
A Public Tool Suite for Modelling Interactive

Applications

M. Manca, F. Paternò, C. Santoro

CNR-ISTI, HIIS Laboratory, Pisa, Italy

Abstract

Model-based approaches aim to support designers and developers through the use

of logical representations able to highlight important aspects. In this chapter we

present a set of tools for task and user interface modelling useful for supporting

the design and development of interactive applications. Such tools can be used

separately or in an integrated manner for various types of interactive applications

within different types of development processes. This tool suite is publicly availa-

ble and, as such, can be exploited in real world case studies and university teach-

ing.

1 Introduction

Model-based approaches for interactive applications aim to exploit high-level de-

scriptions that allow designers to concentrate on the main semantic aspects rather

than starting immediately to address implementation details. They have been con-

sidered also because such features can be exploited in order to better obtain device

interoperability through many possible implementation languages. It is interesting

to note that even the recent HTML51 has adopted some model-based concepts by

providing some tags that explicitly characterise the semantics of their content.

However, this language is limited to graphical user interfaces while we will show

that model-based languages (such as the ones supported by the tools presented

here) can be exploited to support multimodal user interfaces as well.

Over the years, research in model-based approaches of interactive applications has

led to many approaches and related tools. However, sometimes approaches identi-

fied in the academic field remain of interest of just a limited community of scien-

tists and researchers. This has not been true in some cases, which have stimulated

interest not only at the research level but also at an industrial one, resulting in

quite a large community. Such interest has also prompted initiatives at standardi-

1 https://www.w3.org/TR/html5/

2

zation level. One of them has been the W3C Working group on Model-based UI2 ,

which produced documents regarding various aspects, primarily task models and

abstract user interfaces.

In this chapter we present a tool suite that covers various types of model-based

support to user interface design, in particularly focusing on recent evolutions of

such tools in order to support novel requirements. In particular, at the beginning

Section 2 provides some background information useful to better understand the

contribution described in this chapter, while in Section 3 we provide an overview

of the set of tools belonging to the suite. Then in the next sections, each consid-

ered tool will be presented separately. In particular, we highlight some recent con-

tributions concerning how to support the development of task models also through

touch-based mobile devices (see Section 4), how to obtain model-based generation

of multimodal user interfaces (see Section 5), and how to reverse engineer Web

implementations at various abstraction levels (Sections 6 and 7). Finally, at the

end of the chapter, we summarise and discuss the main current trends identified

within the model-based area, and we also sketch out some future directions for re-

search in this field.

2 Background

The community working on model-based approaches for human-computer interac-

tion has mainly considered the abstraction levels that are indicated in the

CAMELEON Reference Framework (Calvary et al., 2002). It identifies four ab-

straction levels: Tasks and Domain, Abstract UI, Concrete UI, Final UI. In this

section we will go through such levels and, for each level, describe the most rele-

vant concepts, and the languages and tools covering the concerned level in the

proposed suite. This will be useful to introduce the tool suite presented in the next

sections. In software engineering communities the model-based approaches have

been considered with slightly different concepts because they have a different

scope and do not address the specific issues in user interface design and develop-

ment. For instance, a different conceptual approach is the Model-Driven Architec-

ture (MDA) proposed by OMG (http://www.omg.org/mda/). The OMG’s Model

Driven Architecture (MDA) specifies a generic approach for model-driven soft-

ware engineering, and distinguishes four different levels of abstraction: the Com-

putation Independent Model (CIM), the Platform Independent Model (PIM), the

Platform Specific Model (PSM) and the Implementation (or Implementation Spe-

cific Model – ISM). According to (Raneburger et al., 2014) the CAMELEON

Reference Framework is compliant to the MDA and can be seen as a specializa-

tion in the context of UI development.

2 http://www.w3.org/2011/mbui/

3

3

The Task and Domain models level consider the tasks that need to be performed

for achieving users’ goals and the corresponding relationships and domain objects.

As mentioned before, in our approach, this level is mainly covered by the Con-

curTaskTrees (CTT) notation (Paternò, 1999).

The Abstract User Interface (AUI) level describes a UI through the interaction

semantics, without referring to a particular device capability, modality or imple-

mentation technology. In addition, the interface definition contains the behaviour

and the description of the data types that are manipulated by the user interface. We

use the MARIA language (Paternò, Santoro and Spano, 2009) for this purpose,

which also includes a data model, defined by using the standard XML Schema

Definition constructs. More specifically, the AUI is composed of presentations

that contain Interactors and/or Composition Operators. The interactors are the el-

ementary user interface elements, which can be either interactive or output-only,

while the composition elements indicate how to put together elements that are log-

ically associated. Examples of abstract interactive elements are single choice, mul-

tiple choice, text edit, numerical edit, activator, and navigator while examples of

only-output elements are those supporting descriptions and alerts. Navigator ele-

ments allow users to move from one presentation to another, while Activators are

those elements that activate some functionalities . The composition operators are

grouping (a group of elements logically connected to each other), relation (when

two groups of elements have some type of relation, e.g. a set of input elements and

a set of buttons to send their values to the server or clear them), and repeat (when

a set of elements are grouped together since they share the same similar structure).

The MARIAE tool (Paternò, Santoro and Spano, 2011) provides automatic sup-

port for translating CTT task models into MARIA AUI specifications. This is a

type of transformation that cannot be performed through simple mappings because

task models and user interfaces involve different concepts and relationships. Since

the user interface is structured into presentations, the first step is to identify them

from the task model. For this purpose the algorithm first identifies the so-called

presentation task sets (PTSs): they are a set of tasks enabled in the same period of

time and thus they should be associated with a given presentation. This is done by

taking into account the formal semantics of the CTT temporal operators. After the

identification of the abstract presentations, the interactors and the dialogue models

associated with them are generated taking into account: i) temporal relations

among tasks (because the user actions should be enabled in such a way to follow

the logical flow of the activities to perform); ii) task hierarchy (because if one task

is decomposed into subtasks, it is expected that the interactions associated with the

subtasks are logically connected and this should be made perceivable to the user),

thus a corresponding grouping composition operator should be specified in the ab-

stract specification; the type of task (which provides useful information to identify

the most suitable interaction technique for the type of activity to perform, for in-

4

stance if it is a task supporting a selection of one element among several ones, a

single choice interactor should be provided to properly support that kind of task).

A Concrete User Interface (CUI) provides platform-dependent but implemen-

tation language independent details of a UI. A platform is a set of software and

hardware interaction resources that characterize a given set of devices, such as

desktop, mobile, vocal, multimodal etc. Each CUI is a refinement of the AUI,

specifying how the abstract concepts can be represented in the current platform

taking into account the associated interaction modality available. MARIA current-

ly supports various platforms: graphical desktop and mobile, vocal, gestural, and

multimodal, which combine graphical and vocal modalities in various ways. For

instance, in the graphical concrete description corresponding to Web implementa-

tions, the abstract element single choice is refined into either a radio-button, or a

drop-down list, or a list box, or an image map, while the multiple choice is refined

into a check box or a list box, the navigator into a link button or an image map.

The other elements are similarly refined to support the semantics identified in the

abstract element. In the case of a multimodal concrete language we have to con-

sider refinements for multiple modalities and indicate how to compose them. In

particular, the MARIA concrete language for composing graphical and vocal mo-

dalities is based on the two previously defined concrete languages (one for the

graphical and one for the vocal modality). It adds the possibility to specify how to

compose them through the CARE (Complementarity, Assignment, Redundancy,

Equivalence) properties (Coutaz et al., 1995), which can occur between the inter-

action techniques available in a multimodal user interface. Indeed, as we intro-

duced before, the MARIA abstract language structures a user interface into a set of

presentations. Each presentation has composition operators, which contain interac-

tors that can be either interaction or only-output interface basic components. Such

interactors can have events handlers associated with them indicating how they re-

act to events. Each of these elements of the language, ranging from the presenta-

tions to the elementary interactors, have different refinements for the graphical

and the vocal modality, and in the multimodal concrete language we indicate how

to compose them. Thus, a multimodal presentation has associated both graphical

attributes (such as background colour or image or font settings) and vocal attrib-

utes (such as speech recogniser or synthesis attributes). For example, a grouping

composition in the multimodal concrete language can exploit both visual aspects

(using attributes such as position, dimension, border backgrounds) and vocal tech-

niques (for example inserting keywords or sounds or pauses or changing synthesis

properties). The interactors are enabled to exploit both graphical events (associat-

ed with mouse and keyboards) or vocal-specific events (such as no input or no

match input or help request).

The Final UI (FUI) corresponds to the UI in terms of some implementation lan-

guage. From the CUI different Final user interfaces can be derived. A FUI can be

5

5

represented in any UI programming (e.g., Java UI toolkit) or mark-up language

(e.g. HTML).

3 The Proposed Tool Suite

In this section we briefly introduce the main characteristics of the various tools

that will be presented in detail in this chapter. The set of tools discussed in this

chapter covers the various abstraction levels indicated by the CAMELEON refer-

ence framework. In particular, the Task & Domain Level is covered by the CTT

language, which is supported by the desktop ConcurTaskTrees Environment

(CTTE) and the Responsive CTT tools (See Section 4). The other abstraction lev-

els can be specified by using the MARIA language, and are supported by the

MARIAE tool. The tool set supports the possibility of transforming representa-

tions at one abstraction level into another, which supports forward engineering

transformations, the ones going from the more abstract levels down to the more

concrete ones. In addition, it is worth noting that each described tool, apart from

supporting such transformations, also enables the user to handle (i.e. create, edit,

save), the concerned relevant models. There is another tool that supports transfor-

mations going from the more concrete levels to the higher levels (reverse engi-

neering). Figure 1 provides an overview of the languages and tools that have been

developed. A different colour has been assigned to each of the three tools: light

grey to ReverseCTT (see Section 7), black to MARIAE (see Section 5), and grey

to ReverseMARIA (see Section 6).

The task model language has been recently adopted as the basis for the task model

standardization within W3C3. The language has recently been enriched with the

possibility of specifying task pre- and post- conditions (even combined in complex

Boolean expressions), which can be exploited not only within an interactive simu-

lation of the specification but also in the user interface generation process in order

to derive meaningful and consistent user interface implementations.

CTT is supported by two main tools: CTTE and ResponsiveCTT. CTTE was also

integrated with tools for model checking in order to formally reason about task

properties (Paternò and Santoro, 2000). Both tools allow the user to exploit the

cloud to store and share task models remotely, which also facilitates potential

sharing and collaboration among designers. ResponsiveCTT can be accessed

through touch-based mobile devices such as smartphones and tablets. The tool is

responsive in order to provide adapted user interfaces to better support the most

common activities in task modelling through various types of devices. For this

purpose it also exploits, some information visualisation techniques (i.e. representa-

tions that make users comfortably analyse and modify task model specifications

3 http://www.w3.org/TR/task-models/

6

even when using the limited screen size of mobile device). This is especially use-

ful when medium-to-large task models are rendered on mobile devices.

Fig. 1 Overview of Languages and Tools Proposed.

In addition, in the chapter we also focus on the relationships between task model

specifications and the models for user interface definition exploited in multi-

device contexts. In particular, we focus on how task models can be exploited to

derive user interface models at various abstraction levels and for various plat-

forms, with particular attention to the UI models generated by MARIAE environ-

ment. Regarding this latter tool, an aspect addressed is how to provide support for

the development of interactive applications able to access and exploit Web Ser-

vices, even from different types of interactive devices. The MARIAE tool is able

to aid in the design of new interactive applications that access pre-existing Web

Services, which may also contain annotations supporting the user interface devel-

opment. In addition, in MARIAE, various automatic generators are available for a

number of platforms (e.g. desktop, mobile multimodal, vocal, distributed), even

directly from a CTT task model. Indeed, one of the advantages of using a model-

based language such as MARIA over modern languages such as HTML 5 is the

7

7

ability to describe and support even multimodal interfaces by still exploiting a set

of core concepts. Another integrated contribution is a reverse engineering tool,

which will be discussed to show how to derive interactive systems descriptions at

the various possible abstraction levels starting with Web application implementa-

tions.

The development of the tools presented in this chapter has been done according to

a number of requirements that were identified and evolved over the years. Regard-

ing the software tools covering Abstract UI, Concrete UI and Final UI, some re-

quirements were already identified and discussed in previous work. For instance,

for a predecessor of MARIAE, requirements were identified in (Mori et al., 2004):

the tool should support mixed initiative, handle multiple logical levels described

through XML-based languages, and enable different entry-points within the multi-

level UI specification of CAMELEON conceptual framework. Further require-

ments for the MARIAE tool were identified in (Paternò et al., 2009): the tool

should provide designers with effective control of the user interfaces produced, the

transformations for generating the corresponding implementations should not be

hard-coded in the tool, the tool should provide support also for creating front-ends

for applications in which the functionalities are implemented in Web services.

Also for the Task and Domain level and in particular the CTTE Desktop tool, a

number of requirements were identified in previous work (Mori et al., 2002): the

tool is expected to provide support for modelling and analysis of single-user and

cooperative CTT task models, more specifically visualise/edit/simulate/check the

validity of task models, save task models in various formats, support multiple in-

teractive views of task model specifications, support the generation of task models

from web service descriptions (WSDL). Responsive CTT, as being more recently

developed having in mind mobile devices, posed further requirements which will

be discussed in detail in Section 4.1.

Regarding the tool suite on a more comprehensive level, a main requirement was

that it should support all the levels of the CAMELEON framework and associated

top-down/bottom-up transformations, which was fully satisfied in our case (see

Figure 1).

4 Task Modelling

This section introduces the CTT notation for task models. Such notations is

supported by two tools: Desktop CTTE is a Java desktop application, Responsive

CTT is a responsive Web application, which can be used from various types of

devices.

8

4.1 CTT Task Models

Task models indicate the tasks that need to be performed for achieving users’

goals through the interaction with the UI. Various task model notations are availa-

ble, e.g. UsiXML (Limbourg et al. 2005), ConcurTaskTrees (Paternò, 2000),

Hamsters (Martinie et al., 2011), which differ on aspects such as the syntax, the

level of formality and/or the operators. A key factor for their adoption is the avail-

ability of automatic environments that support model editing, analysis and trans-

formation. However, not all task model notations are supported by (publicly avail-

able) tools, and the vast majority of such tools are limited to desktop-based

environments. ConcurTaskTrees allows designers to concentrate on the activities

that users aim to perform, which are the most relevant aspects when designing in-

teractive applications, and encompass both user and system-related aspects. This

approach allows designers to avoid dealing with low-level implementation details,

which at the design stage would obscure the decisions to make. It has a hierar-

chical structure, which is something that is generally considered as very intuitive

as often when people have to solve a problem they tend to decompose it into

smaller problems still maintaining the relationships among the various parts of the

solution. For example, Figure 2 shows a task model related to interacting with a

Content Management System.

Fig.2 An example of a CTT task model

The hierarchical structure of this specification has two advantages: it provides a

wide range of granularity allowing large and small task structures to be reused,

and it enables reusable task structures to be defined at both low and high semantic

level. A rich set of possible temporal relationships between the tasks can be de-

fined. How the performance of the task is allocated is indicated by the related cat-

egory and is explicitly represented by using icons. While the category of a task in-

dicates the allocation of its performance, the type of a task allows designers to

classify tasks depending on their semantics. Each category has its own types of

tasks. In the interaction category examples of task types are: selection, when the

task allows the user to select some information; control, when the task allows the

user to trigger a control event that can activate a functionality; editing, when the

task allows the user to enter a value; zooming, the possibility to zoom in/out, filter-

ing, the possibility to filter out some irrelevant details. Depending on the type of

task to be supported, a suitable interaction or presentation technique will be se-

9

9

lected in the development process. Frequency of use is another useful type of in-

formation because the interaction techniques associated with more frequent tasks

need to be better highlighted to obtain an efficient user interface. The platform at-

tribute (desktop, cellular, …) allows the designer to indicate the types of devices

the task is suitable for. This information is particularly useful in the design of ap-

plications that can be accessed through multiple types of platforms, because some

tasks could not be available in some platforms. For each task, it is possible to indi-

cate the objects that have to be manipulated to perform it. Since the performance

of the same task in different platforms can require the manipulation of different

sets of objects, it is possible to indicate for each platform which objects should be

considered. It is also possible to exploit such objects to define pre and post condi-

tions associated with the tasks. The presence of objects and conditions is indicated

in the graphical representation of the model through some cues (see the small

rounded icons beside some task icons in Figure 2). Objects can be shared across

multiple tasks, and each involved task can have different conditions associated

with the object.

The language is also able to model multi-user applications through specific task

models for each role involved and an additional model to indicate their relation-

ships. The notation has long been supported by a Java-based desktop tool, the

ConcurTaskTrees Environment (CTTE) (Mori et al., 2002), which provides a set

of functionalities for editing, analysis, and interactive simulations of the dynamic

performance of sequence of tasks. It can be downloaded at

http://giove.isti.cnr.it/tools/CTTE/home.

4.2 ResponsiveCTT

As mobile devices are now indisputably part of everyday life and widely ap-

plied in various domains, we judged it interesting to investigate the possibilities

offered by them for task modelling. We focused on truly mobile devices, i.e. those

that can be fully and comfortably used even when the user is on the go. As for task

modelling tools, some approaches have been put forward, such as CTTE,

HAMSTERS, and K-MADe (Caffiau et al., 2010), although they all focused on

desktop platforms. Attempts to consider modelling tasks on a different platform

were carried out mainly in (Eggers et al., 2013) and (Spano and Fenu, 2014). So,

apart from a few attempts considering task modelling for mobile use, tools sup-

porting task modelling have been mainly confined to considering desktop plat-

forms. Thus, we have also investigated the possibilities of touch-based modelling

on mobile devices through a new tool (ResponsiveCTT4). The development of the

tool was driven by a number of requirements identified in our experience of sever-

al projects and work in which task modelling was exploited. First, in order to wid-

4 Available at http://ctt.isti.cnr.it

10

en the impact and possible adoption of the tool, it was developed as a Web appli-

cation exploiting HTML5, CSS3 (for the presentation) and JavaScript (for the dy-

namic aspects) accessible by any browser-enabled device. Also, the tool was con-

ceived to support responsive design to effectively adapt the model representations

to the screen area of the device, which is particularly important when mobile de-

vices are used. In addition, since mobile devices screen size is key for an effective

analysis and editing of task models, it was judged relevant to exploit information

visualization techniques for dynamically representing task models to harness the

power of visualization anytime, anywhere, while requiring limited cognitive effort

than in stationary settings. Finally, to store and share task models remotely, the

application is cloud-based, which also facilitates collaboration among users.

With the new tool, to edit the task model on a touch-based mobile device, users

can touch an empty screen area to create a new task root, and perform a tap ges-

ture on a task to edit it, i.e. edit name, type, objects and precondition or add a task

as a sibling or as a sub-task, copy/cut and paste a task and/or its children.

Fig. 3: The UI for editing task (left) and operators (right)

In the tool, a focus+context, fisheye-based visualisation technique (Cockburn et

al., 2008) has been used as an interactive visual aid to support the visualization,

exploration and navigation of task models on touch-based mobile devices, where

precise task selections are difficult due to their small screen and limited accuracy

of touch commands. In particular, the visualisation of a task model is arranged so

11

11

that the tasks closest to the one that currently has the focus (the task Check Login

Data in Figure 4) are more emphasized in terms of larger screen space of the asso-

ciated icons, with a progressive fall-off in magnification toward the upper/bottom

model edges. So, in our case the focus area is determined by the selected task, and

includes its nearest siblings and children tasks, while the “context” is composed of

the remaining tasks of the model. When selecting a task, the application sets the

focus to that task, and changes the fisheye visualisation of the model accordingly.

When users tap on the task currently having the focus, a semi-transparent circular

menu appears (see Figure 3), showing the actions that can be executed on that

task: change its properties, add new tasks, add objects and pre-post-conditions as-

sociated with it. When users select a new task, the visualisation of the task model

is dynamically recalculated to show the new task having the focus in a prominent

position of the window and rearrange the model visualisation accordingly. By se-

lecting the icon of a temporal operator, a contextual menu appears, visualising the

possible operators (see Figure 3, right part), presented according to their priority.

Furthermore, a number of gestures are also supported: “pinch to zoom” for zoom-

ing on the task model, “swipe down/up” to move up/down in the task model level.

It is also possible to change various task attributes (e.g. task name, category), add

the specification of objects manipulated by the task and pre-/post- conditions as-

sociated to it. Finally, the users can also save models in a dedicated cloud-based

service.

Fig. 4. (left) Complete task model (desktop); (right) Task model on a mobile platform

As mentioned, the task that has the focus is supposed to be the currently most

“important” one, thus it is always placed in a central position within the working

window, and highlighted by a specific colour. More generally, every task has a

12

degree of interest dynamically calculated, which is inversely proportional to its

distance from the currently selected task. The dimension of the graphical represen-

tation of each task varies according to this distance factor: the further the focused

task is, the smaller the icon of the considered task will be, where the “distance”

between two tasks is represented by the number of levels that need to be traversed

in the model to reach one task from the other. This algorithm is performed when-

ever a task model is loaded or any editing operation modifies its structure. When it

becomes difficult to graphically represent some tasks in a way sufficiently per-

ceivable by the user because of the limited space, they are replaced with a cue-

based technique that shows numbers indicating how many tasks are currently hid-

den (see Figure 4 right part). The numbers are visualised at the same task level and

side as the hidden tasks, with the size of the numbered icon proportional to the

number itself. By interactively selecting a numbered icon, the previously hidden

tasks at the considered level are shown.

Tasks can have some preconditions visualised in the task model through a

small coloured rounded icon close to the task icon, whose colour changes during

the simulation phase according to the precondition state: if it is true the colour is

green, otherwise it is red. Figure 5 shows an example while the task model simula-

tor is running.

Fig. 5: Rendering tasks with preconditions within the Responsive CTT simulator

First users studies (Anzalone et al., 2015) delivered encouraging results in how

the tool supported users in handling task models on mobile devices. They also in-

dicate that tablets are more suitable for supporting task modelling than

smartphones since modelling tasks is a medium/long–term, cognitively demanding

13

13

activity which is better performed when the supporting devices allows for per-

forming it in a comfortable manner.

5 Modelling and Generating MultiModal User Interfaces

While the previous section focused on the Task model level, in this section we de-

scribe how to model user interfaces and obtaining a corresponding implementa-

tion. MARIA has an abstract language and various concrete refinements that de-

pend on the modalities considered. In order to illustrate how to model and

generate user interfaces it can be fruitful to consider the multimodal case, since lit-

tle work has been dedicate to it and it is an important trend in the HCI area to ob-

tain more natural interfaces. MARIA was developed to address various limitations

in previous model-based languages such as TERESA (Berti et al., 2004). One im-

portant contribution of MARIA and the associated environment (MARIAE5) is the

possibility of generating multimodal interactive applications, which can be exe-

cuted in any browser-enabled device supporting the Web Speech API. This is an

important contribution since most model-based approaches have focused only on

graphical user interfaces. A model-based Framework for Adaptive Multimodal

Environments (FAME) has been proposed in (Duarte & Carrico, 2006), but it does

not provide support for automatic application development, as in our case. Octavia

et al. (2010) describe an approach to design context-aware applications using a

model-based design process, but they do not address multimodal adaptation. The

model-based approach was also considered in (Sottet et al., 2007) for its flexibil-

ity, although run time adaptation is considered only by regenerating the whole UI

and multimodal adaptation is not addressed. MyUI (Peissner et al., 2011) provides

a framework for run-time adaptations while supporting accessibility. However, its

design pattern –based approach can quickly become cumbersome.

Our solution is able to generate multimodal interactive Web applications, which

does not require using any particular API in addition to standard HTML, CSS, and

JavaScript. Such implementations are obtained from the concrete language in

MARIA addressing multimodal user interfaces. It supports various combinations

of graphical and vocal modalities, and the same approach can be easily extended

to address other modalities. At various granularities levels it is possible to indicate

the modalities that should be used to support the considered user interface part.

There are four possibilities indicated through the four CARE properties: comple-

mentarity, which means that part is associated with one modality and part with an-

other one, assignment indicates that only one modality should be considered, re-

dundancy is used to indicate that multiple modalities should be used for the same

user interface part, and equivalence is used when there is the possibility to choose

5 Available at http://giove.isti.cnr.it/tools/MARIAE/home

14

one modality or another for the corresponding user interface elements. Depending

on the modality indicated then the corresponding concrete attributes are specified.

The multimodal user interface generator produces HTML implementations

structured in two parts: one for the graphical user interface and one for the vocal

one. The implementation exploits the Web Speech APIs6 for automatic speech

recognition (ASR) and text-to-speech synthesis (TTS). The generator annotates

the elements that need vocal support. Such annotations are detected through

scripts that are activated when the page is loaded and call the vocal libraries for

ASR and TTS. In particular, each UI element is annotated with a specific CSS

class in the implementation generation, according to the indications of the CARE

properties. If it contains a vocal part (the CARE value is redundancy or vocal as-

signment), the class tts for the output elements and prompt part of interaction ele-

ment is added, while the class asr is added for the input parts of interaction ele-

ments only if the CARE value of this part is equivalent or vocal assignment. The

generated elements are marked with these classes because the multimodal scripts

uses them to identify all the graphical elements having an associated vocal part.

Figure 6 shows an implementation example for multimodal interaction generated

from a concrete user interface (CUI).

Fig. 6. Multimodal generated user interface

6 https://dvcs.w3.org/hg/speech-api/raw-file/tip/speechapi.html

15

15

In Figure 7 we consider an excerpt of the MARIA multimodal concrete specifi-

cation related to the definition of the single choice element corresponding to the

selection of the departure city

Fig. 7 Excerpt of the MARIA multimodal concrete specification

The considered UI element defines the CARE properties for each interaction

part (see Figure7 line 1): the input is equivalent and it means that can be entered

either form the graphical modality or the vocal one; prompt and feedback phases

are both redundant thus they are visible and vocally synthesized.

The single choice element is refined as a drop down list (line 5) from the graph-

ical point of view and as a single vocal selection (line 10) for the vocal specifica-

tion. The vocal part defines the vocal prompt, feedback and the events related to

the vocal interaction.

16

Fig. 8 Excerpt of Multimodal generated code

Figure 8 shows an excerpt of the code generated from the MARIA multimodal

specification in Figure 7. Since the single choice element is specified in a multi-

modal way (see the CARE properties in Figure 7 line 1), the corresponding gener-

ated code is composed of a graphical (Figure 8 from line 1 to 9) and a vocal part

(Figure 8 from line 10 to 26) that is not visible but still accessible from the multi-

modal scripts described before. The label element is annotated with the tts class to

indicate that there is an associated vocal part with the same id plus the tts suffix

(Figure 8 line 2 and line 12). Since the select element is an input element then it is

annotated with the asr class to indicate that there is an associated vocal part (Fig-

ure 8 line 5 and 16).

Figure 9 shows another example of multimodal user interfaces for a Car Rental

application. The first page supports the multimodal search page through which us-

ers can provide the search parameters (also using the vocal modality): for all the

interaction elements the prompt and the feedback part are redundant (thus they are

rendered both graphically and vocally), while the input part is equivalent (users

can choose either modality). The second page is the search result, rendered in a

redundant way as well: all the output elements are both graphical and vocal.

17

17

Fig. 9. Multimodal Car Rental Application.

6 Reverse Engineering User Interface Logical Descriptions

While the previous two sections mainly analysed forward engineering trans-

formations, in this section we analyse ReverseMARIA, a tool able to reverse any

Web page (local or remote) and build the corresponding specification in the

MARIA graphical concrete language, and then obtain its abstract UI specification.

The development of this tool was carried out in order to facilitate the development

of models associated with existing applications. Such models can then be used to

obtain the specification of user interfaces more suitable for different contexts of

use, for example for devices with different features (Paternò et al., 2008).

In general, there are two main approaches to reverse engineering user interfac-

es: pixel-based and code-based. The pixel-based approaches analyse the correla-

tions between the display’s pixels to find the set of interface components (buttons,

forms, …) and the hierarchy amongst them. Although being implementation lan-

guage –neutral (see Dixon et al., 2014 as an example), the main problem of pixel-

based approaches is that they are able to retrieve only information about the visual

presentation of UIs, and not about the behaviour of components because they de-

pend on the hidden source code implementation. Source-code reverse engineering

in turn can be done in two ways: using static analysis through the application

18

code, or analysing the running application in a dynamic way (dynamic analysis). It

is also possible to perform hybrid analysis when static and dynamic analysis are

used together. There are various tools that exploit the static analysis –based ap-

proach (see e.g. Bernardi et al., 2009a; Da Silva, 2010). The benefit of static anal-

ysis is that all the information is stored in the code and ready to be processed, but

it is not able to retrieve the part of the implementation that is not detectable unless

the code is executed. Dynamic analysis solves this problem by analysing the be-

haviour of the user interface during execution. Examples of dynamic analysis are

described in e.g. (Maras et al., 2011) and (Morgado et al., 2012). For Web applica-

tions, a risk related to dynamic approaches is leaving many interface states unex-

plored and thus obtaining an incomplete interface model. For this reason, a hybrid

analysis approach (see (Silva and Campos, 2013), (Li and Wohlstadter, 2008) can

be more thorough with respect to either static or dynamic techniques.

We followed a novel hybrid approach for reverse engineering Web pages to

enable analysing them both when stored on the server and when loaded client–

side, also considering the current internal state of the UI and the user inputs. Our

tool reverse engineers Web pages, taking as input the DOM representation which

can be obtained in two ways: i)getting the input page through an http request to

the server, and generating the DOM from the HTML code using an external li-

brary7; ii)serializing the HTML DOM on the client-side through either the browser

or a proxy. In addition to the extraction of DOM, the tool:

 Associates the significant CSS properties with the related HTML elements;

 For each event associated with an HTML element, determines the type of

event, the JavaScript functions invoked on its activation and their parameters;

 Transforms the result obtained into an equivalent MARIA element;

 Serializes the MARIA elements in an XML file using JAXB8 technology.

7 We used the Java Tidy Parser, available at http://tidy.sourceforge.net/, modi-

fied by us to handle HTML5 tags as well
8 Java Architecture for XML Binding

http://en.wikipedia.org/wiki/Java_Architecture_for_XML_Binding

19

19

Fig. 10: The reverse engineering algorithm

The reverse algorithm

The tool has a first pre-processing phase in which it creates the DOM (see Fig-

ure 10), moves all the JavaScript nodes to an external file, and stores all the CSS

properties that are in external files or in style nodes into a cache memory. At the

beginning it creates the MARIA Interface element, which contains information re-

garding the MARIA version and schema, and a Presentation element, which con-

tains the default page properties taken from the HEAD part of the page (e.g. page

title, etc.). Then, it performs a depth-first search visit of the DOM starting from

the body node. For each node it first analyses the type and its attributes, then adds

the id attribute if it is not set and introduces an attribute used to analyse the nodes’

textual properties. Then, it analyses the neighbouring node to retrieve correlations

between nodes and classifies single nodes according to their content and visual

properties. The result obtained is the logical representation of the DOM structure.

The following example (Yahoo home page) shows how the numbered parts of the

HTML structure and CSS properties of the page shown in Figure 11 are trans-

formed into MARIA descriptions, shown in Figure 12 and 13.

Commentato [MM1]: Questa non è una proprietà dell’head

20

Fig.11 The Yahoo Home page

Figure 12 shows the MARIA elements (a grouping and a description element) that

correspond to the HTML elements indicated by (1) in Figure 11, while MARIA at-

tributes correspond to CSS properties.

Fig. 12 The result corresponding to element 1.

In Figure 13 the red part (2) represents the input text element in the considered

Web page (see Figure 11), while the green part (3) represents the submit button.

Parts 2 and 3 are contained in a relation MARIA element, which represents an

HTML form.

Fig. 13. Results corresponding to elements 2 and 3.

21

21

Part 4 in Figure 11 corresponds to a link, with its label composed of a picture and

a text. This HTML part corresponds to a MARIA navigator element, along with a

connection indicating the target presentation.

7 Reverse Engineering Task Models

In this section we present the ReverseCTT tool, which covers the AbstractUI-

to-TaskModel transformation of the CAMELEON Reference Framework. While

ReverseMARIA is a tool able to reverse any Web page (local or remote) and build

the corresponding specification in the graphical desktop concrete language of

MARIA and then obtain its abstract description, ReverseCTT is able to reverse the

MARIA AUI specification into a CTT task model description. Thus, it has a more

modular approach than WebRevenge (Paganelli and Paternò, 2003b), which aimed

to create task models directly from the Web site code.

The ReverseCTT process is articulated into a number of rules. In order to un-

derstand them it is important to briefly remind the characteristics of the input that

this transformation receives, namely the AUI. Every AUI is structured into a set of

presentations, each presentation has a name attribute. The relationships between

the AUI presentations are modelled through connections, which can be elementary

or complex, and which mainly support navigation between the different presenta-

tions belonging to each AUI. In other terms, connections are the logical/abstract

counterpart of navigational links for web UIs. The structure of each presentation is

articulated into a set of abstract interactors (which can have different types rang-

ing from editing, navigation, choice, to description and activators), and whose re-

lationships are modelled through a set of operators (e.g. grouping, relation, etc.)

defined in the language. Our assumption is that, basically, after a user selects a

presentation, the same pattern repeats, regardless of the specific presentation se-

lected. This pattern is the following (for each presentation): load the (selected)

presentation, handle the presentation (for user’s goals), then select a new presenta-

tion.

Having said that, the idea is that for each AUI presentation a new task model is

created, whose root name is derived by the name of the AUI presentation (by

concatenating “Access” + <AUI presentation name>). The root task just created

has three children: one is an application task (“Load” + <AUI presentation

name>. This application task is followed (through an enabling operator) by an ab-

stract task (“Handle” + <AUI presentation name>), which in turn is disabled by a

second abstract task (“Select new page” + <AUI presentation name>). The result-

ing CTT task model after this step is shown in Figure 14.

22

Fig. 14: From AUI to CTT: the model after the first step of the transformation

In the second step the process analyses the elements of type “elementary connec-

tion” in the AUI, which mainly represent HTML anchors/links. For instance, when

they are anchors, this means that the navigation remains within the same

page/presentation at hand, therefore the “Handle title” node created in the first

step will be expanded. This will be done by and adding two new tasks (an abstract

task and an interactive task) combined through a suspend/resume operator (see

“Handle title page” |> “Select Anchors title” in Figure 15, left part). Then, for

each anchor found, an interactive task is created as child of the lastly created task.

All such interactive tasks will be linked together through a choice operator (see

Figure 15, left part).

Fig. 15: From AUI to CTT: the resulting CTT model after translating elementary connections as-

sociated to HTML anchors (left part) and multiple choice elements (right part)

In the next step, the algorithm continues by analysing the type of the AUI interac-

tors included in the AUI presentation and translating each of them into the corre-

sponding CTT task models. For instance, if the AUI contains an element support-

ing a multiple choice, all the choice elements referring to the same multiple choice

element are translated into interactive tasks linked together through an interleaving

operator (see Figure 15, right part). In Figure 16 a screenshot of the tool showing

an example of translation of an AUI description into a CTT task model specifica-

tion is shown.

23

23

Fig. 16: The Tool for Reverse Engineering CTT task models

Conclusions and Future Work

We have presented an integrated set of model-based languages and associated

tools for supporting design and development of interactive applications also using

various modalities. They can be applied in various domains such as safety-critical

systems (see for example at https://www.eurocontrol.int/ehp/?q=node/1617), ERP,

workflow management systems, and Ambient Assisted Living.

Some of such tools have been used by a broad community since they are pub-

licly available (see http://giove.isti.cnr.it/tools.php). Over time external use has

provided suggestions for small improvements.

Future work will be dedicated to investigating how they can be exploited in

combination with agile methodologies. This represents an interesting challenge

http://giove.isti.cnr.it/tools.php

24

since modelling requires some time and this may conflict with the fast pace adopt-

ed in such methodologies. However, the use of model-based tools able to support

fast prototyping can be able to address this issue. Another important area is how to

exploit task models in analysing user behaviours. Previous tools, such as WebRe-

mUsine (Paganelli and Paternò, 2003a), have addressed how to compare client-

side Web logs representing actual behaviour with desired behaviour represented

by the task model. It can be interesting to extend this approach to analyse broader

human behaviour detected though various sensors and compare it with that de-

scribed by task models in order to identify potential issues.

We also plan to continue to carry out studies in order to investigate improve-

ments for the usability of the languages and the associated tools.

References

(Amalfitano et al., 2008) P. Amalfitano, D. , Fasolino, A.R. , Tramontana, “Reverse Engineering

Finite State Machines from Rich Internet Applications,” Reverse Eng. 2008. WCRE ’08. 15th

Work. Conf., pp. 69–73, 2008.

(Amalfitano et al., 2009) D. Amalfitano, A. R. Fasolino, P. Tramontana, N. Federico, and V.

Claudio, “Experimenting a Reverse Engineering Technique for Modelling the Behaviour of Rich

Internet Applications,” Softw. Maintenance, 2009. ICSM 2009. IEEE Int. Conf., pp. 571–574,

2009.

(Anzalone et al., 2015) D. Anzalone, M. Manca, F. Paternò, C. Santoro: Responsive Task Mo-

delling. EICS 2015: 126-131

(Bernardi et al., 2009) M. L. Bernardi, G. A. Di Lucca, and D. Distante, “The RE-UWA ap-

proach to recover user centered conceptual models from Web applications,” Int. J. Softw. Tools

Technol. Transf., vol. 11, no. 6, pp. 485–501, Nov. 2009.

(Bernardi et al., 2013) M. L. Bernardi, M. Cimitile, and D. Distante, “Web applications design

recovery and evolution with RE-UWA,” J. Softw. Evol. Process, vol. 25, no. 8, pp. 789–814,

Aug. 2013.

(Berti et al., 2004) Berti S., Correani F., Paternò F., Santoro C., The TERESA XML Language

for the Description of Interactive Systems at Multiple Abstraction Leveles, Proceedings Work-

shop on Developing User Interfaces with XML: Advances on User Interface Description Lan-

guages, May 2004, pp.103-110.

(Bouillon et al., 2005) L. Bouillon, Q. Limbourg, J. Vanderdonckt, and B. Michotte, “Reverse

engineering of Web pages based on derivations and transformations,” Third Lat. Am. Web

Congr. LAWEB2005, pp. 3–13, 2005.

(Caffiau et al., 2010) Caffiau, S., Scapin, D., Girard, P., Baron, M., Jambon, F., Increasing the

expressive power of task analysis: Systematic comparison and empirical assessment of tool-

supported task models. Interacting with Computers 22, 6 (2010) 569-593

25

25

(Calvary et al., 2002) Calvary, G., Coutaz, J., Thevenin, D., Bouillon, L., Florins, M., Limbourg,

Q., Souchon, N., Vanderdonckt, J., Marucci, L., Paternò, F., and Others. The CAMELEON ref-

erence framework. Deliverable D 1 (2002).

(Cockburn et al., 2008) A. Cockburn, A. Karlson, B. Bederson, A Review of Overview+Detail,

Zooming, and Focus+Context Interfaces, ACM Computing Surveys, Volume 41 Issue 1, De-

cember 2008, Article No. 2

(Coutaz et al., 1995) J. Coutaz, J., L. Nigay, D. Salber, A. Blandford, J. May, R. Young, Four

Easy Pieces for Assessing the Usability of Multimodal Interaction: the CARE Properties. In:

Proceedings INTERACT 1995, pp. 115–120 (1995)

(da Silva, 2010) C. E. B. e Marques da Silva, “Reverse Engineering of Rich Internet Applica-

tions,” Master Thesis, Minho University, 2010.

(Dixon et al., 2014) M. Dixon, G.Laput, and J. Fogarty, “Pixel-based methods for widget state

and style in a runtime implementation of sliding widgets,” Proc. 2014 Annu. Conf. Hum. factors

Comput. Syst. - CHI ’14, pp.2231-2240, 2014.

(Duarte and Carriço, 2006) Duarte, C., Carriço, L.: A conceptual framework for developing

adaptive multimodal applications. In: Proceedings of IUI 2006, pp. 132–139. ACM Press (2006)

(Eggers et al., 2013) Eggers, J., Hülsmann, A. & Szwillus, G., (2013). Aufgabenmodellierung am

Multi-Touch-Tisch. In: Boll, S., Maaß, S. & Malaka, R. (Hrsg.), Mensch & Computer 2013: In-

teraktive Vielfalt. München: Oldenbourg Verlag. (S. 325-328)

(Ertl, 2009) Ertl, D.: Semi-automatic multimodal user interface generation. In: Proceedings EICS

2009, pp. 321–324. ACM Press (July 2009)

(Gimblett and Thimbleby, 2010) A. Gimblett and H. Thimbleby, “User Interface Model Discov-

ery : Towards a Generic Approach,” EICS ’10 Proc. 2nd ACM SIGCHI Symp. Eng. Interact.

Comput. Syst., pp. 145–154, 2010.

 (Li and Wohlstadter, 2008) P. Li and E. Wohlstadter, “View-based maintenance of graphical

user interfaces,” Proc. 7th Int. Conf. Asp. Softw. Dev. - AOSD ’08, p. 156, 2008.

(Limbourg et al. 2005) Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., and López-

Jaquero, V. UsiXML: A language supporting multi-path development of user interfaces. Engi-

neering Human Computer Interaction and Interactive Systems, (2005), 200–220.

(Maras et al., 2011) J. Maras, M. Stula, and J. Carlson, “Reusing Web Application User-

Interface,” Lect. Notes Comput. Sci., vol. 6757, pp. 228–242, 2011.

(Martinie et al., 2011) Martinie C., Palanque P., Winckler M.: Structuring and Composition

Mechanisms to Address Scalability Issues in Task Models. INTERACT (3) 2011: 589-609

(Morgado et al., 2012) J. a. P. Morgado, I.C., Paiva, A.C.R., and Faria, “Dynamic Reverse Engi-

neering of Graphical User Interfaces,” Int. J. Adv. Softw., vol. 5, no. 3, pp. 224–236, 2012.

(Mori et al., 2002) Mori, G., Paternò, F., and Santoro, C., 2002. CTTE: support for developing

and analyzing task models for interactive system design. IEEE Trans. Softw. Eng. 28, 8 (August

2002), 797-813.

26

(Mori et al., 2004) Mori, G., Paternò, F., Santoro, C.: Design and Development of Multidevice

User Interfaces through Multiple Logical Descriptions. IEEE Trans. Software Eng. 30(8): 507-

520 (2004)

(Octavia et al., 2009) Octavia, J.R., Vanacken, L., Raymaekers, C., Coninx, K., Flerackers, E.:

Facilitating adaptation in virtual environments using a context-aware model-based design pro-

cess. In: England, D., Palanque, P., Vanderdonckt, J., Wild, P.J. (eds.) TAMODIA 2009. LNCS,

vol. 5963, pp. 58–71. Springer, Heidelberg (2010)

(Paganelli and Paternò, 2003 a) Paganelli, L., Paternò, F. Tools for Remote Usability Evaluation

of Web Applications through Browser Logs and Task Models, Behavior Research Methods, In-

struments, and Computers, The Psychonomic Society Publications, 2003, 35 (3), pp.369-378,

August 2003.

(Paganelli and Paternò, 2003 b) Paganelli, L., Paternò, F. A Tool for Creating Design Models

from Web Site Code, International Journal of Software Engineering and Knowledge Engineer-

ing, World Scientific Publishing 13(2), pp. 169-189 (2003).

(Paternò, 1999) F.Paternò, Model-based Design and Evaluation of Interactive Applications,

Springer Verlag, ISBN 1-85233-155-0, 1999.

(Paternò and Santoro, 2000) F. Paternò, C. Santoro, Integrating Model Checking and HCI Tools

to Help Designers Verify User Interfaces Properties, Proceedings DSV-IS’2000, Lecture Notes

in Computer Science N.1946, pp. 135-150, Springer Verlag, Limmerick.

(Paternò, Santoro, and Scorcia, 2008) F. Paternò, C. Santoro, A. Scorcia: Automatically Adapt-

ing Web Sites for Mobile Access through Logical Descriptions and Dynamic Analysis of Interac-

tion Resources. AVI 2008, Naples, May 2008, ACM Press, pp. 260-267

(Paternò, Santoro and Spano, 2009) Paternò, F., Santoro, C., and Spano, L. D. MARIA: A uni-

versal, declarative, multiple abstraction-level language for service-oriented applications in ubiq-

uitous environments. ACM Transaction on Computer Human Interaction 16, 4 (2009), 19:1-

19:30.

(Paternò, Santoro and Spano, 2011) Paternò F. Santoro C. Spano L.D. "Engineering the author-

ing of usable service front ends" in The Journal of Systems and Software 84, pp 1806-1822,

Elsevier Inc. 2011

(Peissner et al., 2012) Peissner, M., Häbe, D., Janssen, D., Sellner, T.: MyUI: generating acces-

sible user interfaces from multimodal design patterns. In: Proceedings EICS 2012, pp. 81–90.

ACM Press (2012)

(Ramon et al., 2013) O. S. Ramon, J. Vanderdonckt, and J. G. Molina, “Re-engineering graphical

user interfaces from their resource files with UsiResourcer,” in IEEE 7th International Confer-

ence on Research Challenges in Information Science (RCIS), 2013, pp. 1–12.

(Raneburger et al., 2013) Raneburger, D., Meixner, G., Brambilla, M.: Platform-Independence in

Model-Driven Development of Graphical User Interfaces for Multiple Devices. ICSOFT (Select-

ed Papers) 2013: 180-195

27

27

(Silva, 2010) J. C. Silva, “The GUISurfer Tool : Towards a Language Independent Approach to

Reverse Engineering GUI Code,” Proceeding EICS ’10 Proc. 2nd ACM SIGCHI Symp. Eng. In-

teract. Comput. Syst., pp. 181–186, 2010.

(Silva and Campos, 2013) C. E. Silva and J. C. Campos, “Combining static and dynamic analysis

for the reverse engineering of web applications,” Proc. 5th ACM SIGCHI Symp. Eng. Interact.

Comput. Syst. - EICS ’13, p. 107, 2013.

(Sottet et al., 2007) Sottet, J.-S., Ganneau, V., Calvary, G., Demeure, A., Favre, J.-M., De-

mumieux, R.: Model-driven adaptation for plastic user interfaces. In: Baranauskas, C., Abascal,

J., Barbosa, S.D.J. (eds.) INTERACT 2007. LNCS, vol. 4662, pp. 397–410. Springer, Heidelberg

(2007)

 (Staiger, 2007) S. Staiger, “Static Analysis of Programs with Graphical User Interface,” 11th

Eur. Conf. Softw. Maint. Reengineering CSMR07, pp. 252–264, 2007.

