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Gibbs Sampling with JAGS: Behind the Scenes

Gianpaolo Coro∗

Abstract. Gibbs sampling is a Bayesian inference technique that is used in var-
ious scientific domains to generate samples from a certain posterior probability
density function, given experimental data. Several software implementations of
Gibbs sampling exist, which generally adopt very different approaches, because
it is not easy to make a Gibbs sampling implementation exactly correspond to
the theoretical approach. In particular, these implementations may use different
approximation algorithms to find solutions to sub-steps of the Gibbs sampling
process. Scientists working in different domains often use Gibbs sampling soft-
ware without knowing the details of the implementation. Nevertheless, it is our
experience that understanding the implementation can be crucial to enhance the
performance of a model, because a software configuration conceived to help the
underlying implementation may end in better approximation of the estimated
probabilities functions. JAGS (Just Another Gibbs Sampler) is a widely used
open-source implementation of Gibbs sampling. Its installation and user’s guide
are accurate, but do not indicate how the software really implements Gibbs sam-
pling and it is not easy to infer this information from the source code. The aim of
this paper is to give a high-level overview of the JAGS algorithms and its exten-
sions that implement Gibbs sampling. Our target reader is a scientist who may
want to understand the basic concepts underlying Bayesian inference and Gibbs
sampling and who want to be aware of what happens behind the scenes when
building a model.

MSC 2010 subject classifications: Gibbs sampling, JAGS, Bayesian Inference,
Markov Chains.

1 Introduction

Gibbs sampling is a technique for statistical inference that is used in several scientific
domains. It produces samples from a posterior distribution conditioned on the observed
data and thus allows to obtain final estimates of a model parameters. Gibbs sampling
is used in many scientific domains, where prior knowledge is combined with observed
data. For example, it has been used in marine science to estimate the health status of a
fisheries stock (Froese et al., 2014), in computational biology to decipher DNA sequences
(Lawrence et al., 1993), in financial applications (Eraker, 2001) and in medicine (Gilks
et al., 1993).

Gibbs sampling can be implemented in several ways and the available software dis-
tributions (e.g. Best et al. (1995), Thompson et al. (2003), Spiegelhalter et al. (1996),
Anders (2013)) generally adopt different approaches in their implementations. Further,
it is not easy to make the theory correspond to one practical implementation, and re-
alisations in many cases mix additional algorithms with the Gibbs sampling process.
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2 Gibbs Samp. with JAGS

As a result, a Gibbs sampling software if often used as a black box after a model has
been configured. Instead, using a Gibbs sampling software being aware of what happens
behind the scenes is important, especially when models become complex, have many
parameters or need fine-tuning. Our assumption, supported by experience, is that un-
derstanding how a Gibbs sampling software works may result in better models (Coro,
2014; Froese et al., 2016; Rosenberg et al., 2014), which is also supported by general
approaches to statistical inference (Breiman et al., 2001).

JAGS (Just Another Gibbs Sampler, Plummer (2003), Plummer (2011)) is an open-
source implementation of Gibbs sampling that has been used in several experiments
(Froese, 2013; Juntunen et al., 2014; Thorson et al., 2014). JAGS extends the standard
Gibbs sampling process, using further algorithms to sample from the target posterior
distribution. This software is endowed with a complete installation and user’s documen-
tation, and is also usable in the R programming language where it has accumulated a
large number of dependencies. Unfortunately, documentation gives no indication about
JAGS internal working. Books and papers exist that focus on the essentials of mod-
elling using Gibbs sampling (Depaoli et al., 2016; Lunn et al., 2012; Ntzoufras, 2011)
and sometimes also explain background mechanisms of particular implementations (e.g.
WINBUGS, Lunn et al. (2000)). Instead, in the case of JAGS this background informa-
tion is scattered across manuals, tutorials or dozens of R packages (e.g. Su and Yajima
(2012), Plummer (2013)) that make it difficult to concretely understand the underlying
mechanisms. Further, although the JAGS source code is accessible, concretely under-
standing how JAGS implements Gibbs sampling at a higher level than C++ coding is
not easy, also because JAGS users are usually R programmers or are not computer sci-
entists. For example, this may be of interest to a statistician who wished to understand
the general rationale behind the implementation, e.g. (i) which representation corre-
sponds to the configured model, (ii) how the software samples from functions with very
complex forms, (iii) if the implementation is able to manage complex models containing
many prior distributions and few likelihoods. Understanding these details is important,
for example to implement penalty functions that avoid the variables estimations to fall
in some ranges of values (Froese et al., 2016; Plummer, 2008).

The scope of this paper is to explain Gibbs sampling referring to the implementa-
tions in the JAGS software. We will give an introductive and high level explanation
that is accessible also to people with basic statistical knowledge of probability theory.
Nevertheless, the basic definitions of probability and probability density are assumed
to be known. We start from the basic concepts behind Bayesian Inference and then we
introduce Gibbs sampling, JAGS and the graphical hierarchical models used by this
software. The aim is to make a JAGS user more aware of what happens behind the
scenes, thus making modelling easier and opening the way to more advanced usages.

This paper is organized as follows: Section 2 presents the basic principles of Bayesian
Inference to introduce non-expert readers to key concepts used by Gibbs sampling.
Section 3 introduces the JAGS software and its basic modelling principles. Section 3.2,
introduces the probabilistic graphical models JAGS is based on. Section 4 reports the
definition of Markov chain. Section 5 explains Gibbs sampling based on the previously
introduced concepts. Section 6 gives a practical example in the R programming language
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G. Coro 3

of a JAGS model and explains how this implements the concepts previously explained.
Finally, Section 7 draws the conclusions.

2 Bayesian Inference

In order to define Bayesian Inference, we first define posterior probability distributions
(or posterior probability densities). The posterior probability distribution of a random
event, given a certain set of data, is defined as the conditional probability density that is
assigned to the event after relevant evidence has been taken into account. In other words,
if there is experimental evidence of a certain probabilistic phenomenon, the posterior
probability distribution relates this evidence with some random variables. For example,
in the case of a random variable x having a Gaussian distribution Norm(µ, σ) (with
µ and σ being the mean and the standard deviation respectively, both unknown and
to be estimated), the posterior probability distribution would be indicated as p(µ, σ|x).
This distribution allows to calculate the probability of a pair (µ, σ) given a certain
value of x. Generally, given a set of experimental evidences ȳ = {y1, y2, .., yn} linked by
a probabilistic relation to a set of random variables θ̄ = {θ1, θ2, .., θm}, the posterior
probability density is indicated as p(θ̄|ȳ). Inferring the analytical form of a posterior
probability when only experimental evidence is available can be difficult, but techniques
exist to approximate the samples generated by these functions. As a reminder, if x is a
continuous random variable with a p(x) probability density associated, the probability
of x falling in a given numeric interval [x1, x2] can be obtained from the probability
density as

P [x1 ≤ x ≤ x2] =

∫ x2

x1

p(x) dx (1)

In this paper, we will use P to denote the probability of a certain event (e.g. x falling
in a range or equal to a certain value) and p a probability density.

Another important concept in Bayesian Inference is the likelihood of the model to
the data. This is a dual concept with respect to the posterior probability distribution.
In fact, likelihood is defined as the probability density associated to the evidence ȳ given
the variables θ̄, and is indicated as p(ȳ|θ̄).

The likelihood and the posterior probability distribution are related through the
Bayes’ rule:

p(θ̄|ȳ) =
p(ȳ|θ̄)p(θ̄)
p(ȳ)

(2)

where p(ȳ) is the probability density (named marginal density of the sample data or
marginal likelihood) associated to the sample data without considering the random
variables. The term p(θ̄) is the prior probability distribution and indicates an a priori
estimate of the distribution of the parameters θ̄ (Chib, 1995).

The Bayes rule for probability densities is conceptually different from The Bayes’
rule for probabilities although their form is similar. In the case of probabilities, the rule
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4 Gibbs Samp. with JAGS

is

P (A|B) =
P (B|A)P (A)

P (B)
(3)

where A and B are two probabilistic phenomena. The difference is that the rule for the
distributions is derived from the definition of joint probability density, whereas the rule
for the probabilities comes from the axioms of Probability.

Bayesian Inference is defined as a process based on the Bayes’ rule for probabil-
ity distributions, that estimates a posterior probability density using prior knowledge
about the parameters (priors) and updates this estimate by means of likelihoods, as
long as new evidence (from here on referred as “real data” or “real observations”) is
acquired. Thus, Bayesian Inference factorizes prior knowledge about parameters and
likelihoods, using likelihoods as a means to relate the parameters to the real observa-
tions. Alternative methods simulate the posterior probability density or the likelihood
functions directly (Huang et al., 2001; Stefano, 1998). Usually, Bayesian Inference is
used to calculate the best parameters estimates given the observed data as the param-
eters that maximize the posterior probability distribution. Indeed, the best estimates
depend on the form of the distribution. Usually, parameters belonging to the central
tendency of the posterior probability density are taken, other times the maximum is
selected (Maximum a Posteriori or MAP). Generally, the selection process should avoid
involving outliers in the input data and biases in the estimate (Huber, 2011).

Once the best estimates of the parameters has been found, it can be used in many
ways, for example to simulate a function (e.g. the best estimate of the coefficients of a
linear combination) or to predict new data (Berger, 1985).

3 JAGS

JAGS (Just another Gibbs sampler) is a program developed by Martyn Plummer (Plum-
mer, 2003, 2011) that implements Bayesian inference based on Gibbs sampling. To this
aim, it implements a Markov Chain Monte Carlo (MCMC) approach. MCMC is a generic
term indicating an algorithm that samples from probability distributions (sampler) by
constructing a Markov chain (Section 4) that has the desired probability density as its
equilibrium (or ergodic) distribution. MCMCs are often combined with Monte Carlo
Integration (Robert and Casella, 1999) (Section 5.5) on the generated samples to esti-
mate the variables best values. In this section, we will define the MCMC approach used
by JAGS and will clarify its relationship with Gibbs sampling.

JAGS uses hierarchical models to instruct the sampler. Models are written using
a dialect of the BUGS programming language. BUGS is a declarative language that
allows a programmer to specify the known relations among the variables. In the JAGS
modelling language the order in which the relations are specified is not important, be-
cause the constraints are automatically inferred from the variables declarations. The
declarative approach used by JAGS is different from the one used by common imper-
ative languages (e.g. R, C, Fortran, Pascal etc.), in which an algorithm is built as a
sequence of steps “thought” from a computer’s point of view. In JAGS, the relations
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G. Coro 5

between the variables are specified in terms of probabilistic or deterministic functions.
Further, likelihoods are identified as those functions that define a variable for which real
observations are available.

Before running its MCMC sampler, JAGS analyses the distributions definitions and
applies the most appropriate strategy to produce samples from the posterior probability
densities defined in the model. JAGS tries to produce samples that come more and more
from a density function that is the posterior density function the user is searching for,
i.e. the optimal model given the data.

The general approach of JAGS to produce samples is compliant with the Gibbs
sampling theory (Section 4), but JAGS also adds other techniques that enforce (or
in some cases substitute) the standard Gibbs sampling approach. For example, the
Metropolis–Hastings algorithm (Chib and Greenberg, 1995), the Slice sampling (Neal,
2003) and the Adaptive Rejection sampling (Gilks et al., 1995) algorithms may be used
in some situations, but they are not strictly part of Gibbs sampling. In Section 5 we
explain how these may intervene during the sampling process.

JAGS is an alternative to other tools that are based on BUGS, like WINBUGS
(Espino-Hernandez, 2010; Ntzoufras, 2011) and OpenBUGS (Spiegelhalter et al., 2007).
The main aim of JAGS is to provide a multi-platform open-source framework that is
easily expandable with new algorithms and is also open to criticize graphical models.
JAGS is endowed with a wrapper for the R language (rjags) (Plummer, 2011) that runs
BUGS models, extends this language and retrieves the output as an R object, that
allows for further processing (Hojsgaard, 2013).

3.1 BUGS models

The best way to explain a BUGS model is to report an example. A simple linear regres-
sion in BUGS looks like the following:

mu <− alpha + beta ∗ ( x − x . bar )
Y ˜ dnorm(mu, tau )
x . bar <− mean( x )
alpha ˜ dnorm( 0 . 0 , 1 . 0E−4)
beta ˜ dnorm( 0 . 0 , 1 . 0E−4)
tau ˜ dgamma( 1 . 0E−3, 1 . 0E−3)

This code declares the dependencies among the variables in terms either of stochastic
or of deterministic relations. Unlike imperative languages, the order of the declarations
is not important. BUGS treats them as they were the hypotheses of a theorem to
be demonstrated. The BUGS engine inside JAGS checks for model’s coherence before
executing the inference process. In the example R code, the mu variable is a linear com-
bination of other variables, whereas Y is a stochastic variable distributed like a Gaussian
function that depends also on other two variables: mu and tau. Also, alpha and beta are
distributed like a Gaussian, whereas tau follows a Gamma distribution. In mathematical
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6 Gibbs Samp. with JAGS

terms, the second relation corresponds to the following analytical function:

G(Y,mu, tau) =
1

σ
√

2π
e−

(Y −mu)2tau
2 (4)

(note that tau = 1
σ2 in JAGS).

At the initialisation phase of the model, some variables may have real data (i.e.
observations, measures etc.) associated. In this case, the JAGS engine interprets its
corresponding probability distribution as a likelihood. Referring to the example, if real
observations were available for Y , JAGS would interpret Y ∼ dnorm(mu, tau) as a
likelihood. The other distributions would be treated either as priors or as conditional
probability distributions. The deterministic/analytical functions in the model act as
definitions to simplify the syntax.

With respect to the BUGS language, JAGS also adds a number of probability func-
tions to be used for variables definitions and conditional instructions (Plummer, 2015).

3.2 Graphical models

Graphical models are the basic concepts underlying JAGS models. The fundamental
object in a graphical model is a node representing a variable in the model (either
observed or unobserved). Nodes possibly have children and parents, and a dimension
attribute (Bishop and Nasrabadi, 2006). JAGS allows defining nodes that represent
stochastic parameters (Stochastic nodes), deterministic parameters (Logical nodes) and
constants (Constant nodes). The relations among the nodes are automatically traced
based on the names of the variables. Parameters depending on other parameters are seen
as having these as “parents”. Further, JAGS allows defining Array nodes that represent
containers of parameters entirely related to other variables and Subset nodes related to
other nodes by subscripting.

Figure 1: A probabilistic graphical model for 4 variables.
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Generally, a graphical model is a probabilistic model in which a graph defines the

conditional dependencies between the random variables. The graph gives a compact rep-

resentation from which the independent and the conditioned variables are immediately

evident. One example is in Figure 1, where a graph represents the relations between

four variables: {θ1, θ2, θ3, θ4}.

The joint probability distribution for the variables in Figure 1 is

p(θ1, θ2, θ3, θ4) = p(θ1)p(θ2)p(θ4|θ1, θ2, θ3)p(θ3|θ2) (5)

This formula multiplies all the conditional distributions of the variables. Based on the

observation data associated to the variables, JAGS knows which of them must be inter-

preted as likelihoods and which as priors or conditional distributions. In Section 5 we

explain how Gibbs sampling starts from this joint distribution to sample the posterior

probability density.

By abstracting the graphical model of the figure, a general form of the joint distri-

bution associated to a graphical model representing the variables {θ1, θ2, . . . , θn} is

p(θ1, θ2, . . . , θn) =

n∏
i=1

p(θi|pari) (6)

where pari is the set of parents of the θi node.

Hierarchical models are a special case of graphical models, in which the edges have

a causal interpretation, established by the hierarchical dependencies between the nodes

(Clauset et al., 2008). In hierarchical models, conditional independence comes out di-

rectly from the hierarchy. JAGS models are hierarchical models.
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8 Gibbs Samp. with JAGS

Figure 2: A probabilistic hierarchical model for the linear regression example of Section
3. The squares indicate deterministic functions, whereas the circles indicate probabilistic
distributions.

The hierarchical model of the linear regression example of Section 3.1 (assuming x

to be a random variable) is reported in Figure 2. The joint distribution associated to

the model in Figure 2 is

p(alpha, beta, tau,mu, x.bar, Y, x) = p(alpha)p(beta)p(tau)p(x)p(x.bar|X)

p(mu|alpha, beta, x.bar, x)p(Y |tau,mu)
(7)

4 Markov chains

A Markov chain is a model for a sequence of random variables. It is suited to manage

stochastic processes that require to reduce the used amount of memory. Markov chains

are often used to model sequences of observations in time, especially when time is a

discrete variable.

Consider a sequence of random variables θ1, θ2, . . . , θn that can take values from

the same finite alphabet O = {s1, s2, . . . , sm}. For example, this could be the case of

the Dow-Jones industrial average. The change of this quantity in time can be modelled

assuming that at several discrete time instants a different random variable θt can take

a value among O = {Up,Down,Unchanged}.

Generally, the joint probability distribution of a sequence of random variables is
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G. Coro 9

p(θ1, θ2, . . . , θn) = p(θ1)

n∏
i=2

p(θi|θi−1θi−2 . . . θ1) (8)

This formula models the fact that a variable θk depends on all the preceding variables
in the sequence. For example, in the case of a sequence of 3 variables

p(θ1, θ2, θ3) = p(θ1)p(θ2|θ1)p(θ3|θ2θ1) (9)

A sequence of random variables is said to form a first–order Markov chain if the
probability of a variable in the sequence is conditioned only by the preceding variable.
This means the following equality

p(θi|θi−1θi−2 . . . θ1) = p(θi|θi−1) (10)

and the formula for the joint probability density becomes

p(θ1, θ2, . . . , θn) = p(θ1)

n∏
i=2

p(θi|θi−1) (11)

This equation is also known as first–order Markov assumption. Markov models are
particularly indicated to model phenomena characterized by a sequence of observations
in time, where each observation depends on the preceding one. Often, it is necessary to
model relations with the m preceding variables instead of the first, which requires to
use mth–order Markov chains, whose definition is easily deducible from the first–order
one. In Gibbs sampling, a first–order Markov assumption is usually assumed.

The probability densities p(θi|θi−1) are named transition probabilities. Since the θi
variables can assume values from the {s1, s2, . . . , sm} set, a chain of variables will be
associated to a sequence of si values. These values are usually named the states of the
Markov chain. For example, in the case of the Dow-Jones average, one sequence could
be Up, Down, Down, Up, Unchanged.

The probability of state si to be the state at time t in the sequence can be calculated
as the overall probability to pass from a preceding state sj to the following state si.
Indeed, in the most general setting sj could be si itself, because the Markov chain could
present consecutive repetitions of the same state in the sequence. The formula of this
overall probability is

Pt(si) =

g∑
j=1

Pt−1(sj)Pt(si|sj) (12)

This formula indicates that the probability of si to be the state at time t in the
sequence, is given by all the possible ways to reach si from any preceding sj state. The
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10 Gibbs Samp. with JAGS

formula also accounts for the probability that sj was the previous state in the sequence.
The transition probability from si to sj can be different depending on the time instant.

In order to complete the set of concepts that allow understanding the role of Markov
chains in Gibbs sampling, we will introduce some other definitions. In particular, a
Markov chain is said to be homogeneous or stationary if the transition probability does
not depend on time. This means that Pt(si|sj) is simply P (si|sj) and depends only on
the pair of states.

A Markov chain is said to have reached an invariant probability D(si) over the
states, when this probability persists forever. In other words

D(si) =

g∑
j=1

D(sj)Pt(si|sj) (13)

If the chain is also homogeneous, we can substitute Pt with P . A finite Markov chain
has always at least one invariant distribution.

A Markov chain is ergodic if Pt(si) converges to an invariant probability for t→∞.
Further, this is required to happen regardless of the choice of initial probabilities P0(si).
An ergodic Markov chain can have only one invariant probability, named equilibrium
probability. Gibbs sampling searches for ergodic Markov chains that converge to an in-
variant probability, which is associated to the searched posterior probability distribution
(Section 5.4).

A Markov chain is aperiodic if the return of a state in the chain can occur at irregular
times.

A chain is irreducible if it is always possible to go from one state to any other state
(not necessarily in one step).

A Markov chain is recurrent if, for any given state i, if the chain starts at i it will
eventually return to i with probability 1. The chain is positive recurrent if the expected
return time to state i is finite, otherwise it is null recurrent.

The ergodic theorem states that if a Markov chain is aperiodic, irreducible and
positive recurrent then it is ergodic (Neal, 1993). This theorem is used to demonstrate
that Gibbs sampling based on Markov chains can be ergodic under some conditions. The
extension of the explanation above to the case of continuous variables and probability
densities is intuitive. We leave further details about Markov chains, as well as the
demonstration of the ergodic theorem, to more specific papers (Huang et al., 2001;
Norris, 1998; Walsh, 2004).

5 Gibbs sampling

In this section, we use the concepts defined so far to explain Gibbs sampling.

The main aim of Gibbs sampling is to sample the posterior probability distribution
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p(θ̄|ȳ) =
p(ȳ|θ̄)p(θ̄)
p(ȳ)

(14)

The general aim is that samples from this posterior distribution can be used to
estimate the θ̄ model parameters given the real data. The main issue with this approach
is that it is difficult to draw samples from the density function when it is not a standard
statistical distribution. There are several techniques to generate samples from standard
distributions, because their shape is well known (Chib, 1995; Lyle Gurrin and Ekstrom,
2013; Neal, 1993). Unfortunately, although it is possible to obtain an analytical form of
the posterior function from a hierarchical model, its form is seldom standard.

Gibbs sampling solves this issue using Markov chains (Casella and George, 1992;
Resnik and Hardisty, 2010). In particular, it does not directly sample from the complete
function, but rather from conditional distributions of the θi variables given all the other
variables (full conditionals), i.e. p(θi|θ1, . . . , θi − 1, θi + 1, . . . , θn, ȳ). Generally, this is
an iterative procedure that generates a Markov chain of samples (the details will be
explained in the next sections). It can be demonstrated that the higher the number of
iterations the closer the samples to the posterior density. In other words, the Markov
chain samples are ergodically convergent to the posterior density values.

5.1 Rationale

In order to understand how Gibbs sampling works, we explain (i) how the samples from
the full conditionals are linked to those of the posterior probability density, (ii) how the
analytical form of a full conditional is built, (iii) how a Markov chain to sample the full
conditionals is generated.

According to the Bayes’s rule, a posterior probability density of a set of variables
can be written in the following way

p(θ1, θ2, . . . , θn|ȳ) = p(θ1|θ2, . . . , θn, ȳ)p(θ2, . . . , θn|ȳ) (15)

The same rule is valid also for the other variables. The first term at the right side is
the full conditional of θ1. This means that sampling each full conditional in turn, gives
values that are proportional to the posterior distribution. Gibbs sampling uses this
property and samples iteratively each full conditional of a variable, leaving the other
variables at their preceding values in time. When a full conditional is sampled in this
way, a new value for the conditioned variable is picked and then immediately used to
sample the other variables that have not been sampled yet. A full conditional is usually
easier to sample than the complete posterior density. Further, it can hopefully have the
form of a standard distribution, which is unlikely to happen for the complete posterior
density.

Gibbs sampling is divided in two parts: the first aims at obtaining analytical forms for
each full conditional. The second generates samples iteratively with a Markov approach,
where these samples tend towards the posterior density ones (Lam, 2013).
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12 Gibbs Samp. with JAGS

5.2 Obtaining analytical forms of full conditionals

The algorithm to obtain the analytical forms for the full conditionals goes through the
following steps

1. write the complete formula of the posterior probability;

2. pick one parameter θi;

3. from the formula of the posterior probability, drop all the factors that do not
depend on θi;

4. at this point, if the other parameters are fixed to their current values, a formula
for the full conditional of θi is obtained;

5. use automatic simplification procedures to figure out if the conditional probability
can be reduced to a known statistical distribution;

6. repeat step 2-5 for all the parameters.

This algorithm is also used by JAGS. In the case the relations came from a hierar-
chical model (e.g. in JAGS), the formula of the posterior probability density would be
a multiplication of densities reflecting the hierarchy (Section 3.2).

The work of the algorithm can be shown with an example, where the analytical
formula of the complete posterior probability is

p(λ1, λ2, β|ȳ, t̄) =

2∏
i=1

λ
(yi−1)
i e−(ti+β)λiβ9e−20β (16)

where ȳ and t̄ are real observations and {λ1, λ2, β} are random variables.

This formula cannot be reduced to a standard distribution. Nevertheless, by dropping
the factors that depend on λ1, λ2 and β in turn we obtain

p(λ1|λ2, β, ȳ, t̄) = λ
(yi−1)
1 e−(ti+β)λ1 ∝ Gamma(yi, ti + β) (17)

which holds also for λ2.

Further, as or β, the full conditional is

p(β|λ1, λ2, ȳ, t̄) = β9e−20β ∝ Gamma(10, 20) (18)

Thus, the conditional distributions are much more easy to be sampled because their
distribution is well known. In the case this reduction were not possible, other techniques
are used (Section 6).
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5.3 Sampling algorithm

In order to explain how the sampling algorithm works, we will use an example with
three random variables {θ1, θ2, θ3} having real observations ȳ associated. The posterior
probability distribution is p(θ1, θ2, θ3|ȳ) and the algorithm samples from this function
based on the formulae of the full conditionals obtained at the previous step (Wilkinson,
2013).

The steps of the Gibbs sampling algorithm (Gibbs sampler), also used by JAGS, are
the following

1. pick a vector of starting values for the random variables, using the prior distribu-
tions of the variables;

θ(0) = {θ(0)1 , θ
(0)
2 , θ

(0)
3 } (19)

2. select θ1 and draw a sample for this variable (θ
(1)
1 ) from its full conditional by

fixing the values of the other variables to θ
(0)
2 and θ

(0)
3 . In other words, draw a

sample from p(θ1|θ(0)2 , θ
(0)
3 , ȳ);

3. select θ2 and draw a sample from p(θ2|θ(1)1 , θ
(0)
3 , ȳ), i.e. using the updated value of

θ1;

4. select θ3 and draw a sample from p(θ3|θ(1)1 , θ
(1)
2 , ȳ), i.e. using both the previously

updated values;

5. build the vector θ(1) = {θ(1)1 , θ
(1)
2 , θ

(1)
3 };

6. build a sequence of vectors θ(0), θ(1), θ(2), . . . , θ(t) by using the above sampling
procedure;

7. stop after a number of M steps, i.e. at t∗ = M .

After a certain number of iterations, the algorithm will have produced M samples
for the variables. The algorithm above can be easily adapted to the case of more than 3
variables. In the next section, we will explain that the last produced samples are likely
to be the most reliable ones, if M is large enough.

5.4 Gibbs sampling correctness

The Gibbs sampler produces a Markov chain of samples, because at each step it es-
timates each variable using values of the other variables either at the previous time
instant or at the current time instant. Indeed, for a set of variables {θ1, . . . , θn} the
Gibbs sampler builds the following transition probabilities distributions

pt(θ
(t)
i |θ

(t)
1 , . . . , θ

(t)
i−1, θ

(t−1)
i+1 , . . . , θ(t−1)

n , ȳ) (20)

which are transition probability distributions of a Markov chain.

--ba ver. 2017/02/22 file: Jags_Coro.tex date: February 22, 2017



14 Gibbs Samp. with JAGS

This chain can be demonstrated to be invariant (Neal, 1993), based on the fact
that each transition probability distribution only depends on the other variables with
fixed values and on the data. Further, full conditionals are proportional to the posterior
density (Section 5.1) and the iterative samples production approximates more and more
those of the full conditionals by construction. If the transition probabilities turn to be
all non-zero (i.e. the chain is irreducible) then the probability of remaining in the same
state is non-zero. Overall, this chain can be demonstrated to satisfy the conditions of the
ergodic theorem (Neal, 1993), thus it converges ergodically to the samples of a posterior
distribution.

5.5 Producing optimal estimations from the samples

The expected value of a function of a random variable ranging between two numbers a
and b is

E[a(x)] =

∫ b

a

a(x)p(x)dx (21)

where p(x) is the probability distribution of x.

Based on this definition, Monte Carlo Integration is a technique to approximate this
integral by means of the samples of x (MacKay, 1998; Walsh, 2004). This technique
estimates the expected value of a random variable with an average of the samples of x
drawn from p(x), where p(x) could also be a posterior probability density.

In other words, the expected value is approximated by

E[a(x)] ≈ 1

n

n∑
1

a(xi) (22)

where {x1, . . . , xn} are n samples of x drawn from p(x).

In the same way, the expected value of x based on the Gibbs sampling output can
be estimated as

E[x] =

∫ b

a

xp(x)dx ≈ 1

n

n∑
1

xi = µ̃ (23)

The variance of x is defined as V [x] = E[(x− E[x])2] and in Monte Carlo Integration,
this is approximated as

V [x] ≈ 1

n− 1

n∑
1

(xi − µ̃)2 (24)

The rationale behind Monte Carlo Integration, is that the approximation becomes
more accurate as soon as the number of samples increases. This is a direct consequence of
the Strong Law of Large Numbers (Loeve, 1963) if the samples are independent. Indeed,
Gibbs sampling generates samples that are slightly dependent, but there are practices
that allow to reduce this bias. In particular, the Markov chain produced by the Gibbs
sampler usually begins to converge after the generation of many samples. Thus, it is
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good practice to discard the first k produced samples, where k depends on the speed of

convergence of the chain. These samples are usually referred to as burn–in iterations.

Further, in order to break the dependency between the draws in the Markov chain, one

draw every d can be kept, where d is heuristically chosen (Froese et al., 2014; Lyle Gurrin

and Ekstrom, 2013). This practice is named thinning. Finally, sensitivity to the starting

point of the chain can be reduced by producing several Markov chains of samples that

start from different initial values and finally merging them (multiple chains). Burn–in,

thinning and the number of multiple chains are initialization parameters of JAGS.

Monte Carlo Integration can be applied to the Gibbs sampling output. In this case,

the expected value of each variable is estimated as the average of the samples from the

posterior probability. This is a valid approach if the Gibbs sampling produces many

values from the ranges where most of the probability is concentrated. Instead, if the

posterior distribution is strongly skewed or has a complex shape, it may be difficult

that samples come from these ranges and using percentiles or taking the mode of the

samples could give better estimates.

6 The JAGS approach to Gibbs sampling

JAGS implements the algorithms explained in Section 5 and applies Gibbs sampling in

a transparent way to its users. Users are only asked to indicate the probability density

functions for the priors, the conditionals and the likelihoods and thus define a hier-

archical model. During the execution of a model, JAGS produces the formula of the

posterior distribution and applies a simplification process to write the full conditionals

of all the variables (Section 5.2). Gibbs sampler is then applied, which uses complex

strategies (e.g. Slice sampling or Adaptive Rejection sampling) to sample the full con-

ditionals, should these be not associable to any known statistical distribution. For too

complex functions, JAGS uses the Metropolis–Hastings algorithm directly, instead of

the standard Gibbs sampling, in order to directly approximate and sample the posterior

probability density.

Important input parameters to JAGS are (i) the number of Markov chains to produce

(in order to possibly avoid non–ergodic behaviour), (ii) the burn–in iterations (to reduce

the unreliability of the first samples), (iii) the thinning parameter (to enhance samples

independency), (iv) indication on variables associated to real observations (to enable

likelihoods detection).

In the end, JAGS produces samples on which the user can apply Monte Carlo Inte-

gration to calculate the optimal values for the parameters. Alternatively, the user can

use percentiles or other quantities to estimate these values.
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#Activate required R packages
library(R2jags)
library(coda)

#True parameters , reported for verification and priors initialisation
a = 10
b = 20
slope = b/a

#Build the Theoretical Hockey -Stick function using the true values
numberOfRealdata = 100
xsamples <-seq(length=numberOfRealdata , from=1, to=numberOfRealdata)
theoretical_hockeyStick <-ifelse(xsamples < a, xsamples * slope , b)

#Add noise to the theoretical hockey -stick function
noisy_hockeyStickSamples <-theoretical_hockeyStick+runif(numberOfRealdata , -1, 1);

#From this point on , we ’forget ’ the theoretical Hockey -Stick and use the noisy samples to reconstruct it back

#Assume now that a, b and slope are just initial indicative values for the best estimates. This is a prior assumption of the model.

#Admit an error around these indicative values
SD.slope = 0.01
SD.a = 0.01
SD.b = 0.01
N = numberOfRealdata

#Initialize JAGS by stating which are our reference data , i.e. the prior values and the noisy data
jags.data <- list("N","a","b","slope","SD.a","SD.b","SD.slope","xsamples","noisy_hockeyStickSamples")

#Indicate to JAGS that we are interested in obtaining estimates for a,b and slope given the real data
jags.params <- c("random_a","random_b","random_slope")

#Build the BUGS model - the order of the variables declarations is not important
Model = "
model {
#Static definitions
random_slopetau <-pow(SD.slope ,-2)
random_a_tau <- pow(SD.a, -2)
random_b_tau <- pow(SD.b, -2)

#Prior probability densities
random_slope ~ dnorm(slope , random_slopetau) #BUGS uses tau instead of the standard deviation directly
random_a ~ dnorm(a,random_a_tau)
random_b ~ dnorm(b,random_b_tau)

#Likelihoods - JAGS understands these are likelihoods nature from the fact that real data are available for the variables
#Assume that each sample comes from a normal distribution around the random prior values
for (j in 1:N){

#definition
y[j] <- ifelse(xsamples[j] < random_a, xsamples[j] * random_slope , random_b)
#likelihood
noisy_hockeyStickSamples[j] ~ dnorm (y[j], random_b_tau)

}
}
"
# Write the BUGS model in a file
JAGSFILE="r2ssb.bug"
cat(Model , file=JAGSFILE)

#Setup the Gibbs sampling parameters
Nchains = 2 #number of Markov chains - to account for non -ergodic convergence
Nburnin = 100 #burn -in iterations - n. of initial iterations to discard
Niter = 1000 #total n. of iterations
Nthin = 10 #thinning - take every 10 samples to lower the dependency among the samples

#Run the Gibbs sampling
jagsfit <- jags(data=jags.data , working.directory=NULL , inits=NULL , jags.params ,

model.file=JAGSFILE , n.chains=Nchains , n.thin=Nthin , n.iter=Niter , n.burnin=Nburnin)

#Recover the samples
random_a_samples <-jagsfit$BUGSoutput$sims.list$random_a
random_b_samples <-jagsfit$BUGSoutput$sims.list$random_b
random_slope <-jagsfit$BUGSoutput$sims.list$random_slope

#Perform Monte Carlo Integration to get the best estimates of a and b
a_best <- mean(random_a_samples)
SD.a_best <- apply(as.matrix(a_best),2,sd)
b_best <- mean(random_b_samples)
SD.b_best <- apply(as.matrix(random_b_samples),2,sd)

cat("Best estimate for a :",a_best , "\n")
cat("Best estimate for b :",b_best , "\n")

#plot observation data
plot(xsamples ,noisy_hockeyStickSamples ,col="blue")
#plot the true value of a and the true hockey -stick function
abline(v=a, lty=3, col="red",lwd =1.5)
text(x=a+10, y=9,"True value of a")
#plot the re-estimated hockey -stick function
lines(x=c(0,a_best ,numberOfRealdata), y=c(0,b_best ,b_best),col="green")
text(x=a+40, y=17,"Estimated Hockey -Stick function")

Figure 3: Example of R script estimating a hockey-stick function based on a set of
noisy data. The model produces an ergodic Markov chain of samples for the a and b
parameters of the estimated hockey-stick function.

We report a complete example of an R program1 that simulates a hockey-stick
function in Figure 3, with in-line comments. This example was built because a hockey–
stick function is the basis of models in several domains, e.g. in marine biology (Froese
et al., 2014), environmental and climate monitoring (Mann, 2013; Tol and Fankhauser,
1998), finance (Safer, 2003) etc. The example also shows how conditional instructions

1Downloadable as a script at the following link
http://data.d4science.org/bXRtcjFlYTdqeDVaZWYvY3g2bDZNb2RoZDdvOFpxSUpHbWJQNStIS0N6Yz0
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are written in JAGS. The program uses JAGS with Monte Carlo Integration to get

optimal estimates for the provided input parameters. For each step, Figure 3 reports

how JAGS interprets the instruction, the models variables, the likelihoods etc. Further,

it shows how a simple MCMC model is initialised in JAGS and how the MCMC output

can be used in a Monte Carlo Integration to estimate the hockey stick parameters. In

other words, this example summarises several concepts explained so far and shows how

these are practically used in JAGS.

The output of the code are estimates for the a and b parameters of the hockey-stick

function, along with the charts displayed in Figure 4, e.g.:

Figure 4: Output of the example R process (Section 6) that estimates a hockey-stick
function using an ergodic JAGS model. The noisy observations, the estimated value of
a and the reconstructed hockey-stick function are indicated.

>Best es t imate f o r a : 9 .74

>Best es t imate f o r b : 19 .9

By running the code several times the re–estimated values are always very simi-

lar, even when the uncertainty on the prior expectations is set to a high value. This

demonstrates that the produced Markov chain is indeed ergodic.
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7 Conclusions

In this paper we have reported the basic principles underlying Gibbs sampling and its
algorithmic realization in the JAGS software. We have first described the basic principles
of Bayesian Inference, Markov chains and Monte Carlo Integration to give a background
that allowed to understand Gibbs sampling. The main aim of this paper is to give JAGS
users a better understanding of what happens behind the scenes, because this may help
developing better models.

The complete R example of Section 6, shows a practical way to implement a JAGS
model and precisely indicates (i) how JAGS interprets the lines of the model, (ii) how
the MCMC model is initialised and (iii) how Monte Carlo Integration can be used on the
JAGS output to obtain a final estimate of the parameters of an hockey-stick function.
This example merges information that is spread and segmented across several docu-
ments, manuals and theoretical books and simplifies the explanation of this powerful
tool to new JAGS users.
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