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Partition-Based Clustering using Constraint
Optimization

Valerio Grossi, Tias Guns, Anna Monreale, Mirco Nanni, and Siegfried Nijssen

Abstract Partition-based clustering is the task of partitioning a dataset in a number
of groups of examples, such that examples in each group are similar to each other.
Many criteria for what constitutes a good clustering have been identified in the liter-
ature; furthermore, the use of additional constraints to find more useful clusterings
has been proposed. In this chapter, it will be shown that most of these clustering
tasks can be formalized using optimization criteria and constraints. We demonstrate
how a range of clustering tasks can be modelled in generic constraint programming
languages with these constraints and optimization criteria. Using the constraint-
based modeling approach we also relate the DBSCAN method for density-based
clustering to the label propagation technique for community discovery.

1 Introduction

Clustering [15] is the data analysis task of grouping sets of object. It is an unsu-
pervised task, meaning that no information is known about the true grouping of the
objects. In general, the goal is to find clusters whose objects are similar to each other
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while different from the objects in the other clusters. Clustering can lead to better
insights into data and to discoveries of previously unknown groupings.

Many different clustering settings have been studied in the literature. The focus
of this chapter is on partition-based clustering. In partition-based clustering, the
clustering must form a partition, that is, each object can only belong to one cluster.
This is in contrast to for instance hierarchical clustering, where clusters form a tree
in which one cluster can be a subset of another cluster.

An important aspect in partition-based clustering is the scoring function that is
used to determine the quality of a clustering. In the literature many different methods
for calculating the quality of a clustering have been proposed. A range of popular
partition-based methods are based on the concept of a cluster prototype. Prototype-
based techniques evaluate clusters based on the distance of points in the cluster to
the prototype. These approaches provide clusters having spherical shapes. Other
approaches consider the diameter of the clusters, or their distance to other clusters.
Density-based techniques (e.g. DBSCAN) discover clusters of any shape, and are
designed for discovering dense areas surrounded by areas with low density, typically
formed by noise or outliers.

Another aspect of clustering methods is which constraints they support. Con-
straints can be used to specify additional requirements on the clusters that need to
be found. The most well-known of such requirements are the must-link and cannot-
link constraints, which specify that certain data points should or may not be clustered
together [18, 3].

In this chapter, we will show that many of these clustering problems can be for-
malized as generic constraint optimization problems. Consequently, generic con-
straint optimization solvers can be used to address a wide range of clustering prob-
lems. One motivation for the use of generic constraint optimization techniques in
this context is the large number of choices that need to be made in defining a clus-
tering setting. Central questions are here:

• how do we define the coherence of a cluster?
• how do we define the number of clusters that we wish to find?
• what other properties must the clusters satisfy?

While such constraints and optimization criteria may sometimes be added in spe-
cialized techniques, generic techniques that allow for the specification of such con-
straints and optimiation criteria would be applicable more widely.

Within this chapter, we will distinguish two types of partitioning-based clustering
settings: direct and indirect methods. These settings differ in how the number of
clusters is determined. The direct methods require that a user specifies the number of
clusters explicitly by setting a parameter k, which can be interpreted as a constraint
on the number of clusters. For indirect methods, the number of clusters is indirectly
specified through constraints on the coherence of a cluster; more clusters are created
if a smaller number of clusters would not be sufficiently coherent [1].

We first discuss the direct approaches based on a parameter k (Section 2), fol-
lowed by the indirect approaches (Section 3). Here, Section 2 first introduces sev-
eral optimization criteria and then outlines common user-specified constraints in
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clustering. Different modeling choices are presented and demonstrated on a range
of clustering problems.

The section on indirect approaches (Section 2) shows how clusters can also be
modeled as separated regions of high data density. This corresponds to the princi-
ple behind the DBSCAN algorithm. Furthermore, we draw a link between this data
clustering task and the mechanism of Label Propagation as used in community de-
tection in graphs.

2 Direct Methods

Characteristic for direct methods is that users need to specify the number of clusters
in advance by means of a parameter k. These methods will subsequently focus on
finding a good clustering with this number of clusters.

Of crucial importance is then how to evaluate the quality of one cluster. Here,
several approaches are possible.

The most studied and applied approaches are those in which a cluster prototype is
identified. Every cluster is represented by a prototype called the centroid of the clus-
ter. Two popular algorithms employing this approach are K-means and K-medoids.
In K-means each centroid represents the average of all points in the cluster, while in
K-medoids the centroid is the most representative actual point in the cluster.

Other approaches do not identify an explicit prototype, but evaluate all pairwise
distances between points in the cluster, or evaluate the pairwise distances between
points inside and outside the cluster.

From an algorithmic perspective, most algorithms for finding clusters are heuris-
tic. K-means and K-medoids are good examples. Given a user-specified value k,
these algorithms select k initial centroids. Successively each point is assigned to
the closest centroid based on a distance measure. Finally, the centroids are updated
iteratively based on the points assigned to the clusters. This process stops when
centroids do not change.

In this chapter, we take a step back from this algorithmic view and look at the un-
derlying optimisation problems that clustering methods are trying to solve. We first
describe the different optimization criteria that can be used, followed by constraints
that can be put on clusters or the entire clusterings.

In the following, we assume given a set of data points D of size n. Each point p
is represented by an m-dimensional vector. A cluster C is a set of points: C⊆D, and
a clustering C is a partitioning of the data into clusters: ∀C ∈ C : C ⊆ D,

⋃
C∈C C =

D,∀C1,C2 ∈ C : C1∩C2 = /0. Note that we consider non-overlapping clusters here.
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2.1 Optimization Criteria

Intuitively, a clustering consists of clusters that are coherent and whose data points
are similar to each other; on the other hand we also expect the clusters (and data
points therein) to not be similar to the other clusters [15].

There are many different ways to characterize how good a clustering is, by mea-
suring the (dis)similarity of its clusters and data points. We identify a number of
these measures below. Each measure can be used as an optimisation criterium to
find a ‘good’ clustering according to this measure.
Sum of squared inter-cluster distances. Given some distance function d(·, ·) over
points, for example, the Euclidean distance, we can measure the sum of squared
distances within each cluster as follows:

∑
C∈C

∑
p,q∈C,p<q

d2(p,q) (1)

Here we assume that p < q iff data point p is before point q in the database; this
ensures that every pair of points is considered only once.
Sum of squared error to centroid. A more common approach is to measure the
“error” of each cluster, that is, the distance of each point in the cluster to the mean
(centroid) of that cluster.

We compute the centroid of a cluster by computing the mean of the data points
that belong to it:

zC = mean(C) =
∑p∈C p
|C|

(2)

Here, we assume that the points p are represented as vectors and traditional vector
algebra is used. The sum of squared error is then measured as:

∑
C∈C

∑
p∈C

d2(p,zC) (3)

Note that this is identical to the sum of all pairwise distances between the points of
a cluster, divided by the size of that cluster: ∑C∈C ∑p,q∈C,p<q d2(p,q)/|C|.

Sum of squared error to medoids. Instead of using the mean (centroid) of the
cluster, one can also use the medoid of the cluster, that is, the point that is most
representative of the cluster. Let the medoid of a cluster be the point with smallest
average distance to the other points:

yC = medoid(C) = argmin
y∈C

∑
p∈C

d2(p,y). (4)

The sum of squared error to the medoids is then measured as follows:
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∑
C∈C

∑
p∈C

d2(p,yC) (5)

Cluster diameter. Another measure of coherence is to measure the diameter of the
largest cluster, where the diameter is defined as the largest distance between any
two points of a cluster. This leads to the following measure of maximum cluster
diameter:

max
C∈C

max
p,q∈C,p<q

d(p,q) (6)

One can imagine other variants such as the sum of diameters.

Inter-cluster margin. The margin between two clusters is the minimal distance
between any two points that belong to the different clusters. The margin gives an
indication of how different the clusters are from each other (e.g. how far apart they
are). This can be optimized using the following measure of minimum inter-cluster
margin:

min
C,D∈C

min
p∈C,q∈D

d(p,q) (7)

2.2 Constraints

Using constraints for defining data mining tasks guarantees a high level of expres-
sivity, since adding new constraints on the required output is quite easy and natu-
ral. Constraints typically specify background knowledge that the user has about the
clustering. A famous example [18] is that clusters should group cars in lanes, and
hence one can derive that some objects can certainly not be in the same cluster (e.g.
when known to be driving side-by-side) while others certainly are (when driving in
tandem).

The above example is an illustration of instance-level constraints, that is, con-
straints between specific points. Must-link constraints require that two points be-
long to the same cluster, while Cannot-link constraints require that two points be-
long to different clusters [18]. A Must-link constraint on two points p and q is ex-
pressed by: ∀C ∈ C : p ∈ C↔ q ∈ C; while a Cannot-link constraint is expressed
by: ∀C ∈ C : p ∈C→ q /∈C.

Another type of constraints is cluster-level constraints [9]. The ε-constraint or
maximal diameter constraint requires that the diameter of a cluster is at most ε , that
is, each two points in a cluster are at most ε apart. This can also be formulated as
requiring that each pair of points p and q that is further apart cannot be together in
the same cluster: ∀p,q : d(p,q)> ε→ (∀C ∈C : p∈C→ q /∈C). The δ -constraint
or minimal margin constraint requires that two points belonging to different clusters
have to be at least δ apart. Alternatively formulated: any two points that are closer
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than δ must belong to the same cluster: ∀p,q : d(p,q) < δ → (∀C ∈ C : p ∈C↔
q ∈C).

Other user-defined constraints can be expressed [7]. One can impose constraint
on the clusters size, e.g. requiring clusters with a minimum or maximum number
of points. Constraining the number of points to be minimum or maximum α is
expressed as: ∀C ∈ C : |C| ≥ α and ∀C ∈ C : |C| ≤ α.

Furthermore, any of the measures introduced in the previous section on opti-
mization criteria can also be constrained to take a value within a certain interval.
Other variants and combinations of these constraints can be employed as well, such
as disjunctions of constraints or conditional must-link and cannot-link constraints.
One can add constraints that certain individual clusters must be similar or different
from predefined sets of points, or add soft constraints such as a bound on the number
of points that can have a cannot-link constraint [2].

The complexity of adding constraints to (k-means) clustering has been studied
in [10]. A general overview of constraint-based methods in clustering is available in
the book ”Constrained Clustering: Advances in Algorithms, Theory, and Applica-
tions” [3]. Furthermore, the chapter “Data Mining & Constraints: an Overview” of
this book provides several references to using constraints in data mining tasks also
for clustering.

2.3 Modeling clustering as constraint optimization

A constraint optimization problem P= (V,D,X , f ) consists of variables V , a domain
D that lists the possible values the variables can take, a set of constraints X over V
and an optimization function f over V that must be minimized or maximized.

Building on the primitives introduced earlier, many well-known clustering prob-
lems can now be modelled as follows, for a given optimization criterion quality(C ):

maximizeC quality(C ), (8)

s.t.

C1∩C2 = /0 ∀C1,C2 ∈ C (9)

|
⋃

C∈C
C|= n (10)

|C |= k (11)

Here n is the total number of points. In this setting, the number of clusters to be
found is fixed and has to be k.

Note that the model above uses a set notation for the clusters. Not all constraint
solvers support sets; set variables may not always be the most efficient representa-
tion either. For these reasons, an encoding of the sets in variables of other types is
sometimes necessary. There are various ways to model these sets, as well as differ-
ent solving techniques that can be used on these models. We differentiate between
three kinds of approaches:
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• Constraint formulations that can directly be solved by most state-of-the-art con-
straint programming systems;

• Formulations that require an extension of a Constraint Programming system;
• Hybrid approaches with a specialized system that can deal with a range of clus-

tering problems, but no other problems.

We will discuss these possibilities in more detail below.

2.3.1 Constraint solving formulations

To use constraint programming systems off-the-shelf, an important question that
needs to be answered is how to encode a clustering in such systems. Next to a
set-based notation, several representations have been proposed. We will use these
representations to construct clustering models in the next section:

• a Boolean representation, in which a variable ait with domain {0,1} takes value
1 iff point i (with 1 ≤ i ≤ n) is in cluster t (with 1 ≤ t ≤ k), and takes value 0
otherwise. Constraints

k

∑
t=1

ait = 1

for all points i ensure that a point is in only one cluster [14];
• a Boolean representation, in which a variable at with domain {0,1} takes value 1

iff possible cluster t (with 1≤ t ≤ 2n, i.e. each possible cluster is given an index)
is in the clustering; constraint ∑

2n

t=1 at = k ensures exactly k possible clusters are
selected and constraints

2n

∑
t=1

[i ∈Ct ]at = 1

ensure that every point i is in exactly one chosen cluster; here [i ∈Ct ] is an indi-
cator that takes value 1 iff point i is in possible cluster t [16, 11];

• an integer representation, in which a variable ai with domain {1, . . . ,k} indicates
that point i (with 1≤ i≤ n) is in cluster ai [8];

• an integer representation, in which a variable gi with domain {1, . . . ,n} identifies
the point with the smallest index that is in the same cluster as point i; note that
gi = i iff there is no point j < i in the same cluster as point i [7].

An important benefit of the first Boolean representation is that it is easy to formalize
additional constraints in this representation. A Must-link constraint on two points pi
and p j is expressed by a set of ait = a jt constraints, where 1≤ t ≤ k; a cannot-link
constraint is expressed by: ∀t ∈ {1, . . . ,k} : ait + a jt ≤ 1. A size constraint can be
expressed by:

∀t ∈ {1, . . . ,k} :
n

∑
i=1

ait ≥ α

∀t ∈ {1, . . . ,k} :
n

∑
i=1

ait ≤ α.
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A drawback of this representation is that additional constraints are required to
ensure that a point is not in two clusters; this is not necessary in the integer repre-
sentations.

The second Boolean representation has as most important drawback that its num-
ber of variables is very large. One way to address this is to limit the number of
possible clusters apriori; ideas for this were presented in [16].

The main difference between the integer representations is that in the second rep-
resentation the indexes of representative points are used to identify clusters, while
in the first cluster indexes are used. In the second representation the number of clus-
ters is not fixed; to achieve a fixed number of clusters, additional variables c j with
domain {1, . . . ,n}, where 1≤ j ≤ k, can be used, with the constraints:

• gc j = c j for all clusters j, i.e., variable c j points to the identifying point for each
cluster;

• ∑
k
j=1[gi = c j] = 1 for each point i; this ensures that each point i also belongs to

one of the k clusters identified by c.

A remaining challenge is how to represent the optimization criterion. In many
cases, additional variables are needed. This is illustrated for a number of cases be-
low.

K-medoid clustering

In k−medoid clustering, an important aspect is that we need to identify the cluster
medoids. One approach is to represent these medoids using Boolean variables mi j,
where 1≤ i≤ n and 1≤ j≤ k; these variables indicate whether a point is the medoid
of a cluster or not. Constraints enforce that each cluster has only one medoid.

The optimization criterion then becomes:

n

∑
i=1

n

∑
j=k

ai j

n

∑
h=1

mh j d(pi, ph)
2

This leads to the overall optimization problem below:

minimize
a,m

n

∑
i=1

n

∑
j=k

ai j

n

∑
h=1

mh j d(pi, ph)
2 (12)

s.t.
k

∑
j=1

ai j = 1 ∀i ∈ {1, . . . ,n} (13)

N

∑
i=1

mi j = 1 ∀ j ∈ {1, . . . ,k} (14)

Hence, this model assumes that both the assignment of points to clusters and
the actual medoids are discovered by the constraint programming system. Note that
this model does not explicitly constrain the medoid to its cluster, as in an optimal
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solution, the chosen centers need to be medoids for their cluster in order to minimize
the optimization criterion.

Furthermore, this model does not impose additional constraints. Constraints such
as those discussed in Section 2.2 can be added to the model without modification.

Sum of squared inter-cluster distances

This clustering setting has been modeled in constraint programming using the in-
teger representation where each variable gi points to the ‘identifying’ point of the
cluster, e.g. its point with smallest index [7]. The sum of squared inter-cluster dis-
tances is then expressed as:

∑
i, j∈{1,...,n},i< j

[gi = g j]d2(pi, p j)

Using variable c j to represent the identifying point of cluster j, where the identi-
fying point is the point with smallest index, this leads to the following constraint
specification:

minimize
g,c ∑

i, j∈{1,...,n},i< j
[gi = g j]d2(pi, p j), (15)

s.t.

gi ≤ i ∀i ∈ {1, . . . ,n} (16)

gc j = c j ∀c ∈ {1, . . . ,k} (17)
k

∑
j=1

[gi = c j] = 1 ∀i ∈ {1, . . . ,n} (18)

c j < c j′ ∀ j, j′ ∈ {1, . . . ,k}, j < j′ (19)

c1 = 1 (20)

Equation 16 ensures that either it is the smallest (identifying) point of its cluster, or
gi points to another (smaller) identifying point. Equation 17 materializes the concept
of identifying point in a variable c j. The identifying point’s index is the cluster
identifier, so gc j = c j. This constraint is known in the constraint solving literature as
an element constraints. The last two constraints are symmetry breaking constraints.

Maximal diameter and minimal margin

The same integer representation with identifying points has been used to model the
problem of minimizing the maximal diameter and maximizing the minimal mar-
gin [7].

The main difference is the optimization criterion. Instead of computing the max-
imal diameter or minimal margin explicitly and optimising this, it is possible to
constrain each pair of points individually. Let D be a new variable representing the
maximum diameter, then each pair of points pi, p j that is further than d apart may
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not be in the same cluster: d(pi, p j) > D→ (gi 6= g j). The model is shown below
and shares a number of constraints with the previous model [11]:

minimize
D,g,c

D, (21)

s.t.

d(pi, p j)> D→ (gi 6= g j) ∀i, j ∈ {1, . . . ,n} (22)

Equations 16. . .20 in the previous model

Maximizing the minimal margin is specified in a similar way [11]:

maximize
M,c,g

M, (23)

s.t.

d(pi, p j)< M→ (gi = g j) ∀i, j ∈ {1, . . . ,n} (24)

Equations 16. . .20 in the above model

Squared error to the centroids (K-means)

K-means aims to find non-overlapping clusters that minimize the sum of squared
errors to the centroid of the cluster. As pointed out earlier, one formulation of the

optimization criterion is ∑
C∈C

∑
i, j∈|C|,i< j

d2(pi, p j)

|C|
. While we could model this with

the Boolean or integer representations used so far, the division in this optimization
criterion creates a non-linearity that makes the problem a lot harder to solve.

Instead, we can use the approach in which we have 2n Boolean variables at , i.e.,
a variable for each possible cluster. Let m be an n by 2n matrix of Boolean values,
where each column is a cluster with mit = 1 if data point pi is in cluster t and
mit = 0 otherwise. For each cluster t, the squared error to the centroid can then be
precomputed as

ct =
∑

n
i=1 mit ∑

n
j=i+1 m jtd2(pi, p j)

∑
n
i=1 mit

Using these costs, the problem can be formulated as follows [11]:

minimize
a ∑

t∈T
at ct , (25)

s.t.

∑
t∈T

at mit = 1 ∀i ∈ {1, . . . ,n} (26)

∑
t∈T

at = k (27)

where T = {1, . . . ,2n} denotes all possible clusters. Equation 25 is the sum of the
squared errors to the centroid of all clusters that are selected (e.g. at = 1). Equation
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26 states that each data point must be covered exactly once. Hence it enforces both
that the clusters are not overlapping and that all points are covered. Equation 27
finally ensures that exactly k clusters are found.

2.3.2 Extending constraint solvers

The previous subsection introduced how to model many clustering problems using
generic constraint programming formulations. These formulations can be decom-
posed into low-level constraints such as sum, (in)equality and implication. Such
constraints are supported by most CP systems.

While correct, however, these decompositions and the corresponding propaga-
tion of the low-level constraints is often not efficient. To improve the performance
one of the possible approaches is to add global constraints to these CP systems,
which implement specialized propagation methods for specific constraints.

For example, Thi-Bich-Hanh et al [6] introduced a global constraint for the sum
of squared inter-cluster distances:

∑
i, j∈{1,...,n},i< j

[gi = g j]d2(pi, p j) (28)

In a standard constraint solver, this constraint is decomposed by introducing aux-
iliary variables bi j ↔ [gi = g j] and having a linear sum constraint over these bi j:
s = ∑i, j∈{1,...,n},i< j bi jvi j, where vi j = d2(pi, p j) are precomputed constants.

Instead, the authors introduce a global constraint for the entire Equation 28,
which can reason over the fact that each point can only belong to one cluster. In
this way, a tighter lower bound on the sum can be computed than when using the
standard decomposition.

Computing this tighter lower bound is achieved by splitting the sum into three
distinct cases: a) cases for which gi and g j are already assigned, b) cases for which
gi or g j is assigned, but not the other one, and c) cases for which both gi and g j are
not assigned. Case a) can be deterministically computed. For case b), for each point,
the minimum value is chosen among all existing clusters to which this point could
be added. For case c) a clever heuristic is used to compute a lower bound based on
the minimum number of possible connections that must still be added to obtain k
clusters.

Apart from adding global constraints, efficiency improvements can typically also
be obtained by adding redundant constraints or by breaking symmetries in the con-
straint formulation. Another important aspect is the order in which to search over the
variables and their possible values. For example, one could use a furthest-point-first
heuristic [7, 13].
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2.3.3 Hybrid approach: column generation

Further problems of efficiency are posed by models that introduce an exponential
number of variables, having one variable for each potential cluster. Global con-
straints can not solve this problem.

One approach to solve this challenge is to lazily add candidate clusters until the
optimal subset of clusters is found. This is the idea behind column generation in In-
teger Linear Programming. This was first investigated for minimum sum of squared
error clustering by DuMerle et al [11] and later extended to support additional con-
straints by Babaki et al [2].

The core idea is to only consider a subset of the clusters in the set T of the above
model, and to relax the at variables such that they can take on real values instead
of being Boolean. This problem is called the restricted master problem. Solving the
restricted master problem can be done with standard (integer) linear programming
solvers, and one obtains a real-valued solution to at . Then, using the dual values
of this solution, one can search for the best cluster (column) to add, that is, the
cluster that can best improve the objective function. This is called the subproblem
and is typically done with a specialized method. If no such column can be found,
the solution of the restricted master problem is also a solution of the original master
problem [11].

A key observation in [2] is that most constraints considered in constraint-based
clustering are constraints on individual clusters. Consequently, these constraints do
not change the (restricted) master problem; they only affect the set T and hence
the definition of the subproblem. Babaki et al. [2] have devised a method to solve
the subproblem directly while taking must-link and cannot-link constraints into ac-
count, as well as other anti-monotone constraints such as cluster size and overlap
constraints.

3 Indirect Methods

The approaches presented in Section 2 require to know in advance the number of
clusters to be found. Moreover, they tend to provide clusters that are sphere-shaped.
Unfortunately, in a number of real applications, the data points are grouped into non-
spherical regions or regions that are quite dense surrounded by areas with low den-
sity, typically formed by noise. From this perspective, clusters can also be defined
implicitly as regions of higher data density, separated from each other by regions of
lower density. The price for this flexibility is a difficult interpretation of the obtained
clusters. One of the most famous clustering algorithms based on the notion of den-
sity of regions is DBSCAN [12]. This algorithm does not rely on an optimization
algorithm however, and in this chapter we present a constraint programming formu-
lation (Section 3.1). Using this formulation, we show how re-defining this task as a
community discovery problem in a network, this approach becomes very similar to
the label propagation approach that finds clusters of nodes in networks [17].
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3.1 Density-based Clustering

Density-based clustering is based on measuring the data density at a certain region
of the data space and then defining clusters as regions that exceed a certain density
threshold. The final clusters are obtained by connecting neighboring dense regions.
Figure 1 shows an illustrative example in a two-dimensional space. Four groups are
recognized as clusters and they are separated by an area where the data density is
low.

Fig. 1 Example of density-based clusters [4].

DBSCAN. DBSCAN [12] locates regions of high density that are separated from
one another by regions of low density. The approach identifies three different classes
of points:

Core points. These points are in the interior of a density-based cluster. A point is
a core point if the number of points within a given neighborhood around the point
as determined by the distance function and a user- specified distance parameter,
ε , exceeds a certain threshold, MinPts, which is also a user-specified parameter.
Border points. These points are not core points, but fall within the neighborhood
of a core point. A border point can fall within the neighborhoods of several core
points.
Noise points. A noise point is any point that is neither a core point nor a border
point.

The DBSCAN algorithm works as follows:

1. Label all points as core, border, or noise points.
2. Eliminate noise points.
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3. Put an edge between all core points that are within ε of each other.
4. Make each group of connected core points into a separate cluster.
5. Assign each border point to one of the clusters of its associated core points.

Below we introduce the constraint programming model for this clustering prob-
lem.

Constraint Programming Model for Density Based clustering

We reformulate the problem in the context of networks by considering the set of
points D as nodes and setting an edge between two nodes i and j if the distance
between the two points is less than a given ε . Clearly, in this way we have that the
neighbors of a node (point) i are the set of points within a distance ε . Our intended
objective is to capture the basic idea that “each node has the same label as all of its
neighbors”. Therefore, the problem can be modelled as follows:

maximize(∑
j∈L

min(1,∑
i∈D

ki, j)), (29)

s.t.

ai, j =

{
1 if d(i, j)≤ ε

0 otherwise ∀i, j ∈ D (30)

ki, j ∈ {0,1} ∀i ∈ D,∀ j ∈ L (31)

ri =

{
1 if ∑ j∈D ai, j ≥ minp
0 otherwise ∀i ∈ D (32)

∑
j∈L

ki, j = 1 ∀i ∈ D (33)

rh = 1∧ rp = 1∧ah,p = 1∧ kh, j = 1⇒ kp, j = 1 ∀h ∈ D,∀r ∈ D,∀ j ∈ L
(34)

ri = 0⇒ ki, j = 1 ∀i ∈ D (35)

where

j = min({ j ∈ L\{n+1}|
∃h : ah,i = 1∧ rh = 1∧ kh, j = 1}∪{n+1})

In more detail this model can be described as follows. Boolean variables ki, j denote
the color of a point (node i), by setting ki, j = 1 if the point i has the color j. Variables
ai, j indicate the presence or absence of an edge between two nodes. Variables ri
denote whether node i is a core point or not.

Assumed given are: (a) the set of points D, and (b) the ordered set of colors
L = {1, . . . ,n}. Note that in the set of colors we have the color n + 1 that is an
additional color used for coloring the noise points. The model imposes that a point
has one and only one color, and that all the connected core points must have the
same color (Equation 34). Another requirement is that each point that is not a core
point takes the same color of the core points that are connected to it. If it does not
have any core point around it then this point takes the additional color n+1 because
it is a noise (Equation 35). Such a constraint also captures the special case in which
the point i can be connected to more than one core with different colors. In this case,
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the model assigns to i the color of the core that in the ordered set C \ {n+ 1} has
a lower rank. Finally, the model is intended to maximize the number of different
colors. Notice that a solution where all points have distinct colors does not satisfy
Equation 34 because connected points do not have the same color.

This constraint programming formulation makes it easy to extend the standard
method with other constraints. In principle, any constraint that requires to merge
clusters as identified by DBSCAN can be added to the model above. As an example,
we could specify constraints on the minimum cluster size: in this case, clusters will
need to be merged in order to obtain a required cluster size; by enforcing a diameter
constraint on the resulting clusters, it can be ensured that the resulting clusters are
not arbitrary combinations of clusters as identified by traditional DBSCAN.

Moreover, we can also extend the above problem by changing one of the con-
straints of the standard formulation. In the following, we will show that by changing
a constraint of the DBSCAN formulation we obtain a problem that corresponds to
one of the most famous algorithms for discovering communities in network data.

3.2 Label Propagation

When considering graph or network data, a task very similar to clustering is commu-
nity discovery, which can be seen as a network variant of standard data clustering.
The concept of a “community” in a (web, social, or informational) network is intu-
itively understood as a set of individuals that are very similar, or close, to each other,
more than to anybody else outside the community [5]. This has often been trans-
lated in network terms into finding sets of nodes densely connected to each other
and sparsely connected with the rest of the network. An interesting community dis-
covery algorithm is the Label Propagation algorithm [17] that detects communities
by spreading labels through the edges of the graph and then labeling nodes accord-
ing to the majority of the labels attached to their neighbors, iterating until a general
consensus is reached.

Before introducing a constraint programming model for this algorithm we recall
the details of the iterative label propagation algorithm presented in [17].

Iterative Label Propagation (LP). Suppose that a node v has neighbors v1,v2, . . . ,vk
and that each neighbor carries a label denoting the community that it belongs to.
Then, v determines its community based on the labels of its neighbors. [17] as-
sumes that each node in the network chooses to join the community to which the
maximum number of its neighbors belong to. As the labels propagate, densely con-
nected groups of nodes quickly reach a consensus on a unique label. At the end of
the propagation process, nodes with the same labels are grouped together as one
community. Clearly, a node with an equal maximum number of neighbors in two or
more communities will take one of the two labels by a random choice. For clarity,
we report here the procedure of the LP algorithm. Note that, in the following Cv(t)
denotes the label assigned to the node v at time (or iteration) t.
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1. Initialize the labels at all nodes in the network. For any given node v, Cv(0) = v.
2. Set t = 1.
3. Arrange the nodes in the network in a random order and set it to V .
4. For each vi ∈ V , in the specific order, let Cvi(t) = f (Cvi1(t − 1), . . . ,Cvik(t − 1).

Function f here returns the label occurring with the highest frequency among
neighbors and ties are broken uniformly randomly.

5. If every node has a label that the maximum number of its neighbors has, or t hits
a maximum number of iterations tmax then stop the algorithm. Else, set t = t +1
and go to (3).

The drawback of this algorithm is the fact that ties are broken uniformly ran-
domly. This random behavior can lead to different results for different executions
and some of these results cannot be optimal. In Figure 2 we show how given the
same network as input of the LP algorithm we obtain four different results.

Fig. 2 The result of four executions of LP Algorithm

In the next section we propose a constraint programming model that solves this
problem by providing the optimal solution.
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3.2.1 Constraint Programming Model for Label Propagation

Let us now propose a constraint programming model for the community discovering
problem based on label propagation. Our aim is to capture the basic idea that “each
node takes the label of the majority of its neighborhood”. Therefore, the model is
the following:

maximize(∑
j∈L

min(1, ∑
i∈N

ki, j)), (36)

s.t.

ai, j =

{
1 if (i, j) ∈ E
0 otherwise (37)

ki, j ∈ {0,1} (38)

∑
j∈L

ki, j = 1 ∀i ∈ N (39)

ni,h = ∑
∀ j:ai, j=1

k j,h ∀i ∈ N,∀h ∈ L (40)

ki,l = 1⇒ ni,l = max
h∈L

ni,h ∀i ∈ N,∀l ∈ L (41)

Here, variables ai, j indicate the presence or absence of an edge between two
nodes. Variables ki, j denote the color (label) of a node in the network. Assumed
given is (a) the set of nodes N, (b) the set of edges E, and (c) an ordered set of
colors L. A node can be assigned one and only one color. Variables ni,h denote the
number of neighbors of node i with assigned color h. The model assigns to the node
i the color h if it is the most popular among its neighbors, as shown in Equation 41.
Such a constraint also captures the case of ties. In such a case, node i is assigned the
color that has the lowest rank in the ordered set L. Finally, the model maximizes the
number of different colors in the network, as shown in Equation 36.

This model highlights the similarity between Label Propagation and the Density-
based clustering problem, and thanks to the constraint programming formulation we
can note that the model for density-based clustering is a variant of the standard label
propagation. Indeed, the only difference is due to the fact that the Density-based
model requires that “each node has the same label of all its neighbors”, and not
the most frequent label. Equations 34 and 35 in the DBSCAN model and Equation
41 in the LP model express this difference. By executing our model we obtain the
optimal solution depicted in Figure 3, where we consider as input the same network
in Figure 2.

4 Conclusions

In this chapter, we have presented how different well-established approaches to
partition-based clustering can be modeled and optimized via constraints. In par-
ticular, we investigated two main families of partition-based methods, i.e. direct
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Fig. 3 The result of the execution of CP-LP model

and indirect. In this perspective, the chapter has presented several examples where
the clustering methods are explicitly modeled by constraints. In this way, it has
parted from the more traditional algorithmic view on clustering. We discussed dif-
ferent optimization criteria and constraints, showed different modeling choices for
direct methods and related the indirect methods of DBSCAN and label propagation
through a constraint formulation.
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