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Abstract—Few tone mapping operators (TMOs) take color
management into consideration, limiting compression to lumi-
nance values only. This may lead to changes in image chroma
and hues which are typically managed with a post-processing
step. However, current post-processing techniques for tone re-
production do not explicitly consider the target display gamut.
Gamut mapping on the other hand, deals with mapping images
from one color gamut to another, usually smaller, gamut but
has traditionally focused on smaller scale, chromatic changes. In
this context, we present a novel gamut and tone management
framework for color-accurate reproduction of high dynamic
range (HDR) images, which is conceptually and computationally
simple, parameter-free, and compatible with existing TMOs. In
the CIE LCh color space, we compress chroma to fit the gamut
of the output color space. This prevents hue and luminance
shifts while taking gamut boundaries into consideration. We
also propose a compatible lightness compression scheme that
minimizes the number of color space conversions. Our results
show that our gamut management method effectively compresses
the chroma of tone mapped images, respecting the target gamut
and without reducing image quality.

Index Terms—High Dynamic Range Imaging, Color Correc-
tion, Gamut Mapping, Chroma Compression.

I. INTRODUCTION

High dynamic range (HDR) imaging consists of tools and
techniques to capture, store, transmit and display images
with significantly higher fidelity than can be achieved with
conventional imaging techniques. An important aspect of HDR
imaging involves the reproduction of images on conventional
displays. As in this case the dynamic range of the image can
be much higher than the display device can accommodate,
dynamic range reduction techniques need to be employed [1],
[2].

In many cases, tone reproduction techniques focus on range
compression along the luminance dimension, either leaving
chromaticities unaltered, or treating color management as a
separate problem [3], [4], [5]. In the latter case, algorithms
focus on correcting or improving the appearance of the
tonemapped image. Some HDR color appearance models do
integrate color and luminance management, for the purpose
of predicting the human visual response to a stimulus [6],

Corresponding author. ∗Department of Applied Informatics, Comenius
University Bratislava, Slovakia. E-mail: sikudova@sccg.sk.
†Technicolor Research & Innovation, Rennes, France
‡Department of Computer Science, Applied Mathematics and Statistics,

(GiLab) University of Girona, Spain
§Middle East Technical University, Ankara, Turkey
¶Visual Computing Laboratory, ISTI-CNR, Pisa, Italy

[7]. Such algorithms can be used successfully as display
algorithms, albeit still without appropriate gamut management.

To our knowledge, none of the existing algorithms take the
target color gamut into consideration and as a result often
produce pixel values that cannot be correctly represented or
displayed. Our method aims to combine the color correction
step often necessary after tone mapping with gamut manage-
ment into an integrated HDR gamut management framework
that handles both lightness and chroma compression, while
limiting as much as possible hue shifts and luminance distor-
tion.

There are good reasons why these two dimensions should
be treated in conjunction. First, human vision does not treat
colorfulness separately from luminance values, as evidenced
by the Hunt effect. In essence, lighter objects are seen as
more colorful, and vice-versa. In the context of dynamic
range management, this means that compression of luminances
should be accompanied by a corresponding adjustment of
chroma. Additionally, current consumer display trends are
pushing towards a combined increase in gamut and dynamic
range, necessitating algorithms that can manage both of these
aspects in conjunction.

Second, color spaces are three dimensional, bounded by
their gamut [10]. The gamut spanned by the pixels in an image
may not be matched to that of the target display. In such cases,
gamut mapping involves compensating for differences in size,
shape and location between the image and display gamuts.
This constitutes a mapping from one three-dimensional shape
to another. As the overlap between gamuts is typically large in
conventional gamut mapping scenarios, such algorithms aim
to find a trade-off between moving out-of-gamut pixels inside
the target gamut, while pixels that are already inside the target
gamut are left alone as much as possible.

On the other hand, one-dimensional luminance adjustment,
as achieved by many tone reproduction operators, may create
pixels that lie outside the target display’s gamut (see Figure 1f)
along the chroma channel. These pixels are either typically
not managed or treated with naı̈ve approaches [3] that tend to
over-saturate as shown in Figure 1a.

Our novel gamut mapping framework integrates tone map-
ping with gamut mapping, correcting the colors after dynamic
range compression, while ensuring that images fit within
the target gamut. It does not require calibrated input and
is parameter-free. We accomplish this by transforming the
original HDR image into the CIE L∗C∗h∗ color space, and
then compressing both the lightness and chroma channels
as customary in gamut mapping algorithms. The lightnessDOI: 10.1109/MCG.2015.116 ˜ c©2016 IEEE.
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Fig. 1: An HDR image, shown in (c) in false-color, was tone mapped using the Photographic operator [8] (a) and processed
with our framework (b), a color correction solution [4] (d) and a gamut mapping solution [9] (e). Although the tone mapping
process has successfully compressed the luminance of the image, it has led to an over-saturated appearance and out-of-gamut
pixels (f). Our method corrects both issues, while alternative solutions only handle one of the two.

channel can be compressed with any existing tone mapping
operator, or a scheme similar to our chroma compression can
be applied to lightness as well.

II. RELATED WORK

Reproduction of visual content on devices of different
gamuts is typically divided into two categories, namely gamut
mapping and tone mapping. Traditionally the first class of
techniques deals with mapping the color gamut between
devices, attempting to produce the most accurate reproduction
of colors possible given the restrictions of a given device or
medium [10]. Tone mapping, on the other hand, is primarily
concerned with compressing the luminance range of an HDR
image or video such that the media can be visualized on a low
dynamic range (LDR) display device [1], [2].

In contrast to tone or gamut mapping, color appearance
models (CAMs) predict human visual perception of patches
of color and images. They consider parameters relating to
the scene and viewing environment and as such require ac-
curate measurements as input. These methods can accurately
reproduce the appearance of an image in different devices and
viewing conditions, but do not take gamut boundary issues
into consideration.

Although both tone mapping and gamut mapping research
aim to reproduce images on devices of more limited capabil-
ities, they have remained largely disconnected areas. In this
work, we bring together these two fields (see side-bars) in
a novel gamut management technique that can successfully
compress the chromaticities of high dynamic range (HDR)
images so that they correctly match the compression applied
by any given tone mapping operator.

III. HDR GAMUT MANAGEMENT FRAMEWORK

Our framework incorporates tone mapping, chroma correc-
tion, and gamut management to process an HDR image for
a given output gamut. In this section, we will discuss the
components of our solution in the context of existing dynamic
range compression algorithms. The workflow is shown in
Figure 2.

The input to our pipeline is an HDR image I given in
linear XYZ coordinates. First, the luminance channel of the
image, denoted I(L), is compressed using any existing tone
mapping operator (TMO). The chroma channel I(C) of the
resulting image is then corrected with our chroma compression
algorithm to correct for unwanted saturation due to the tone
mapping process. Finally, image chroma and luminance values
I(C,L) are processed with a gamut management step to
ensure that all pixels fit within the target gamut boundaries,
denoted G(C,L), while minimizing appearance changes in the
image.

A. Luminance Compression
As we want to ensure that our chroma compression and sub-

sequent gamut management steps correct any issues that the
tone mapping process may have caused, the first component of
our framework is the luminance compression. Our framework
has been designed to easily integrate with existing TMOs
and in the following we describe the steps for integrating the
commonly used Photographic operator [8]:
(1) The input HDR is first converted to the color space

expected by the TMO (in this case Y xy).
(2) The tone mapping curve is applied on the luminance Y,

obtaining the compressed value Yc. Both local and global
algorithms can be applied at this point as our framework
poses no restrictions on the type of processing.
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SIDE-BAR: GAMUT MAPPING

Given a color space, a gamut for a device or medium can be thought of as a subspace within the color space, containing the
colors that can be reproduced by that device. A new color that is outside the gamut, cannot be accurately reproduced by the
device. To define how colors outside this gamut should be treated or mapped to the displayable color subset, gamut mapping
techniques may be employed.
Gamut mapping techniques can be categorized as global and spatial. Global techniques can be further classified as clipping and
compression based approaches. Clipping only changes the colors that are located outside of the destination gamut by clamping
them to the boundaries of the destination gamut [10]. Although it has the advantage of preserving within-gamut colors, it is
only a viable solution if the difference between the two gamuts is small. Compression, on the other hand, changes all the
colors of the input gamut to be adjusted into the destination gamut [10]. Different types of compression functions have been
proposed such as linear, piecewise linear, and sigmoidal. Compression is typically performed on both lightness and chroma
components. In contrast to the global approaches, spatial gamut mapping attempts to preserve local information. These methods
will map similar out-of-gamut colors to the same color if they are spatially distant in the image, but to distinct colors if they
share an edge.
Our work aims to extend existing work on gamut mapping for low dynamic range, proposing a gamut mapping management
framework to work directly with HDR input data. This can be either integrated into existing TMOs or be a fully stand alone
solution with its own lightness compression technique for (HDR) luminance values.

SIDE-BAR: TONE MAPPING

Tone mapping is typically used to prepare HDR images for display on LDR display devices. While tone mapping can be
considered a form of gamut mapping, there are important differences. First, tone mapping is generally employed when the
dynamic range of the input image is vastly higher than the dynamic range of the display device. Second, tone mapping is
generally concerned with compressing luminances, while gamut mapping is concerned with compressing perceptual attributes
of lightness and chroma. As such, it is possible that a tone mapped image will contain out-of-gamut colors, which are clipped
to gamut boundaries in an uncontrolled manner.
An additional concern when tone mapping the luminance channel only is that images tend to acquire an over-saturated
appearance either globally or locally, as shown in Figure 1a. Appearance aspects such as saturation and colorfulness of an image
or image patch depend both on the chromatic information and the image luminance. Thus, to fix these color distortions, most
TMOs are augmented with a post processing step that desaturates the image by means of a manually controlled parameter [3],
while psychophysical studies have linked this saturation parameter to the amount of contrast correction computed from the
global tone mapping curve [4]. Alternatively, the amount of (de-)saturation can be computed by comparing the original HDR
input to the tone mapped result [5]. Although these methods can improve the appearance of the tone mapped image, they are
not able to consider the gamut boundaries of the target medium.

(3) The compressed luminance is inserted into the image and
the result is converted back to the XY Z color space.

(4) Finally, the tone mapped image I is normalized, such
that the maximum Y value is 100, to allow for further
processing. In the case of the Photographic operator,
output luminance values are between 0 and 1, and as
such require scaling to the range expected by the color
space used in further processing. This is discussed further
in the following section.

Although this process allows for flexibility in the choice of
luminance compression, it comes at the cost of increased com-
putational complexity due to additional color space transforms,
as existing TMOs are not necessarily designed to operate in
a color space that enables gamut manipulations. As an alter-
native solution, we have designed a compression solution that
follows a similar scheme to our chroma compression method,
which is described in the side-bar “Lightness Compression
using Cusp Alignment”.

B. Gamut Boundary Computation

Our algorithm relies on the idea that to avoid undesired
shifts in chroma and hue, as well as to avoid uncontrolled
clipping for out-of-gamut colors, one should work in a per-
ceptually decorrelated color space where these components are
separated. A natural choice for this is the CIE L∗C∗h∗ color
space, which is the cylindrical representation of CIE L∗a∗b∗
1. These two color spaces are commonly used in traditional
gamut mapping algorithms [10].

To determine the correct compression amount and to assess
whether a given pixel can fit within the output gamut, we
need to know the boundaries of that gamut. In this paper, we
assume that the target gamut is sRGB and as such use a D65
white point when converting to LAB. Our algorithm, however,
can accommodate any alternative gamut and corresponding
white point. The source or input gamut is the set of colors
of the input HDR image. Computing the boundaries of both
gamuts we have followed the methodology described in [10] to
obtain the boundaries of the sRGB gamut in LCh coordinates,

1In the remainder of this document, we will refer to these spaces as LCh
and LAB for brevity.
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Fig. 2: Overview of our framework. The input HDR image (here illustrated with a heat-map of luminance values) is first tone
mapped and then converted to the LCh color space. Chroma values are then filtered using the bilateral filter and the base layer
is compressed. Finally, a gamut clipping step ensures that the compressed chroma and lightness values fit within the target
gamut while minimizing appearance changes. (Red: input, Yellow: Chroma compressed, Green: Final result)

which take the form of a triangular cusp along the chroma-
lightness plane for each hue value. Figure 3 shows the extreme
differences between the source (red) and the target (white)
gamuts that may occur in HDR imaging. Between source and
target, the differences in both lightness and chroma channels
exceed a factor of 10.

Fig. 3: Boundaries of the source gamut (input HDR image -
red) and the target gamut (sRGB color space - white).

C. Chroma Compression
When considering HDR imagery, a large number of pixel

values may be outside the destination gamut in terms of
chroma, generating unwanted hue shifts if clipped in an
uncontrolled manner.

Additionally, it has been shown that tone compression along
the luminance dimension tends to create an over-saturated
appearance in images. This is illustrated in Figure 1. To correct
these issues, we are proposing two methods that compress
the chroma values I(C) in the image in a content-dependent
manner.

1) Hue-Specific Method: This method compresses the
chroma values I(C) in the image using a two step process.
The first step for our algorithm is to determine a scaling factor
Rh for each hue value h = [1◦ . . . 360◦], leading to a vector
R. To achieve that, we scale the gamut boundaries Gh(C,L)
until they enclose all pixels within that hue slice. Formally,
we initialize the scaling factor for a hue slice Rh,0 = 1. If
there are pixels that are out of gamut for that hue slice, at
each iteration step i, we increment the scale factor Rh,i and
scale the gamut boundaries as follows:

Rh,i = Rh,i−1 + d (1)

Gh,i(C,L) =

[
Rh,i 0

0 Rh,i

]
Gh(C,L), (2)

where the increment d is set to a small value (in all the results
in the paper d = 0.1). This process is illustrated in Figure 4a.

While this scaling factor could be applied to the image
values directly to obtain a within-gamut result, in practice,
using the full chroma range of the source gamut would likely
result in extreme compression due to a few outlying pixels
with extremely high chroma. This is a common problem in
luminance compression, where some extremely bright high-
lights may lead to an over-compressed result and is usually
countered by compressing according to a percentile of the
range of values. In the case of chroma, if the compression
takes into account such pixels, the resulting image may be too
desaturated.

To avoid this undesirable effect, we use a percentile of the
chroma range when computing R. We have found that the
percentile value required is content dependent—if the pixels
that require clipping are spread over the image, then a more
aggressive percentile value may be selected. If, however, the
out-of-gamut pixels are concentrated in a small number of
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Fig. 4: Compression scheme presented in this paper for the (a) Chroma compression (Hue-Specific), (b) Chroma compression
(Global) and (c) Lightness compression.

regions, a more gentle approach is necessary to ensure that
no artifacts are created. In practice, we determine the spread
of out-of-gamut pixels by computing the number of connected
regions that they belong to and comparing them to the number
of pixels contained within them. We have found that a ratio
less than 0.01 suggests that the out-of-gamut pixels are within
a few connected regions and therefore further clipping may
lead to artifacts.

To be able to keep fine details without smoothing edges,
the chroma channel of the image I(C) is first processed
with the bilateral filter (σs = 0.2 max(Iwidth, Iheight), σr =
0.05 max(I(C))) obtaining a base layer I(C)base, which is
used in the above computation. Either division or subtraction
can be used to separate the base and detail layers. We have
verified that both methods are leading to similar results so as
we have decided to use the division method for producing the
detail layer I(C)detail = I(C)/I(C)base. Figure 6 (left) shows
how fine details are preserved, i.e. doors of the drawer and
borders of the sink, when bilateral filtering is applied to the
chroma channel.

Even with these measures, small variations in content be-
tween adjacent hue slices may lead occasionally to discontinu-
ities in the final image if Rh is applied directly to each slice.
Smoothing the scaling vector R, to R’, will eliminate these
discontinuities. To achieve this, one can use different type
of smoothing functions. We have used four different smooth-
ing functions: lbox (averaging box), loess (locally weighted
regression), rloess (robust locally weighted regression) and
sgolay (Savitzky Golay). We find that the four smoothing
functions produce results of similar quality, so the simpler
and more computationally efficient function can be used in
our framework (lbox). During the smoothing step, the circular
nature of hues is taken into account. This avoids the creation
of boundaries between the hue angles of 359 and 0.

Finally, image chroma within each hue slice I(C)base,h is
scaled as:

I(C)′base,h =
1

R′h
I(C)base,h (3)

and the detail is re-injected to obtain the chroma-compressed
image I(C)′ = I(C)′base × I(C)detail, where × indicates
an element-wise multiplication. Note that the reciprocal R’

needs to be used for the final compression as R was initially
computed to expand the gamut boundaries until they enclosed
all pixels

Fig. 5: Results using the two chroma compression methods
proposed in this paper and their hue differences maps.

2) Global Method: The hue-specific method described in
the previous section can successfully compress chroma, there-
fore maximizing the use of the available gamut. This however
comes at the cost of increased computational complexity. At
the same time, we may observe that the dynamic range of the
chroma channel is not extremely high, when compared with
the dynamic range of the display gamut. This suggests that a
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linear compression scheme may produce good results as shown
in the hue difference maps of Figure 5. As such, we propose
an alternative but simpler method based on similar premises.
We envisage that the hue-specific method would be suitable
for a post-production pipeline where accuracy is the primary
goal, while the linear method described in this section would
be better suited on the display-side of an imaging pipeline,
where computational resources are limited.

The global method is illustrated in Figure 4(b). In this figure,
the light and dark green triangles represent the source and
destination gamuts respectively for a fixed hue angle. Our goal
is to align the two chroma cusps while maintaining lightness
and hue. In the figure, this would produce the red triangle
which represents the compressed gamut.

Chroma compression is still applied on each hue angle from
0◦ to 359◦. Instead of using different amounts of chroma
compression for each hue however, which requires additional
computations, we compute the minimum of the cusps ratios
across all hues. This value corresponds to the maximum
necessary compression.

Similar to the hue-specific method, chroma compression is
applied to the base layer of the chroma channel. We compress
the source chroma I(C)base,h to yield the compressed chroma
I(C)′base,h as follows:

I(C)′base,h = I(C)base,h min
h∈[0◦,359◦]

[
Cuspd,h
Cusps,h

]
. (4)

where it is noted that this is only a compression when
min

[
Cuspd,h/Cusps,h

]
< 1.

We may face similar issues as in the hue-specific method
when using the full chroma range of the source gamut. This
will produce extremely compressed chroma results in some
cases due to the use of a few outlying pixels with extremely
high chroma values. To avoid this problem, we have adopted
the same percentile approach used for the first method. This
solution avoids over-compression but requires an additional
step for managing the few pixels that may remain outside the
gamut boundary, which is discussed in the next section.

Fig. 6: Results (left) with and (right) without bilateral filtering
decomposition.

D. Gamut Clipping

Since chroma and lightness values are so far processed in-
dependently, we cannot guarantee that all pixels will be within
the target gamut boundaries. This is shown in Figure 7, during
tone mapping pixels are compressed through the lightness
direction. However, pixels are guarantee to have maximum

lightness values equal to 100 nits, but may still be outside
of the target gamut boundaries (red pixels). Applying chroma
compression does not solve this problem (yellow pixels). To
have all pixels within the target gamut boundaries, without
further modifying pixels already in-gamut, a clipping step is
employed. As image pixels may be out of gamut both in terms
of chroma and lightness, as shown in Figure 7, pixel values
need to be clipped along both dimensions creating a trade-off
between changes in lightness or in chroma for each pixel.

Fig. 7: Here we plot the chroma values (x-axis) of pixels within
a hue slice (h = 60◦) against their lightness values (y-axis).
After tone mapping the lightness channel of the image, many
pixels (shown in red) are still outside the gamut boundaries.
Scaling the chroma channel moves pixels closer to the gamut
boundaries (yellow), while the last step in our framework
ensures that pixels are mapped to values within the target
gamut (green). The resulting image after tone mapping is
shown at the top left and after our correction and clipping
step at the bottom left.

Although many proposals exist for defining the clipping
line along which pixels should move, they are designed for
scenarios where the input and target gamuts differ in terms of
chromatic primaries used rather than luminance range. In our
specific case however, we have found that most out-of-gamut
pixels tend to be bright, highly chromatic pixels (red pixels
outside the gamut boundaries in Figure 7).

Because of the narrowing of the cusp near high-L values, a
delicate balance between chroma and lightness adjustments is
necessary to ensure that the resulting image appearance does
not change. This is demonstrated in Figure 8: the area around
the sun either desaturates completely as the lightness values
are near the peak of the cusp (Figure 8a) or it looks too satu-
rated because its lightness is decreased with no corresponding
chroma changes (Figure 8b).

Instead, we propose a middle-ground between these two
extremes. In a given hue slice, for a pixel p ∈ I ′ we
determine a point along the gamut boundaries pclipC such that
pclipC(C) ∈ G(C) and pclipC(L) = p(L). Similarly, a value
pclipL is determined, where pclipL(C) remains unchanged and
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p(L)clipL moves to the gamut boundary. Once these two points
have been computed, linear interpolation is performed to map
the out of gamut pixel to the corresponding gamut boundary
of the destination gamut.

Fig. 8: Three different clipping solutions were used to process
the same image. Since most of the out-of-gamut pixels reside
in the top right corner of the cusp, clipping along only
the chroma direction (a) severely desaturates these pixels. In
contrast, clipping only along the lightness direction (b) leads
to an unnatural, oversaturated appearance. The result of our
interpolated solution is shown in (c), where the image has
maintained a natural appearance while all pixels fit within the
gamut boundaries.

IV. RESULTS

We have validated our technique using several challenging
HDR images, demonstrating its benefits over existing tech-
niques, including gamut mapping solutions, color correction
methods, and color appearance models (CAMs). Additionally,
we show the flexibility of our approach to be used with
existing TMOs, without degradation of the details or intro-
ducing unwanted artifacts. We evaluate the quality of our
reproduction by measuring hue changes as well as through
a psychophysical study comparing our chroma compression
method with alternative techniques. All the results shown in
this section assume sRGB primaries for both input and output.
They have been gamma corrected using the sRGB gamma
correction equation, and use the chroma compression method
specified in Section III-C1.

Our approach can handle challenging images, producing
natural results that preserve details in the image while fitting
within the target output gamut. Figure 1 shows the result of
processing such an image with our framework as well as with
other techniques (see supplemental material for more images).
Existing tone mapping techniques (in this case the Photo-
graphic operator [8]) can effectively compress the luminance
in the image but lead to an oversaturated appearance, with
many pixels still out-of-gamut (e.g., colors of the macbeth
color checker).

Although a gamut mapping solution such as SCACLIP [9]
can control this issue by moving pixels within the gamut
boundaries, it may amplify the appearance of over-saturation
(Figure 1e) or it introduces artifacts as shown in Figure 13.
At the same time, although such a gamut mapping approach
modifies lightness values, it cannot sufficiently compress the

extreme dynamic range of this image if used alone as seen in
Figure 11c.

In contrast, our framework combines the advantages of tone
mapping and gamut mapping (Figure 1b and Figure 11e).
Our solution also allows for flexibility in the choice of
compressive function: different functions can lead to different
image appearances as shown in Figure 10. Despite the very
different tone mapping styles, our chroma correction leads to
a consistent treatment of colors in the images.

Finally, Figure 12 shows a comparison between our chroma
correction and other color correction solutions that are typi-
cally applied as a post-process to tone compression as well as
the result of SCACLIP after tonemapping. Note that the three
color correction methods shown do not consider the gamut
boundaries and therefore may lead to out-of-gamut pixels (in
our experiments, we found that this often includes more than
10% of the image pixels).

A. Hue differences

Ideally, compressing separately lightness and chroma at
fixed hue should not affect hues. To assess whether our algo-
rithm achieves that, we have evaluated our results using color
difference metrics. Typically, color differences are computed
using ∆E color difference metrics, which take into account
both luminance and chromatic differences. In our case, a
metric capable of separating luminance, chroma, and hue is
necessary as we are only interested in preserving the hue while
luminance and chroma are being compressed.

Although color difference measurements are commonly
performed in the LAB color space, it is known that LAB is
not hue-linear across all hues. Instead, we use an optimized
I ′P ′T ′ space for color difference comparisons [13]. This space
is scaled and rotated with respect to IPT such that color
differences in this new space are directly comparable with
other color difference metrics, while preserving hue linearity.

In I ′P ′T ′, a cylindrical space is then computed, where
lightness ∆I ′ and hue ∆h differences can be calculated. We
use ∆h instead of the perceptually scaled CIE ∆H metric,
as the latter scales hue differences by colorfulness to account
for perceptual effects, and is therefore not suitable for our
particular application.

As hue is defined on a circle, we compute ∆h for a given
pair of hues ht and hc as follows:

∆h = min(|ht−hc|, |min(ht, hc) + 2π−max(ht, hc)|) (8)

Figure 14 shows the graph of ∆h computed over 20 images
for the following methods [5], [4], [3] [6]. The methods
have been used to adjust saturation after the luminance
dynamic range has been adjusted to the display capability
using the photographic operator [8]. When using the iCAM06
method [6], the luminance dynamic range is compressed
with its own compression technique. While iCAM06 was
developed to reproduce the correct appearance of colors under
different illumination conditions and in the context of HDR
imaging, it is introducing a large hue shift when compared
with the proposed technique. We note that our method does
not introduce such hue shifts.



IEEE COMPUTER GRAPHICS AND APPLICATIONS 8

SIDE-BAR: LIGHTNESS COMPRESSION USING CUSP ALIGNMENT

Although the main goal of this paper is to present our framework for managing the gamut mismatches that tone mapping
causes in terms of the resulting image chroma, we have found that our approach can be directly extended to compress the
lightness channel, leading to an integrated luminance and color gamut management framework and minimizing the number of
color space conversions necessary. To compress the lightness channel I(L), we process each hue slice separately similar to
the process described in Section III-C. The compression scheme is depicted in Figure 4(c).
Specifically, we follow these steps for each hue slice:
(1) We first find the global parameters that express the maximum vertical (lightness) distance from the destination gamut.

The distance at the top is named SGt and at the bottom SGb (see Figure 4 (c)). Both values are set to 0 when all pixels
of the source gamut are already inside the destination gamut.

(2) The “middle” line Lmid is computed for the cusp of each hue slice by:

Lmid = gb + (gt − gb)
SGb

(SGt + SGb)
, (5)

where gb and gt are the bottom and the top values of the destination gamut. Note that this equation shifts the middle line
toward gb for large SGt, effectively compressing more of the image and toward gt for large SGb, in which case more
pixels are scaled linearly. That is, it adaptively determines a threshold that separates the source gamut into two regions
that can be thought of as “light” and “dark”, with a magnitude for each determined by the ratio SGt:SGb. We treat each
of these regions separately.

(3) In the “light” region, i.e. for points above the Lmid, the lightness is compressed as follows:

I(L)c = at + bt ∗ F (I(L)− Lmid). (6)

The compression factors at and bt are computed by at = Lmid and bt = (1−w)(gt−Lmid)+w(100−Lmid)
N , respectively, where

the normalization factor is N = F (gt + SGt − Lmid) and the weight w is computed as w = I(C)
I(C)+max(G(C)) .

Here F (x) represents a non-linear compression function, which is applied to pixels above Lmid. This could be any desired
tone curve, including for instance sigmoidal compression or basic compressive functions such as roots and logarithms.
Note that Equation 6 compresses the range [Lmid, gt + SGt] to [Lmid, btN + Lmid]. Consequently, pixels with really high
chroma and lightness may be mapped above the gamut boundary, and therefore clipped in the following stage of our
framework. Since the clipping process takes into account both C and L values, this ensures that such pixels will still
remain bright in the final image.

(4) For points below Lmid, linear compression is used:

I(L)c = ab + bb ∗ (I(L)− Lmid). (7)

In this case, the parameters are computed as ab = gb and bb = Lmid−gb
Lmid

.
Note that here we compress the range [gb − SGb, Lmid] to [gb, Lmid]. Our method effectively corresponds to a non-linear
compression with a linear ramp in dark areas. Such a behavior is commonly used in film. In our case however, the gamut
of the image is explicitly considered to guide this compression scheme.

To improve visibility in dark regions, we adopt a similar technique used for the chroma compression by making use of a
percentile and processing I(L) with the bilateral filter before compression. An example of our tone curve for the base layer
compared with other global TMOs is shown in Figure 9 [11], [12], [8].

Fig. 9: Tone curves making use of (blue) our method (HDR Gamut) and three global TMOs - (red) Ashikmin [12] - (green)
Drago et al [11] - (black) Reinhard et al. [8].
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Fig. 10: Shown here are HDR images that were processed with the TMOs by Li et al., Ward et al., Lischinski et al., and
Reinhard et al. The output of the TMOs with no further processing is shown at the top, while the bottom row shows the output
of the TMOs integrated with our chroma compression technique. The rightmost column shows hue differences between the
TMO output and the HDR original (top) and between our corrected result and the HDR original (bottom) for the TMO by
Reinhard et al. Hue differences are reduced for other TMOs as well.

Fig. 11: An HDR image is shown after being processed with different compression solutions. (a) Tone mapped with the
Photographic operator [8] (b) Tone mapped and then processed with the SCACLIP gamut mapping method [9] (c) Processed
only with SCACLIP (d) Processed with iCAM06 [6] (e) Tone mapped and processed with our chroma correction step (f)
Processed with our integrated lightness and chroma compression.

B. Phsychopysical Evaluation

Typically, when compressing the gamut of an image for a
particular display, the goal is to preserve the color appearance
and general quality of the image as much as possible, while
conforming to a more limited gamut. To assess the ability of
our method to preserve image quality despite gamut restric-
tions, we have performed a psychophysical study. We used a
two-alternative forced choice design, with the linearly scaled
HDR reference shown at the same time, allowing us to assess
the fidelity of the color reproduction of the processed images
compared to the HDR input.

There were 13 participants (8 males and 5 females) in this
experiment, who were between 22 and 25 years old, and all
had normal or corrected-to-normal vision as well as normal
color vision. Based on a pilot study comparing our chroma
compression method against the iCAM06 model [6], the
SCACLIP gamut compression method [9], and the correction
methods of Mantiuk et al. [4] and Pouli et al. [5], we opted for
comparing our method against the method of Mantiuk et al. [4]
and the method of Pouli et al. [5] in a complete experiment,
as the remaining methods were significantly less preferred.
We also included the uncorrected tone mapped image in our
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Fig. 12: The tone mapped image (a) was corrected using our
method (b) as well as existing color correction solutions (c,d
and e) [5], [3], [4].These methods aim to correct the over-
saturated appearance resulting from many tone mapping solu-
tions and operate as a post-process on the image, without any
gamut considerations. The result of combining the SCACLIP
gamut mapping method with a TMO is shown in (f).

evaluation which serves as our baseline result.
In our evaluation, the 13 participants viewed the differently

processed results for 6 different scenes in pairwise compar-
isons between the alternative methods and were asked to select
in each case the image that has the reproduction of color
closest to the HDR image, which was shown as linearly scaled
on the same screen. A colorimetric calibrated NEC MultiSync
P241W sRGB monitor was used for this experiment. As it is
not possible to accurately reproduce the HDR ground truth on
this monitor, users could control the exposure for the HDR
image manually, allowing them to more accurately compare
the processed results with the ground truth image.

Detailed results are shown in Figure 15. We performed
significance analysis on the experiment results computing the
χ2 value and agreement coefficient. Overall, the χ2 value was
21.23 with an agreement coefficient of 0.033. At a 0.05%
significance level, the critical χ2 value is 12.59, indicating that
our results are significant. We note however that the agreement
between participants was not very high. By further analyzing
our results for individual images, we observed that participants
agreed in their choices for some images, while agreement was
lower for other images. We also observed that images with
higher agreement were generally more saturated and colorful.
Based on that, we repeated our analysis, but splitting the

Fig. 13: An example showing that the SCACLIP gamut
mapping method [9], integrated with an existing TMO [8] may
introduce artifacts.

Fig. 14: Hue differences and standard error over 20 images for
the two proposed methods as well as alternative techniques.

images into two groups depending on overall saturation: for the
saturated group, χ2 = 53.38 (agreement coeff. 0.315) while
for the less saturated group, χ2 = 6.69 (agreement coeff.
0.002). These results suggest that the benefit of our method is
more visible in more colorful images with higher saturation,
which is to be expected since these images are more likely to
have out-of-gamut pixels.

Overall, we found that although the method of Mantiuk et
al. [4] was chosen significantly fewer times, all other alterna-
tives (our method, method of Pouli et al. [5] and uncorrected
tone mapped only) were not found to be significantly different,
suggesting that our method was found similarly visually pleas-
ing by our participants as the uncorrected tonemapped results,
while allowing for a controlled management of the gamut. As
mapping out-of-gamut pixels inside the available gamut always
presents a trade-off in visual quality, our method could be
expected to offer a somewhat lower visual quality compared
with the method of Pouli et al. [5]. However, our results show
this not to be the case. The advantage of the present method
relative to [5] is therefore the inclusion of unobtrusive gamut
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Fig. 15: (a) Aggregated preference results from our experiment
for the different tested methods. Each matrix cell represents
the number of times the method in each row was chosen over
the method in each column. (b) Average total preference per
method.

management.
Given that both the image and the display color space in

this case was sRGB, gamut management was only necessary
due to potential out-of-gamut issues introduced by the tone
mapping process. The necessity for accurate gamut manage-
ment, however, is likely to increase in the near future given
the current consumer display trends towards higher dynamic
range and wider gamut. The recent standard behind Ultra
HD in particular (ITU-R Rec. BT.2020 [14]), specifies a
considerably larger gamut than the previous widely adopted
ITU-R Rec. BT.709 [15] color gamut, while concurrent pro-
posals are pushing towards defining content at 4000 or even
10000 nits of peak luminance. At the same time, no displays
exist that can achieve a full ITU-R Rec. BT.2020 gamut or
these luminance levels. Consequently, both tone mapping and
gamut management will be necessary to ensure that content is
displayed as intended.

V. CONCLUSIONS

Typically tone mapping compresses the luminance range of
images, while chromatic information is left untouched or is
manually corrected as a post process. On the other hand, gamut
mapping algorithms deal with both luminance and chromatic
information and aim to map images from one gamut to another,
but typically deal with small changes, mostly along the chro-
matic dimensions. In this paper, we show how gamut mapping
techniques can be extended to the HDR domain, when the
transitions between the input and output gamuts are often
very large. We integrate tone mapping, chroma compression,
and gamut management into a single framework that preserves
the appearance of the HDR input, while preventing unwanted
shifts and ensuring that the output image fits within the target
gamut boundaries.

Within our proposed framework, we describe two chroma
compression methods, each best suited for a different part of
the imaging pipeline. We have evaluated our framework using
several tone mapping operators and compared its results with
traditional tone and gamut mapping techniques as well as a
color correction formula to show the ability of our approach to
overcome their drawbacks. We also showed that existing tone

mapping operators can be naturally integrated into our frame-
work, which enables the users to choose different operators
for different applications.
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