
Does code coverage provide a good stopping rule for
operational profile based testing?

Breno Miranda*† Antonia Bertolino†

*Università di Pisa †ISTI - CNR
Largo B. Pontecorvo, 3 - 56127 Via Moruzzi 1 - 56124

Pisa, Italy Pisa, Italy
{firstname.lastname}@di.unipi.it {firstname.lastname}@isti.cnr.it

ABSTRACT
We introduce a new coverage measure, called the operational
coverage, which is customized to the usage profile (count
spectrum) of the entities to be covered. Operational cov-
erage is proposed as an adequacy criterion for operational
profile based testing, i.e., to assess the thoroughness of a
black box test suite derived from the operational profile. To
validate the approach we study the correlation between op-
erational coverage of branches, statements, and functions,
and the probability that the next test input will not fail.
On the three subjects considered, we observed a moderate
correlation in all cases (except a low correlation for func-
tion coverage for one subject), and consistently better re-
sults than traditional coverage measure.

CCS Concepts
•Software and its engineering → Software testing
and debugging; •General and reference → Verifica-
tion; Metrics;

Keywords
Coverage Testing, Operational Coverage, Operational Pro-
file Based Testing, Program Spectra, Relative Coverage

1. INTRODUCTION
While all researchers agree that test coverage measures

can be useful in pinpointing portions of code that have not
been tested, the relation between test coverage and test ef-
fectiveness is highly controversial, and has been the subject
of countless analytical and empirical studies (see, e.g., [4,
24], among the earliest ones). After almost three decades,
the debate on the topic does not seem to decline, and cur-
rent testing research still seeks an answer to questions such
as“Is Branch Coverage a Good Measure of Testing Effective-
ness?”[23]. A recent experiment on large scale [11] concludes
that high coverage measures achieved by a test suite do not

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

AST ’16 Austin, Texas USA
c© 2016 ACM. ISBN 978-1-4503-4151-6/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2896921.2896934

necessarily indicate that the latter also yields high effective-
ness. Thus, generating test cases for coverage as a target
may be risky, as warned from many sides (e.g., [15, 22]).

However, coverage measure used as a supplement to other
non-coverage-based testing methods can be an effective tool
[22], for example to decide whether a test suite derived using
another black-box method is adequate.

This paper goes in this direction and investigates the use
of code coverage measures as a stopping rule for operational
profile based testing.

Operational profile based testing is grounded on the no-
tion that not all faults have the same importance. Depend-
ing on how it will be exercised by the users, a program can
show quite different levels of reliability [14].

On the other side, almost all studies assessing the effec-
tiveness of coverage testing have used as a measure of ef-
fectiveness the faults (or mutations) detected without dis-
tinguishing their probability of failure in use (e.g., [11, 13,
22, 23, 24], just to cite a few). Thus, we still know little
about how coverage testing is related or not to delivered re-
liability [8]. An exception is the study by Del Frate and
coauthors [5], who observed that the relation between cov-
erage and reliability varied widely with subject’s size and
complexity.

All studies made so far (concerned with either faults or
mutants detected or with delivered reliability) considered
traditional coverage measures, which require that all enti-
ties are covered at least once. In other terms, all entities are
considered as having same relevance for the purpose of com-
pleting coverage. This assumption seems contradictory with
the very idea of reliability according to which user’s func-
tions should be exercised more or less frequently accordingly
to user profiles, and in doing this, code entities as well will
consequently be exercised with different frequencies.

In our research, we have been investigating for some time
novel coverage measures that customize coverage to user’s
relevance [16, 18]. In particular, in previous work we dis-
tinguished between relevant entities and not relevant ones
depending on the usage domain.

In this paper, for the first time, we not only distinguish
between relevant and not relevant entities, but also, among
relevant entities, we take into account how much they are
exercised, i.e., we also distinguish entities that are very of-
ten exercised from those that are scarcely exercised. We do
this to reflect the profile of usage into the measure of cov-
erage. Our intuition is that this customized coverage could
better measure the adequacy of an operation profile based
test suite.

http://dx.doi.org/10.1145/2896921.2896934

Profiling of code entities according to different usage pro-
files is referred to as program spectra [10]. The idea of using
program spectra in software engineering tasks is not new:
program spectra have been used, among others, for regres-
sion testing [25] and fault localization [1]. To the best of
our knowledge, however, our research is the first attempt to
tune coverage measures based on program spectra, for the
purpose of reflecting the importance of program entities.

The preliminary results we obtained seem to sustain our
intuition that spectra-based coverage may be taken as a
stopping rule for operation profile based testing, better than
traditional coverage. Such conclusion can be most usefully
applied when the developer can leverage field data collected
from profiling usage of the instrumented software (like the
scenario described in [20]). Our proposed coverage measure
may improve scalability of automated testing based on field
data, because it provides an evaluation of test thoroughness
that is customized to the usage profile, and thus testing re-
sources can be better calibrated.

In summary, the contributions of the paper include:

• a novel method to measuring code coverage that ex-
ploits program spectra: this is the first time that code
entities are profiled in order to customize test coverage

• the design of the first of its kind study of using (opera-
tional profile based) coverage as an adequacy criterion
for operational profile based testing (black box)

The rest of the paper is structured as follows: in the next
section we introduce operational coverage. Then in Section 3
we present the design of the validation study and in Section
4 we illustrate and discuss the results. Related work and
Conclusions sections complete the paper.

2. OPERATIONAL PROFILE BASED
COVERAGE

Our proposed approach is meant to provide a practical
stopping rule for operational profile based testing. An op-
erational profile provides a quantitative characterization of
how a system is used [19]. Software testing based on the op-
erational profile ensures that testing resources are focused
on the most frequently used operations, and thus maximizes
the reliability level that is achievable within the available
testing time [19]. So, it can be a good testing strategy when
safety is not an issue.

As we start from the assumption that the developer adopted
an operational profile based testing strategy, we also can as-
sume that either an operational profile is derived by domain
experts during the specification stage, or that, as schema-
tized in Figure 1, this profile is obtained from real world
usage, e.g., by monitoring field data by means of an infras-
tructure such as Gamma [21].

If this developer selects a test suite from the operational
profile, how can they decide whether the test suite is ade-
quate and testing can be stopped, or otherwise more test
cases should be derived? (see Figure 1) This is where our
approach can help. It foresees two main steps:

1. Classify the entities according to their importance to
the operational profile under testing

2. Calculate operational coverage based on the impor-
tance of the entities covered

Collect

count spectra

Success /

Failure

Run

test suite

Add more

test cases

OK?
Classified

entities

Op.

coverage

Op.

test suite

3

4

5 6

7
N

Y

2

1

Figure 1: Overview of the approach

We rate the importance of entities based on their fre-
quency of usage, i.e., we make use of program spectra [10].
A program spectrum characterizes a program’s behavior by
recording the set of entities that are exercised as the pro-
gram executes. In this work we investigated coverage of
three types of entities and correspondingly adopted three
types of spectra:

• Branch-count spectrum (BCS): for each condi-
tional branch in a given program P , the spectrum in-
dicates the number of times that branch was executed.

• Statement-count spectrum (SCS): for each state-
ment in a given program P , the spectrum indicates the
number of times that statement was executed.

• Function-count spectrum (FCS): for each func-
tion in a given program P , the spectrum indicates the
number of times that function was executed.

Based on the spectra, we then classify the entities (step 1
of our approach) into different importance groups. In this
work we used three groups: high, medium, and low, but
other different groupings could be decided. To cluster enti-
ties into group, again, different methods could be applied.
In this first investigation we opted for ordering the list of
entities according to their frequency and assigning the first
1/3 entities to the high frequency group; the second 1/3
entities to the medium frequency group; and the last 1/3
entities to the low frequency group. Surely, the importance
of a given entity could be assigned in many different ways
and the effect of choosing one approach or another should
be investigated in future work.

We calculate operational coverage (step 2) by computing
the weighted arithmetic mean of the rate of covered entities
according to Equation 1 below. Again, we observe that there
exist many other different ways in which we could calculate
operational coverage and Equation 1 is just one of the many
possibilities.

OC =

n∑
i=1

xiwi (1)

where:

n = number of importance groups (3 in this paper)
xi = the rate of covered entities from group i
wi = the weight assigned to group i

In this work we assigned the weights for the importance
groups (the wi of Equation 1) in such a way that the medium
group is three times more important than the low, and the
high group, on its turn, is three times more important than
the medium one.

3. EXPLORATORY STUDY
In this section we discuss the settings of our exploratory

study. We focus on the following research question:

RQ: Does operational coverage provide a good adequacy cri-
terion (stopping rule) for operational profile based testing?

3.1 Study Subjects
In order to carry out our exploratory study and to inves-

tigate our research questions in a realistic setting, we looked
for subjects in the Software-artifact Infrastructure Reposi-
tory (SIR) [6]. SIR contains a set of real, non-trivial pro-
grams that have been extensively used in previous research.
For selecting our subjects, the only prerequisite was that
they should contain faults (either real or seeded ones) and a
test suite associated with them.

We considered three subjects — grep, gzip, and sed — as
these are frequently used in academia for software testing
research. grep is a command-line utility that searches for
lines matching a given regular expression in the provided
file(s); gzip is a software application used for file compression
and decompression; and sed is a stream editor that performs
basic text transformations on an input stream. grep and gzip
are available from SIR with 6 sequential versions (1 baseline
version and 5 variant versions with seeded faults) whereas
sed contains 8 sequential versions (1 baseline version and 7
variant versions with seeded faults). Because each version
contains a different number of seeded faults, for this first
exploratory study we selected, from each subject, the version
that contained the highest number of faults that could be
revealed by our test pool (detailed next). We then proceeded
with version 3 of grep, version 4 of gzip, and version 2 of
sed. Because we adopted only one version of each subject,
throughout the rest of this paper we refer to them by the
subjects’ names only without reporting the version.

Table 1 provides some additional details about the study
subjects. Column “LoC” shows the lines of code1 of each
subject. The meaning of the last two columns is explained
later on.

Table 1: Details about the study subjects considered
in our investigations

Sub. Ver. LoC
Seeded

faults
Failing
test cases

Faults
revealed

grep v3 10124 18 1664 5
gzip v4 5233 12 1638 5
sed v2 9867 5 3195 4

Total: 25224 35 6497 14

3.2 Operational Profile
Operational profiles can be defined in many different ways.

Here, following [19], we express it as the list of operations
that are expected to be invoked by users along with their
associated occurrence probabilities. Ideally it is developed
during system specification with the participation of the sys-
tem experts (e.g.: system engineers, designers, etc) and do-
main experts (e.g.: analysts, customers, etc). Because such
an ideal operational profile was not available for the sub-
ject systems we investigated, we ourselves defined the opera-
tional profile for each subject. We accomplished this task by
1Collected using CLOC (http://cloc.sourceforge.net/).

getting acquainted with the system (after carefully reading
the user manual for the version of the subject being investi-
gated) and by following Musa’s stepwise approach [19]. For
experimental purposes, we stopped the process of creating
the operational profile just before assigning the occurrence
probabilities for each operation identified, as these are taken
as an independent variable of our study.

Table 2 displays an excerpt of the list of operations we
identified for grep. A graphical version containing the full
list of operations identified (grouped according to different
usage paths) is available at http://bit.ly/op grep.

Table 2: List of operations identified for grep
ID Description

Op001 Look for a single pattern in a single input file

Op002
Look for multiple patterns, obtained from a file,
in a single input file

.

Op191
Interpret the pattern as a list of fixed strings and
match any of them

Op192
Interpret the pattern as an extended regular ex-
pression and print the number of matching lines

3.3 Study Settings
Besides the study subjects obtained from SIR and the sub-

jects’ operational profiles developed by ourselves, for each of
the three investigated subjects we also created a few addi-
tional artifacts required for our study. Some of them were
derived once and for all:

Test Pool. For each subject investigated we created a test
pool containing 10k test cases uniformly distributed among
the operations in the subject’s operational profile.

Fault Matrix. For each subject considered we run the set
of 10k test cases over the baseline version first (the one with-
out any faults enabled), and then over the faulty versions of
that subject. To get a precise mapping of which test cases
would reveal which faults we compile one faulty version for
each seeded fault available. For grep, for example, we have
one baseline version and 18 faulty versions, which accounts
for 190k test cases run to generate the fault matrix. The
second last column and the last column of Table 1 refer to
the results of running the set of 10k test cases over the stud-
ied subjects: they display the number of failing test cases
and of seeded faults that could be revealed, respectively.

Operation Matrix. Each test case in the test pool is cre-
ated for a specific operation in the operational profile and
this mapping (test case, operation) is stored in the operation
matrix.

Other artifacts, on the other hand, were created on a “per
observation” basis. For each subject, we made 500 obser-
vations, each one related to a different operational profile.
More precisely, for each observation we derived the following
artifacts:

Customized Operational Profiles. For deriving a cus-
tomized operational profile we randomly select an arbitrary
number of operations and randomly assign their respective
occurrence probabilities in a way that the sum of the indi-
vidual probabilities is equal to 1.

http://cloc.sourceforge.net/
http://bit.ly/op_grep

Count Spectra. For each customized operational profile
we derived three different spectra: the branch-count, the
statement-count, and the function-count spectrum. In or-
der to do so, we exercise the subject with randomly gener-
ated test cases that are derived according to the operations
and their respective occurrence probabilities defined in the
customized operational profile. Observe that this set of ran-
domly generated test cases is completely separated from the
test pool previously introduced.

We also used the gcov2 and lcov3 utilities for collecting
accurate coverage metrics, and our own code to automate
the majority of the steps followed during this study.

3.4 Tasks and Procedures
For each subject (and for each one of the 500 customized

profiles created per subject) the following tasks are per-
formed:

1. We carry out operational profile based testing by se-
lecting the next test case to be run (from the 10k set)
according to the occurrence probabilities defined in the
customized operational profile.

2. After each test case is run, we calculate:

(a) the traditional coverage achieved

(b) the operational coverage achieved (calculated ac-
cording to Equation 1)

(c) the probability of failure for the next test case, θ

The coverage metrics (items 2a and 2b) are calculated for
the three adequacy criteria considered in this study and we
stop testing if none of them increase after a sequence of 10
test cases.

We illustrate the way we calculate the probability of fail-
ure (item 2c) through a simple example pointing to the ar-
tifacts described in Section 3.3:

Customized operational profile: we assume a very sim-
ple profile including only four operations: Op1 with
occurrence probability Pr = 0.6, Op2 with Pr = 0.3,
Op3 with Pr = 0.1, and Op4 with Pr = 0.0.

Test pool: by construction, the test pool contains the
same amount of test cases for each operation in the
operational profile. For this example, we assume the
test pool contains 2500 test cases per operation

Fault matrix: we assume only one fault, Fault 1, and
that from the Fault matrix we can see it is revealed by
100 test cases in the 10k pool

Operation matrix: from the operation matrix we can
match operations to fault-revealing test cases (in the
fault matrix). We assume we get: 50 failing test cases
for Op1, 30 for Op2, 0 for Op3, and 20 for Op4.

Then, when no test case has been run, the probability that
the next test will fail is:

θF1
=

(50× 0.6) + (30× 0.3) + (0× 0.1) + (20× 0)

2500
= 0.0156

Of course, when more faults exist, θ is the overall sum of
the individual probability of failure for each fault.
2https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
3http://ltp.sourceforge.net/coverage/lcov.php

4. STUDY RESULTS
A summary of the output of the tasks described in Sec-

tion 3.4 is displayed in Table 3. The second column shows
the span variations in the number of test cases required for
performing operational profile based testing for each sub-
ject while the third column presents the average number
of test cases among the 500 customized operational profiles
created for our study. As we can see, for all the subjects,
testing stopped after around 60 test cases. The biggest span
variation happened for gzip with some operational profiles
requiring as few as 13 test cases to complete testing, whereas
other profiles required 136 tests; sed had the smallest vari-
ation with the number of test cases ranging from 15 to 98.

Table 3: Average traditional and operational cover-
age achieved per subject

Sub.
#TCs
span

Avg.
#TCs

Branch Statement Function
trad. oper. trad. oper. trad. oper.

grep 24 to 116 64 24.7 86.3 42.4 89.2 61.5 92.5
gzip 13 to 136 56 39.9 79.3 52.0 85.4 60.3 95.5
sed 15 to 98 51 29.5 95.5 48.3 96.2 71.3 98.1

Average: 57 31.3 87.0 47.6 90.3 64.4 95.3

Table 3 also displays the average traditional and opera-
tional coverage achieved grouped by different adequacy cri-
teria. In this table, “trad.” and “oper.” stand for tradi-
tional coverage and operational coverage, respectively. Op-
erational coverage achieved higher coverage values in all the
cases. This was expected because, by construction, opera-
tional coverage targets only a subset of the entities for each
operational profile, which increases the chances of providing
high coverage values.

Figure 2 shows, for all the subjects and coverage criteria
investigated, the average traditional and operational cov-
erage achieved as the number of test cases increases. The
x-axes display the number of test cases while the y-axes
represent the coverage achieved. In this figure, traditional
coverage and operational coverage are represented by the
continuous line and the dashed line, respectively. For each
test case n, its equivalent point in the curve represents the
average coverage (of the 500 customized profiles) achieved
after n test cases. Notice that not all the profiles finished
after the same amount of test cases. For this reason it is
possible to see, for gzip in particular, some fluctuation in
the curve when the number of test cases gets close to the
maximum number of tests required for that product.

From the graphs, the main observation is the fact that the
curve of operational coverage rises sharply and achieves high
coverage values even after just a few test cases. This happens
due to the combination of two facts: (i) the most frequently
exercised entities contribute more for the computation of
the coverage achieved (because of the weight assigned to
the high frequency group); and (ii) the operational profile
based testing strategy selects test cases that cover the most
frequent entities first.

4.1 Answer to the Research Question
To answer our research question we computed, for both

traditional and operational coverage, the correlation between
the coverage achieved and the probability that the next test
case will not fail (1 − θ, which is the reliability of the next

https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
http://ltp.sourceforge.net/coverage/lcov.php

grep

b
ra

n
c
h

 c
o
ve

ra
g

e
 (

%
)

0 20 40 60 80 100 120

0
2

0
4

0
6

0
8

0
1

0
0 gzip

0 20 40 60 80 100 120 140

0
2

0
4

0
6

0
8

0
1

0
0 sed

0 20 40 60 80 100

0
2

0
4

0
6

0
8

0
1

0
0

s
ta

te
m

e
n

t
c
o
ve

ra
g

e
 (

%
)

0 20 40 60 80 100 120

0
2

0
4

0
6

0
8

0
1

0
0

0 20 40 60 80 100 120 140

0
2

0
4

0
6

0
8

0
1

0
0

0 20 40 60 80 100

0
2

0
4

0
6

0
8

0
1

0
0

number of test cases

fu
n

c
ti
o

n
 c

o
ve

ra
g

e
 (

%
)

0 20 40 60 80 100 120

0
2

0
4

0
6

0
8

0
1

0
0

number of test cases
0 20 40 60 80 100 120 140

0
2

0
4

0
6

0
8

0
1

0
0

number of test cases
0 20 40 60 80 100

0
2

0
4

0
6

0
8

0
1

0
0

Traditional Coverage
Operational Coverage

Figure 2: Average traditional and operational coverage achieved as the number of test cases increases

invocation). For doing so, we adopted the Kendall τ correla-
tion coefficient. Kendall τ is similar to the more commonly
used Pearson coefficient but it does not require the vari-
ables to be linearly related or normally distributed. By using
Kendall τ we avoided introducing unnecessary assumptions
about the distribution of the data.

As Kendall τ measures the similarity of the orderings of
the data when ranked by each of the variables, a high cor-
relation means that one can predict the rank of the impor-
tance of the faults revealed given the rank of the coverage
achieved, which in practice is nearly as useful as predicting
the absolute importance of the faults revealed.

Table 4 displays the Kendall τ correlation between the
coverage achieved and the probability that the next test case
will not fail, grouped by the different coverage criteria inves-
tigated. For interpreting the data in accordance with [11],
we use the Guildford scale, in which correlations with abso-
lute value less than 0.4 are described as “low”, 0.4 to 0.7 as
“moderate”, 0.7 to 0.9 as “high”, and over 0.9 as “very high”.

Table 4: Kendall τ correlation between coverage and
1− θ (all entries are significant at the 99.9% level)

Subject
Branch Statement Function

trad. oper. trad. oper. trad. oper.

grep 0.37 0.40 0.38 0.41 0.39 0.35
gzip 0.41 0.45 0.44 0.46 0.39 0.44
sed 0.39 0.50 0.40 0.52 0.35 0.47

Average: 0.39 0.45 0.41 0.46 0.38 0.42

As we can see, operational coverage yielded better corre-
lation coefficients than traditional coverage for the vast ma-

jority of the cases (we highlight in bold the cases in which
operational coverage performed better than traditional cov-
erage). The only exception was for grep when considering
the function adequacy criterion, in which traditional cov-
erage achieved a correlation coefficient of 0.39 and opera-
tional coverage produced 0.35 (statistically, they were tied
as both achieved low correlation). This was the only case
in which operational coverage yielded low correlation. For
the remaining cases, operational coverage always achieved
moderate correlation and, in 5 out of the 9 cases, it was
statistically significant better than traditional coverage (not
tied in the same correlation group).

Traditional coverage achieved moderate correlation 3 times
and in all the cases it was statistically tied with operational
coverage, if we consider the correlation group; if we consider
the absolute correlation coefficient achieved, though, it was
always defeated by operational coverage.

4.2 Discussion and Threats to Validity
The exploratory study showed that in the majority of the

cases operational coverage is statistically better than tra-
ditional coverage as an adequacy criterion for operational
profile based testing. In the following we further discuss
potential costs and benefits of the approach.

On the costs of the approach. The cost of classifying
the entities according to their importance (the first step of
our approach) will depend on how the operational profile is
derived. For the case advised in Figure 1 in which the oper-
ational profile can be derived by monitoring field data, the
count spectrum (bullet 3 in Figure 1) required for defining
the relevance of the entities might even be readily available,
or otherwise can be obtained by using mining techniques to
capture the frequencies of the entities that are being exer-
cised by the users.

Regarding the cost of computing the operational coverage
(bullet 6 in Figure 1), as for any coverage criterion, oper-
ational coverage presupposes that the code is instrumented
so to allow the identification of the entities exercised. So the
cost of applying the operational coverage equation is com-
parable to any other coverage metric.

Operational coverage vs. traditional coverage. Op-
erational coverage may be particularly helpful for test suite
augmentation. After the developer has derived the test suite
to verify a given program, two main things could happen: (i)
for all the code exercised by the program’s users there exist
at least one test case in the test suite that covers that code;
or (ii) there exist some code exercised by the program’s users
for which there does not exist any test case in the test suite.

Operational coverage would acknowledge the former case
by yielding 100% coverage. For the latter case, it would pro-
vide an assessment of the extent to which the derived test
suite is adequate to that specific operational profile. More-
over, it would also provide the precise portions of code that
are actually exercised by the program’s users and that are
not covered by the test suite, guiding the test suite enhance-
ment process towards the real usage of the program.

Regarding traditional coverage, for the case (i), if the test
suite does not achieve 100% traditional coverage — probably
the case — the developer cannot tell whether or not all the
code that is relevant to the program’s users has been covered.
Similarly, for case (ii) traditional coverage does not help the
developer unless they are willing to augment the test suite
until 100% traditional coverage is reached, which may be
impractical even for small programs.

Operational coverage as selection criterion. Even
though we believe that operational coverage may be a promis-
ing approach for operational profile based test case selection
as well, its adoption may not be as straightforward as it was
for adequacy criterion. One of the issues is that of collat-
eral coverage: by mapping white-box entities to existing test
cases there could be the risk of selecting test cases that cover
the target entity but that are not related to the target oper-
ation. This could result in selecting not relevant test cases
in the derived test suite. To overcome this effect, some fairly
sophisticated selection approach that takes into account not
only the relevance of the entities to be covered, but also the
way the candidate test cases cover those entities, needs to
be devised. We plan to investigate this as part of our future
work.

The exploratory study results should be interpreted by
keeping in mind the following potential threats to validity:

Subject representativeness: In this work we investigated
the proposed operational coverage on three C programs from
the SIR repository. Additional studies using a range of di-
versified subjects should be conducted for better represen-
tativeness.

Subjects’ operational profile: Because the subjects’ oper-
ational profiles were not readily available, we had to develop
them ourselves. It is possible, then, that the set of opera-
tions we identified is not a complete list of operations that
could be performed by real users. We controlled this threat
by carefully reading the subjects’ documentation to under-
stand well how they could be used before developing the
operational profiles.

Customized profiles representativeness: We derived the
customized operational profiles by randomly selecting the

target operations and their respective occurrence probabil-
ities, which may have results into unrealistic profiles. To
control this threat, we created 500 customized operational
profiles for each subject investigated expecting that the ef-
fect of possible unrealistic profiles would be minimized with
a big number of observations. Moreover, since both met-
rics (traditional and operational coverage) are captured for
each customized profile, we do not see how such threat could
produce different impacts on our evaluations in a systematic
way, and thus influence the results biased to the benefit of
one approach or another.

Faults representativeness: The subjects considered in our
study contained seeded faults and subjects with real faults
might yield different results. Control for this threat can be
achieved only by conducting additional studies using sub-
jects with real faults.

Operational coverage calculation: The operational cov-
erage is influenced by parameters that allow a high level of
customization: the importance assigned to the entities, the
weight assigned to the importance groups, and the equa-
tion itself. Control for this threat can be achieved only by
conducting additional studies using different configurations.

5. RELATED WORK
Code coverage criteria occupy a large part of software test-

ing literature [9, 26]. Many authors aim at finding novel
criteria that subsume existing ones or that improve fault-
finding effectiveness. Here, we do not propose yet another
coverage criterion by identifying a new type of control-flow
or data-flow entity to be covered. We propose instead that
the entities to be covered (even basic ones, such as function,
statement or branch) be weighted based on their relevance
according to a usage profile.

Our research is inspired by the idea of relative coverage
originally defined in [3]. In our previous work [16, 18, 17] we
distinguished between relevant and not relevant coverage,
which amounted to give entities either a 1 or 0 weight, i.e.,
we used a hit spectrum. In this paper for the first time we
considered frequency of coverage and accordingly propose to
weight entities using a count spectrum.

As discussed in the introduction, the effectiveness of cover-
age criteria is still a very active research topic [22, 11, 13].
However, the studies evaluating the effectiveness of cover-
age measures consider the faults (or mutations) has having
same importance, and do not take into account their respec-
tive probability of failure. Considering the possible impact
of faults detected, as we do here, provides a more meaning-
ful picture when the software under test is going to be used
under different profiles.

Program spectra[10] have been used extensively in soft-
ware analysis. Beyond the original application in program
optimization [2], more recently code profiling information
has been used to analyze the executions of different versions
of code, e.g. in regression testing [25], and to compare traces
of failed and successful runs in fault diagnosis [1]. Here we
propose to exploit traces information to tune coverage mea-
sures onto the usage profile. This is a novel application of
spectra in operational profile based testing that has never
been tried, and could be exploited in many ways.

Modern pervasive and interconnected networks and huge
advances in potential to collect and analyze big data make it

thinkable that developers continue testing and maintenance
of deployed software by exploiting usage profiling informa-
tion. This requires the establishment of proper infrastruc-
tures [21], but can provide many opportunities for improved
testing and analysis techniques [7]. For example, in [20] field
data are exploited for impact analysis and regression testing;
in [12] field failures data are used to support in-house debug-
ging and fault localization. Our approach is one among the
many opportunities provided by field data to improve test-
ing techniques.

6. CONCLUSIONS AND FUTURE WORK
We have introduced operational coverage, which measures

code coverage taking into account whether and how the enti-
ties are relevant with respect to a user’s operational profile.
Our study showed that operational coverage is better cor-
related than traditional coverage with the probability that
the next test case derived according to the user’s profile will
not fail.

Operational coverage is the very first attempt to tune cov-
erage testing based on program count spectra. In particu-
lar, here we used a simple approach to map count spectrum
of branches, statements, and functions into a coverage mea-
sure. However, we believe that the very idea introduced here
paves the way to exploring many other powerful measures.
In Section 4.2 we have already pointed out several directions
for future research, in particular more empirical studies are
of course required, and potential usage of spectra-based cov-
erage for test selection seems an interesting challenge.

7. ACKNOWLEDGMENTS
Breno Miranda wishes to thank the Brazilian National

Council for Scientific and Technological Development (CNPq)
for providing his scholarship grant.

8. REFERENCES
[1] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J.

Van Gemund. A practical evaluation of
spectrum-based fault localization. Journal of Systems
and Software, 82(11):1780–1792, 2009.

[2] T. Ball, P. Mataga, and M. Sagiv. Edge profiling
versus path profiling: The showdown. In Proc. 25th
Symp. on Principles of Prog. Languages, POPL’98,
pages 134–148, New York, NY, USA, 1998. ACM.

[3] C. Bartolini, A. Bertolino, S. Elbaum, and
E. Marchetti. Whitening SOA testing. In Proc.
ESEC/FSE ’09, pages 161–170. ACM, 2009.

[4] V. Basili and R. Selby. Comparing the effectiveness of
software testing strategies. IEEE Trans. Softw. Eng.,
SE-13(12):1278–1296, Dec 1987.

[5] F. Del Frate, P. Garg, A. Mathur, and A. Pasquini.
On the correlation between code coverage and
software reliability. In Proc. 6th Int. Symposium on Sw
Reliability Engineering, pages 124–132, Oct 1995.

[6] H. Do, S. G. Elbaum, and G. Rothermel. Supporting
controlled experimentation with testing techniques:
An infrastructure and its potential impact. Empirical
Software Engineering, 10(4):405–435, 2005.

[7] S. Elbaum and M. Diep. Profiling deployed software:
Assessing strategies and testing opportunities. IEEE
Trans. Softw. Eng., 31(4):312–327, Apr. 2005.

[8] P. Frankl, R. Hamlet, B. Littlewood, and L. Strigini.
Evaluating testing methods by delivered reliability.
IEEE Trans. Softw. Eng., 24(8):586–601, Aug 1998.

[9] P. G. Frankl and E. J. Weyuker. An applicable family
of data flow testing criteria. IEEE Trans. Softw. Eng.,
14(10):1483–1498, 1988.

[10] M. J. Harrold, G. Rothermel, R. Wu, and L. Yi. An
empirical investigation of program spectra. In Proc.
PASTE ’98, pages 83–90, 1998.

[11] L. Inozemtseva and R. Holmes. Coverage is not
strongly correlated with test suite effectiveness. In
Proceedings of the 36th International Conference on
Software Engineering, pages 435–445. ACM, 2014.

[12] W. Jin and A. Orso. F3: fault localization for field
failures. In Proc. ISSTA, pages 213–223. ACM, 2013.

[13] P. Kochhar, F. Thung, and D. Lo. Code coverage and
test suite effectiveness: Empirical study with real bugs
in large systems. In Proc. SANER, pages 560–564,
March 2015.

[14] M. R. Lyu et al. Handbook of software reliability
engineering. IEEE computer society press CA, 1996.

[15] B. Marick. How to misuse code coverage. In Proc. 16th
Int. Conf. on Testing Comp. Sw., pages 16–18, 1999.

[16] B. Miranda. A proposal for revisiting coverage testing
metrics. In ACM/IEEE International Conference on
Automated Software Engineering, ASE’14, pages
899–902, 2014.

[17] B. Miranda and A. Bertolino. Social coverage for
customized test adequacy and selection criteria. In 9th
International Workshop on Automation of Software
Test, AST 2014, pages 22–28, 2014.

[18] B. Miranda and A. Bertolino. Improving test coverage
measurement for reused software. In 41st Euromicro
Conference on Software Engineering and Advanced
Applications, SEAA 2015, pages 27–34, 2015.

[19] J. D. Musa. Operational profiles in software-reliability
engineering. Software, IEEE, 10(2):14–32, 1993.

[20] A. Orso, T. Apiwattanapong, and M. J. Harrold.
Leveraging field data for impact analysis and
regression testing. In Proc. ESEC/FSE-11, pages
128–137. ACM, 2003.

[21] A. Orso, D. Liang, M. J. Harrold, and R. Lipton.
Gamma system: Continuous evolution of software
after deployment. In Proc. Int. Symp. on Sw. Testing
and Analysis, ISSTA ’02, pages 65–69. ACM, 2002.

[22] M. Staats, G. Gay, M. Whalen, and M. Heimdahl. On
the danger of coverage directed test case generation.
In FASE’12, pages 409–424. Springer, 2012.

[23] Y. Wei, B. Meyer, and M. Oriol. Is branch coverage a
good measure of testing effectiveness? In Emp. Sw.
Eng. and Verification, pages 194–212. Springer, 2012.

[24] W. Wong, J. Horgan, S. London, and A. Mathur.
Effect of test set size and block coverage on the fault
detection effectiveness. In Proc. 5th Int. Symposium on
Software Reliability Engineering, pages 230–238, 1994.

[25] T. Xie and D. Notkin. Checking inside the black box:
regression testing by comparing value spectra. IEEE
Trans. Softw. Eng., 31(10):869–883, Oct 2005.

[26] H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit
test coverage and adequacy. ACM Comput. Surv.,
29(4):366–427, Dec. 1997.

