is formalized as
derived predicates and, as such, can be answered
by checking satisfiability of predicates. A predefined
set of “internal” and “external” questions can be
automatically verified and validated (respectively) on
any schema, and are an original contribution of the
work in [37]. Other properties that cannot be covered
by the predefined predicates must be extracted by
the designer from the requirements of each particular
application, and must be formalized.

The work in [38] focusses on the semantic qual-
ity validation of model transformations when used
to refine a source model into a target model. The
proposed approach checks the correctness of a target
MOF/UML models with regards to the corresponding
source model by using OCL to encode refinement
simulation conditions. These conditions are then au-
tomatically evaluated by combining model checking,
testing and semantic entailment.

Recognizing the importance of analyzing system
models at early stages of the software development
lifecycle (to mitigate the risk of additional cost and
effort when implementing a system based on a faulty
design), the work in [39] proposes an approach to
validate a UML/OCL schema by encoding a subset of
UML and OCL into the Alloy logic formalization [40].
Alloy7 is a structural modelling language based on
first-order logic, for expressing complex structural
constraints and behaviour. Considering only UML
Class Diagrams, the analyser proposed in [39] imple-
ments a “solver” that, given a logical formula in Alloy
language, attempts to find a model (i.e., a binding of
the variables to values) that makes the formula true. In
other words, it takes as input properties specified by
the designer, and it searches for examples matching
them. The analyzer automatically explores the state
space exhaustively, up to the user specified scope. The
approach allows for general OCL constraints (with
some restrictions) without guaranteeing completeness
of the result and does not support association classes
and n-ary associations.

In the previous approaches, the usage of logic for-
malisms, formal analysis and checking tools may be
error prone and often requires high expertise. For
example, as admitted by the authors in [37], a high
expertise may be required (i) to correctly formulate the

7. http://alloy.mit.edu

right questions by using the proposed approach, and
(ii) to check their satisfiability by using satisfiability
checking methods. This consideration reinforces our
thesis that DEs may not be able to directly check the
models and MEs are called to interpret the needs of
DEs, translate them into formal notations, and finally
try to understand if what is formalized (and then
checked) correctly represents what was in the mind
of the problem owner. Note that, although MOTHIA
works on a first-order logic representation of the input
model, the end-user is not required to understand it.

In the context of this work, it is also worth mention-
ing Requirement Engineering (RE) approaches to elicit
knowledge from experts and validate requirements
descriptions, which are well recognized and widely
accepted in the literature.

In [41], [42] (and references therein) the authors
provide a research perspective and a roadmap that
clarify how the RE discipline covers multiple inter-
twined activities, namely: (i) domain analysis to iden-
tify relevant stakeholders to be interviewed, hence
studying the context and general objectives in which
the software should be built; (ii) elicitation to explore
alternative models for the target system, and define
requirements and assumptions of such models, hence
meeting the identified objectives; (iii) negotiation and
agreement to evaluate alternative requirements/as-
sumptions; (iv) specification to precisely formulate
requirements and assumptions; (v) specification anal-
ysis to check the specifications for, e.g., inadequacy,
incompleteness or inconsistency, and feasibility; (vi)
documentation to document the decisions made, and
the underlying rationale and assumptions; (vii) evo-
lution to account for requirements modifications, en-
vironmental changes, or new objectives.

Seminal work on elicitation techniques [43] spans
from structured and unstructured interviews [44],
[45], protocol analysis [46], card sorting [47], ladder-
ing [48].

As already clarified, our approach focuses on val-
idating the very first domain models, rather than
eliciting knowledge from experts and validating re-
quirements descriptions. Specifically, our assumption
is that such domain models are manually created
according to requirements already elicited from the
interaction with the owners of the problem domain.
Here we refer to those domain models that are to be
taken as input by step zero MDE model refinement
techniques. Thus, for a proper and successful adop-
tion of such techniques, models need to be correct not
only syntactically but also semantically, according to
what the domain experts have in mind. In the per-
spective of [41], [42], it can be said that our approach
can be collocated within the specification analysis
activity. That is, it can be considered as a means
for checking the quality of early domain models
that, being derived from requirements negotiated and
agreed with DEs, show enough technical details and

http://alloy.mit.edu

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ??, ??? 25

adequate technical precision to be amenable for model
refinements through automatic MDE techniques.

10 CONCLUSIONS AND FUTURE WORK

The definition of models and abstractions, as well as
the domain-specific customizations of the modeling
environment, are effective approaches that aim at
drawing the developers closer to the problem domain.
Nevertheless, research in MDE recognized that these
are often error-prone activities that require syner-
gies and skills going beyond the mere technologies
used [2], [49]. Specifically, if on the one hand the MEs
are familiar with technological notations, environ-
ments and resources, on the other hand they usually
lack a deep knowledge of the application domain that
requires to be analyzed and engineered.

The approach we promote in this paper contributes
in supporting MEs in the early stages of an MDE
process. We investigate how to test the validity of
the models built at step zero by facilitating the
interaction between DEs and MEs since the initial
definition of a domain model. This goal is achieved
by a systematic generation of questionnaires (Yes/No
questions expressed in NL) that MEs can submit to
DEs on the basis of the domain models currently
elaborated. As for any testing approach, the contri-
bution of MOTHIA is subject to the likelihood of
selecting a question covering a model issue among
all the possible questions that could be generated. In
its current version, the support to such a selection is
limited.

We obtained positive feedbacks concerning the ef-
fectiveness of MOTHIA in revealing modeling er-
rors, both from the reported study in estimating how
likely artificial faults exposed in a questionnaire are
identified by a responding ME, and also from the
qualitative analysis of interaction with DEs who gave
unexpected answers. In addition, we also saw how
MOTHIA can contribute to reducing the knowledge
gap between DEs and MEs, which is often a source for
early stage modeling errors. We believe that the new
features introduced in this paper with respect to our
previous work [11] improved the applicability and
expressiveness of the framework, covering a bigger
set of source domain models.

Future research will devote further efforts in au-
tomating the process illustrated in Fig. 1. We intend to
support the analysis of the DEs responses to map the
discovered wrong answers on the model elements they
refer to. We will also explore more systematic ways
to transform and correct the input models, which we
currently handle manually.

In addition, the effectiveness of MOTHIA in de-
tecting faults is related to the formulation of both
patterns and criteria. The performance of the valida-
tion strategy can be impacted if criteria built around
certain syntactical structures (i.e., patterns), rather

than others, lead more often to questions that allow
for detecting errors. Thus, work is also planned to
study the characteristics and the taxonomies of both
patterns and criteria. As an example, we plan to add
scheduling analysis capabilities around the graphFlow
pattern in the Activity Diagrams, to properly address
concurrency problems.

As presented in Section 3.1, MOTHIA is also able
to generate questions about elements that do not exist
in the model. To this end, Hypotheses are gener-
ated by exploiting semantic relations among sets of
cognitive synonyms (i.e., synsets) [50] that include
model elements. As explained, this feature could not
be validated in the context of the CHOReOS project. A
stimulating direction we will undertake concerns the
design of a specific experience where MOTHIA can be
used to investigate the completeness of the considered
domain model.

As mentioned in Section 3.2, MOTHIA does not
handle cross-references among different diagrams yet.
In some sense, it assumes that all diagrams are at the
same level of abstraction, which is not usually the
case. For example, Activity Diagrams can be adopted
to describe Use Cases, or more fine-grained activities.
This information could be used to better shape the
questions on each specific context. Future work may
also investigate how to improve such aspects.

Finally, we intend to focus future work in getting
higher confidence on the results obtained by this and
the previous experimentation [11], according to the
guidelines given in [12]. In particular, we plan to
repeat the empirical evaluation of MOTHIA on other
models, possibly with more interviewees, and with an
expanded set of artificial faults.

APPENDIX
RESULTS PER CRITERION

This appendix shows the same results of Tables 5, 6,
7, 8 re-arranged on a per-criterion basis. This kind
of data breakdown can be useful to evaluate the
performance of individual criteria in light of future
studies e.g., it shows which criteria perform better or
worse than the average results. The tables show only
the criteria that generated at least one question.

Please note that we are not showing per-pattern
results in similar format, because this would be mean-
ingless. The rationale is that criteria have a 1-to-1
relationship with a question, while it is n-to-n for
patterns, thus it is hard to weight the importance of
how a certain pattern contributes to a single question.

REFERENCES

[1] J. Bézivin, “On the unification power of models,” Software and
Systems Modeling, vol. 4, no. 2, pp. 171–188, 2005.

[2] R. B. France and B. Rumpe, “Model-driven development of
complex software: A research roadmap,” in FOSE, L. C. Briand
and A. L. Wolf, Eds., 2007, pp. 37–54.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ??, ??? 26

(a) Results for the genuine questions.
Criterion #Pass #Fail #NE #DK Efficacy Adequacy

association 17 11 4 3 90.32% 88.57%
associationDirection 2 0 1 0 100.00% 66.67%

assocLowMult 4 2 4 1 85.71% 63.64%
assocTestMult 3 1 0 0 100.00% 100.00%
assocUpMult 5 3 2 0 100.00% 80.00%
composition 17 3 3 1 95.24% 87.50%
dependency 2 3 0 1 83.33% 100.00%

dependencyDirection 2 1 2 0 100.00% 60.00%
generalization 17 3 1 0 100.00% 95.24%

impliedAssociation 11 5 2 0 94.12% 89.47%
impliedDependency 4 0 1 0 100.00% 80.00%
indirectAssociation1 11 4 8 1 93.75% 66.67%
siblingAssociation 0 2 1 0 100.00% 66.67%

TOTALS 95 38 29 8 94.33% 82.94%

(b) Results for the faulty questions.
Questionnaire # Faulty

Questions
#UN #DK #K

(#UN+#DK) #NK #NE

association 12 8 0 8 1 3
associationDirection 7 2 1 3 4 0

assocLowMult 1 0 1 1 0 0
assocTestMult 1 0 0 0 0 1
assocUpMult 2 0 0 0 1 1
composition 1 0 0 0 0 1
dependency 4 0 0 0 4 0

dependencyDirection 3 0 0 0 1 2
generalization 3 1 0 1 2 0

impliedAssociation 5 1 0 1 2 2
impliedDependency 0 0 0 0 0 0
indirectAssociation1 0 0 0 0 0 0
siblingAssociation 0 0 0 0 0 0

TOTALS 39 12 2 14 15 10

TABLE 9
The experts’ answers (per Class Diagram criterion)

(a) Results for the genuine questions.
Criterion #Pass #Fail #NE #DK Efficacy Adequacy

actorGeneralization 2 0 0 0 100.00% 100.00%
association 12 2 1 2 87.50% 94.12%

conditionalAssociation 1 3 1 1 80.00% 83.33%
extension 1 2 4 1 75.00% 50.00%

includedAssociation 4 4 2 1 88.89% 81.82%
inclusion 9 3 2 0 100.00% 85.71%

usecaseGeneralization 2 0 0 0 100.00% 100.00%
usecaseInheritedAssociation 0 2 0 0 100.00% 100.00%

TOTALS 31 16 10 5 90.38% 83.87%

(b) Results for the faulty questions.
Questionnaire # Faulty

Questions
#UN #DK #K

(#UN+#DK) #NK #NE

actorGeneralization 0 0 0 0 0 0
association 8 7 0 7 0 1

conditionalAssociation 0 0 0 0 0 0
extension 0 0 0 0 0 0

includedAssociation 0 0 0 0 0 0
inclusion 4 1 0 1 1 2

usecaseGeneralization 1 0 0 0 1 0
usecaseInheritedAssociation 1 1 0 1 0 0

TOTALS 14 9 0 9 2 3

TABLE 10
The experts’ answers (per Use Case Diagram criterion)

(a) Results for the genuine questions.
Criterion #Pass #Fail #NE #DK Efficacy Adequacy

after 9 2 4 1 91.67% 75.00%
all 15 4 7 4 82.61% 76.67%

alternative 9 1 4 2 83.33% 75.00%
alwaysAfter 7 6 3 2 86.67% 83.33%

alwaysBefore 8 4 1 0 100.00% 92.31%
alwaysNext 9 3 4 0 100.00% 75.00%

alwaysPrevious 9 7 3 1 94.12% 85.00%
before 9 1 3 1 90.91% 78.57%

concurrency 0 1 3 0 100.00% 25.00%
decision 11 1 13 2 85.71% 51.85%

loop 9 3 3 1 92.31% 81.25%
next 5 2 4 1 87.50% 66.67%

previous 8 5 3 2 86.67% 83.33%
TOTALS 108 40 55 17 89.70% 75.00%

(b) Results for the faulty questions.
Questionnaire # Faulty

Questions
#UN #DK #K

(#UN+#DK) #NK #NE

after 0 0 0 0 0 0
all 1 0 0 0 1 0

alternative 0 0 0 0 0 0
alwaysAfter 8 5 0 5 1 2

alwaysBefore 3 0 1 1 1 1
alwaysNext 2 1 0 1 1 0

alwaysPrevious 2 0 0 0 2 0
before 1 1 0 1 0 0

concurrency 0 0 0 0 0 0
decision 12 4 0 4 1 7

loop 3 0 0 0 1 2
next 2 2 0 2 0 0

previous 1 1 0 1 0 0
TOTALS 35 14 1 15 8 12

TABLE 11
The experts’ answers (per Activity Diagram criterion)

[3] D. Di Ruscio, L. Iovino, and A. Pierantonio, “Coupled evo-
lution in model-driven engineering,” IEEE Software, vol. 29,
no. 6, pp. 78–84, Nov. 2012.

[4] R. Paige and D. Varrò, “Lessons learned from building model-
driven development tools,” Software & Systems Modeling,
vol. 11, pp. 527–539, 2012.

[5] H. Nelson, G. Poels, M. Genero, and M. Piattini, “A conceptual
modeling quality framework,” Software Quality Journal, vol. 20,
pp. 201–228, 2012.

[6] O. I. Lindland, G. Sindre, and A. Sølvberg, “Understanding
quality in conceptual modeling,” IEEE Softw., vol. 11, no. 2,
pp. 42–49, Mar. 1994.

[7] J. Krogstie and A. Sølvberg, Information systems engineering:
Conceptual modeling in a quality perspective. The Norwegian

University of Science and Technology, 2000. [Online].
Available: http://www.idi.ntnu.no/~sif8060/03/bok.pdf

[8] R. Salay, M. Famelis, and M. Chechik, “Language independent
refinement using partial modeling,” in FASE, ser. Lecture
Notes in Computer Science, J. de Lara and A. Zisman, Eds.,
vol. 7212. Springer, 2012, pp. 224–239.

[9] M. Autili, V. Cortellessa, D. Di Ruscio, P. Inverardi, P. Pel-
liccione, and M. Tivoli, “Integration architecture synthesis
for taming uncertainty in the digital space,” in Large-Scale
Complex IT Systems. Development, Operation and Management,
ser. LNCS, R. Calinescu and D. Garlan, Eds. Springer Berlin
/ Heidelberg, 2012, vol. 7539, pp. 118–131.

[10] R. Salay, J. Gorzny, and M. Chechik, “Change propagation
due to uncertainty change,” in FASE, ser. Lecture Notes in

http://www.idi.ntnu.no/~sif8060/03/bok.pdf

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ??, ??? 27

Computer Science. Springer Berlin Heidelberg, 2013, vol.
7793, pp. 21–36.

[11] A. Bertolino, G. De Angelis, A. Di Sandro, and A. Sabetta, “Is
my model right? let me ask the expert,” Journal of Systems and
Software, vol. 84, no. 7, pp. 1089 – 1099, 2011.

[12] W. Tichy, “Hints for reviewing empirical work in software
engineering,” Empirical Software Engineering, vol. 5, no. 4, pp.
309–312, 2000.

[13] A. Ben Hamida, F. Kon, G. Ansaldi Oliva, C. Moreira Dos
Santos, J. Lorré, M. Autili, G. De Angelis, A. Zarras, N. Geor-
gantas, V. Issarny, and A. Bertolino, “An integrated develop-
ment and runtime environment for the future internet,” in The
Future Internet - Future Internet Assembly 2012: From Promises to
Reality, ser. LNCS, F. Alvarez et al., Eds., vol. 7281. Springer,
2012, pp. 81–92.

[14] M. Broy and M. Cengarle, “Uml formal semantics: lessons
learned,” Software & Systems Modeling, vol. 10, no. 4, pp. 441–
446, 2011.

[15] F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and T. Grose,
Eclipse Modeling Framework. Addison Wesley, 2003.

[16] G. A. Miller, R. Beckwith, C. Fellbaum, D. Gross, and
K. J. Miller, “Introduction to WordNet: an On-line Lexical
Database*,” International Journal of Lexicography, vol. 3, no. 4,
pp. 235–244, Dec. 1990.

[17] M. Pezzè and M. Young, Software testing and analysis - process,
principles and techniques. Wiley, 2007.

[18] H. Dalianis, “A method for validating a conceptual model by
natural language discourse generation,” in CAiSE, 1992, pp.
425–444.

[19] A. Papasalouros, K. Kanaris, and K. Kotis, “Automatic gener-
ation of multiple choice questions from domain ontologies,”
in e-Learning, 2008, pp. 427–434.

[20] A. Cicchetti, D. Di Ruscio, L. Iovino, and A. Pierantonio,
“Managing the evolution of data-intensive web applications
by model-driven techniques,” Software and Systems Modeling,
vol. 12, no. 1, pp. 53–83, Feb. 2013.

[21] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns in
property specifications for finite-state verification,” in ICSE,
B. W. Boehm, D. Garlan, and J. Kramer, Eds. ACM, 1999, pp.
411–420.

[22] S. Konrad and B. H. C. Cheng, “Real-time specification pat-
terns,” in ICSE, G.-C. Roman, W. G. Griswold, and B. Nu-
seibeh, Eds. ACM, 2005, pp. 372–381.

[23] C. Peltz, “Web Services Orchestration and Choreography,”
IEEE Computer, vol. 36, no. 10, pp. 46–52, 2003.

[24] N. Wainwright and N. Papanikolaou, “Introduction: The fia
research roadmap, priorities for future internet research,” in
The Future Internet, ser. Lecture Notes in Computer Science,
F. Álvarez, F. Cleary, P. Daras, J. Domingue, A. Galis, A. Garcia,
A. Gavras, S. Karnourskos, S. Krco, M.-S. Li, V. Lotz, H. Müller,
E. Salvadori, A.-M. Sassen, H. Schaffers, B. Stiller, G. Tselentis,
P. Turkama, and T. Zahariadis, Eds. Springer Berlin Heidel-
berg, 2012, vol. 7281, pp. 1–5.

[25] V. Issarny, N. Georgantas, S. Hachem, A. Zarras, P. Vassiliadis,
M. Autili, M. A. Gerosa, and A. Ben Hamida, “Service-oriented
middleware for the future internet: state of the art and research
directions,” Jorunal Internet Services and Applications, vol. 2,
no. 1, pp. 23–45, 2011.

[26] G. De Angelis, A. Bertolino, and A. Polini, “Validation and
verification policies for governance of service choreographies,”
in Proc. of the 8th International Conference on Web Information
Systems and Technologies. Porto, Portugal: SciTePress, Apr.
2012.

[27] A. Bertolino, G. De Angelis, and A. Polini, “Governance poli-
cies for verification and validation of service choreographies,”
in Web Information Systems and Technologies (Selected Papers), ser.
LNBIP, J. Cordeiro and K. Krempels, Eds., vol. 140. Springer,
2013, pp. 86–102.

[28] J. Mottu, B. Baudry, and Y. Le Traon, “Mutation analysis
testing for model transformations,” in ECMDA-FA, ser. LNCS,
A. Rensink and J. Warmer, Eds., vol. 4066. Springer, 2006, pp.
376–390.

[29] Y. Jia and M. Harman, “An analysis and survey of the de-
velopment of mutation testing,” Software Engineering, IEEE
Transactions on, vol. 37, no. 5, pp. 649 –678, sept.-oct. 2011.

[30] K. Pohl, Requirements Engineering - Fundamentals, Principles, and
Techniques. Springer, 2010.

[31] M. Fowler, UML Distilled: A Brief Guide to the Standard Mod-
eling Object Language, 3rd ed., ser. Object Technology Series.
Addison-Wesley, Sep. 2003.

[32] M. La Rosa, W. van der Aalst, M. Dumas, and A. ter Hofstede,
“Questionnaire-based variability modeling for system config-
uration,” Software and Systems Modeling, vol. 8, pp. 251–274,
2009.

[33] R. Mitkov and L. Ha, “Computer-aided generation of multiple-
choice tests,” in Proc. of HLT-NAACL ’03. Morristown, NJ,
USA: ACL, 2003, pp. 17–22.

[34] A. Hoshino and H. Nakagawa, “A real-time multiple-choice
question generation for language testing: a preliminary study,”
in Proc. of EdAppsNLP 05. Morristown, NJ, USA: ACL, 2005,
pp. 17–20.

[35] G. Gröner, M. Asadi, B. Mohabbati, D. Gašević, F. Silva Par-
reiras, and M. Bošković, “Validation of user intentions in pro-
cess models,” in Proceedings of the 24th international conference
on Advanced Information Systems Engineering, ser. CAiSE’12.
Berlin, Heidelberg: Springer-Verlag, 2012, pp. 366–381.

[36] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F.
Patel-Schneider, Eds., The Description Logic Handbook. New
York, NY, USA: Cambridge University Press, 2007.

[37] A. Queralt and E. Teniente, “Verification and validation of uml
conceptual schemas with ocl constraints,” ACM Trans. Softw.
Eng. Methodol., vol. 21, no. 2, pp. 13:1–13:41, 2012.

[38] C. Pons and D. Garcia, “A lightweight approach for the se-
mantic validation of model refinements,” Electron. Notes Theor.
Comput. Sci., vol. 220, no. 1, pp. 43–61, Dec. 2008.

[39] K. Anastasakis, B. Bordbar, G. Georg, and I. Ray, “On chal-
lenges of model transformation from uml to alloy,” Software
and Systems Modeling, vol. 9, pp. 69–86, 2010.

[40] D. Jackson, “Alloy: a lightweight object modelling notation,”
ACM Trans. Softw. Eng. Methodol., vol. 11, no. 2, pp. 256–290,
Apr. 2002.

[41] A. Van Lamsweerde, “Requirements engineering in the year
00: a research perspective,” in Proceedings of the ICSE, 2000, pp.
5–19.

[42] B. Nuseibeh and S. Easterbrook, “Requirements engineering:
A roadmap,” in Proceedings of the Conference on The Future of
Software Engineering, ser. ICSE. New York, NY, USA: ACM,
2000, pp. 35–46.

[43] N. A. M. Maiden and G. Rugg, “Acre: selecting methods for
requirements acquisition,” Software Engineering Journal, vol. 11,
no. 3, pp. 183–192, 1996.

[44] E. S. Cordingley, “Knowledge elicitation: Principle, techniques
and applications,” D. Diaper, Ed. New York, NY, USA:
Springer-Verlag New York, Inc., 1989, ch. Knowledge Elicita-
tion Techniques for Knowledge-based Systems, pp. 87–175.

[45] E. Turban, Decision Support and Expert Systems: Management
Support Systems, 3rd ed. Upper Saddle River, NJ, USA:
Prentice Hall PTR, 1993.

[46] K. A. Ericsson and H. A. Simon, Protocol analysis: Verbal reports
as data. Cambridge, MA: MIT Press, 1993.

[47] G. Rugg, C. Corbridge, N. Major, A. Burton, and N. Shadbolt,
“A comparison of sorting techniques in knowledge acquisi-
tion,” Knowledge Acquisition, vol. 4, no. 3, pp. 279 – 291, 1992.

[48] C. Corbridge, G. Rugg, N. Major, N. Shadbolt, and A. Burton,
“Laddering: technique and tool use in knowledge acquisition,”
Knowledge Acquisition, vol. 6, no. 3, pp. 315 – 341, 1994.

[49] B. Selic, “What will it take? a view on adoption of model-based
methods in practice,” Software & Systems Modeling, vol. 11, pp.
513–526, 2012.

[50] L. Garshol, “Metadata? thesauri? taxonomies? topic maps!
making sense of it all,” J. Information Science, vol. 30, no. 4,
pp. 378–391, 2004.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ??, ??? 28

Marco Autili is Assistant Professor at Uni-
versity of L’Aquila, Italy (Department of In-
formation Engineering, Computer Science,
and Mathematics). Main research areas are
Software Engineering, Formal Methods, Dis-
tributed Systems, and Context-oriented Pro-
gramming. Main research and development
(R&D) activities include: automated synthe-
sis of software connectors; formal specifi-
cation and analysis of complex distributed
systems; context-oriented programming and

resource-oriented analysis of adaptable (mobile) applications. He
published several papers in leading journals, conferences and work-
shops. He is (has been) member of many Program Committees
and reviewer of many journals among which Science of Computer
Programming, Software and Systems Modeling, J. of Systems and
Software, Automated Software Eng., J. of Internet Services and
Applications, J. of Logic and Algebraic Programming, and a number
of Transactions. He is (has been) involved in many EU and Italian
projects contributing to R&D, Management and Coordination activi-
ties. Please, visit http://www.di.univaq.it/marco.autili/.

Antonia Bertolino is a Research Director at
CNR-ISTI, Pisa. Her research covers Soft-
ware and Services Engineering, with particu-
lar interest in testing approaches. She serves
as the Software Testing Area Editor for the
Elsevier Journal of Systems and Software,
and is currently an Associate Editor of the
ACM Transactions on Software Engineering
and Methodology and of the Springer Empir-
ical Software Engineering Journal. She is the
General Chair of the ACM/IEEE Conference

ICSE 2015, to be held in Florence (Italy). Contact her at
antonia.bertolino@isti.cnr.it .

Guglielmo De Angelis is a technologist at
CNR–ISTI, temporary posted to CNR–IASI.
He received a PhD in Industrial and Infor-
mation Engineering from Scuola Superiore
Sant’Anna of Pisa. His research mainly fo-
cuses on Model-Driven Engineering and on
Service Oriented Architectures. Contact him
at guglielmo.deangelis@isti.cnr.it, or
guglielmo.deangelis@iasi.cnr.it.

Davide Di Ruscio is Assistant Professor at
the Department of Information Engineering
Computer Science and Mathematics of the
University of L’Aquila. His research inter-
ests are related to several aspects of Model
Driven Engineering (MDE) including domain
specific modeling languages, model transfor-
mation, model differencing, model evolution,
and coupled evolution. He has co-authored
more than 70 papers in various journals,
conferences and workshops on such topics.

He has been involved in the organization of several international
workshops and conferences, and reviewer of many journals like
Science of Computer Programming, and Software and Systems
Modeling. Since 2006 he has been involved in European projects
mainly in the field of model driven engineering, service based
systems, and open source software. More information is available
at http://www.di.univaq.it/diruscio.

Alessio Di Sandro received his degree (with
honors) in Computer Engineering from the
University of Pisa in 2009. During his Mas-
ter’s thesis, he also worked for Ericsson Re-
search in Stockholm, Sweden. He was a
researcher at CNR-ISTI in Pisa, Italy, and
currently he is a researcher at the University
of Toronto, Canada. His research interests
include topics from Model-Driven Engineer-
ing and Visual Technologies, such as model
management, model validation, automated

code generation, design of graphical interfaces, web technologies.
Contact him at adisandro@cs.toronto.edu.

http://www.di.univaq.it/marco.autili/
mailto:antonia.bertolino@isti.cnr.it
mailto:guglielmo.deangelis@isti.cnr.it
mailto:guglielmo.deangelis@iasi.cnr.it
http://www.di.univaq.it/diruscio
mailto:adisandro@cs.toronto.edu

	Introduction
	Overall Methodology
	Model Testing by Human Interrogations & Answers
	The Architecture
	The Reference Implementation
	Validating Class Diagrams
	Validating Use Case Diagrams
	Validating Activity Diagrams

	The Web-based Distribution Engine

	Case Study
	Scenario
	Case Study Design and Collected Answers

	Evaluation of the Results
	Can MOTHIA questionnaires help detect modeling errors?
	Does MOTHIA help to reduce the gap between DEs an MEs?

	Correcting the Model from the Experts' Feedback
	Incorrect Information
	Tacit Assumptions
	Semantic Ambiguities
	Unstated Features

	Comparison with the Previous Experience
	Dimensions
	Lessons Learned

	Threats to validity
	Related Work
	Conclusions and Future Work
	Appendix: Results per criterion
	References
	Biographies
	Marco Autili
	Antonia Bertolino
	Guglielmo De Angelis
	Davide Di Ruscio
	Alessio Di Sandro

