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ABSTRACT: 75 

 76 

The paper reports the results of a blind benchmark developed as a part of the preliminary activity of 77 

the research project RiSEM (Italian acronym for Seismic Risk on Monumental Buildings). The 78 

benchmark was aimed at comparing the results obtained with different analytical models and/or 79 

numerical analysis techniques (variational approach, finite elements, macro-elements, equivalent 80 

frame, etc.) for the assessment of the nonlinear structural behavior of two cantilever masonry 81 

elements with different slenderness under increasing horizontal loads. The analyzed elements were 82 

characterized by a deliberately simple geometry, and the comparison between the numerical results 83 

had a twofold purpose. On the one hand, it aimed at estimating the effects of the epistemic 84 

uncertainties that are related to the different models and numerical techniques. On the other hand, it 85 

aimed at reaching a proper evaluation of the influence of parameters describing the post-elastic 86 

behavior of the structural typology analyzed within the research project (specifically, the masonry 87 

towers). Both these objectives were necessary to further proceed with the development of simplified 88 

numerical models needed for the subsequent risk analysis. For both slenderness, the results have 89 

highlighted a significant dispersion of both the displacement capacity and post-peak softening 90 

branch of the capacity curves. In addition, after some elaborations, it has been observed that the 91 

dispersion of the results is proportional to both the shear-force and displacement level. 92 

 93 
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Introduction 102 

 103 

In the field of Civil Engineering, the use of proper mechanical models and numerical codes is 104 

frequently required to perform a broad range of tasks (e.g., damage and/or structural identification, 105 

response predictions to various loads, etc.) whose results constitute an important support input for 106 

decision looking for structural problem solving. Usually solutions offered by the various modeling 107 

techniques are affected by a certain degree of uncertainty, which asks for a proper quantification by 108 

means of reliability analyses. Uncertainties affecting the physical systems can be grouped in two 109 

main categories: aleatory and epistemic uncertainties (Helton and Oberkampf 2004). The first group 110 

collects the uncertainties that are typically due to the randomness of the natural phenomena; these 111 

uncertainties are unavoidable but today they can be efficiently approached within the framework of 112 

probability theory (Lin 1967, Lin and Cai 1995). The second group considers the inaccuracy due to 113 

the lack-of-knowledge. Several sources of inaccuracy can occur and, generally, epistemic 114 

uncertainties collect a wide range of potential incomplete knowledge: the hypotheses underlying a 115 

model (i.e. the ability of the model to describe the system of interest, together with the model 116 

simplifications), the uncertainty in the model parameters, the observation errors, the uncertainty on 117 

the software development, etc. (Der Kiureghian and Ditlevsen 2009). 118 

While aleatory uncertainties are typically irreducible and non-subjective (since they are intrinsic 119 

with the variations associated to the physical environment under consideration and/or with 120 

uncertainties in resistance and other parameters of structural materials), the epistemic uncertainties 121 

are (potentially) reducible since they are substantially due to ignorance or roughness in modeling 122 

the overall physical environment. In last decades the distinction between aleatory and epistemic 123 

uncertainties has become very significant. According to Pan et al. (2011), the factors that may 124 

contribute to originate epistemic uncertainties can be classified as follows: 1) Vagueness 125 

(information that is imprecisely defined, unclear, or indistinct); 2) Non specificity (presence of 126 

several plausible alternatives); 3) Dissonance (existence of totally or partially conflicting evidence); 127 

4) Ignorance. A general discussion on the classification of epistemic uncertainties is reported in Der 128 

Kiureghian and Ditlevsen (2009), where the interested reader is referred. 129 

The increasing interest of the scientific community toward the systematization of this class of 130 

uncertainties, and their treatment, is demonstrated by the growing number of researches (Most 131 

2011; Bradley 2010; Lagomarsino 2011; Tondelli et al. 2012) that spread the concept of epistemic 132 

uncertainties in those fields of engineering where the effects of the lack-of-knowledge were (but 133 

still are) traditionally assessed by heuristic sensitivity approaches. In Earthquake Engineering, the 134 

sources of uncertainty due to the earthquakes characteristics (intensity and record-to-record 135 
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variability) are commonly classified as aleatory uncertainties; while the uncertainties on mechanical 136 

parameters, constitutive models and cyclic behaviors are related to epistemic uncertainties. 137 

Among all the potential sources of epistemic uncertainties, the paper aims to deepen the effects of 138 

the so-called model framework uncertainties, i.e. those uncertainties that are due to the uncertainty 139 

in the underlying science and algorithms of a numerical model or an analytical approach. This class 140 

of epistemic uncertainty is fairly broad, and includes several sources of vagueness/ignorance (Der 141 

Kiureghian and Ditlevsen 2009); among them: incomplete scientific data; lack-of-knowledge about 142 

the factors that control the behavior of the system being modeled; the effects of the hypotheses 143 

affecting the mechanical models; the effects deriving from the use of a model outside the 144 

framework for which it was originally developed. This is, in fact, an actual challenge for the 145 

scientific community since, with the advance of technology, modeling and simulation are 146 

increasingly used in engineering science, and their complexity is correspondingly growing in order 147 

to treat more sophisticated nonlinear physical processes. Nevertheless, more sophisticate modeling 148 

requires more input variables to characterize the physical problem, this leading to additional greater 149 

(epistemic) uncertainties. In addition, numerical models are usually tuned through comparison with 150 

available experimental results (the models are fitted in order to reproduce a reduced number of 151 

measurements identifying the unknown input parameters by an inverse strategy) but, at the same 152 

time, they are employed to predict the structural behavior under exceptional loads, and predictions 153 

for new extreme load cases may be inaccurate. This is true in general, but in case of the modeling of 154 

masonry constructions the problem is amplified by the great, and growing, number of approaches 155 

and numerical models proposed by the research community (Theodossopoulos and Sinha 2013). 156 

Discussion of these uncertainties, and their effects, is herein approached through the results of a 157 

blind benchmark on the seismic assessment of cantilever masonry beams. The benchmark was 158 

developed within one of the research lines of the project “RiSEM - Rischio Sismico negli Edifici 159 

Monumentali” (Seismic Risk on Monumental Buildings), a research project funded by the Tuscany 160 

Regional Administration (Italy) that lasted from 2011 to 2013. The project aimed, through the 161 

creation of a network gathering complementary expertise, at deepening the technical and scientific 162 

knowledge in the field of the seismic assessment of monumental masonry buildings, with specific 163 

reference to historic masonry towers. Taking into account the difficulties that arise in developing 164 

exhaustive experimental campaigns in monumental building by traditional techniques, the project 165 

aimed at developing expeditious methodologies to evaluate the main structural characteristics 166 

needed for the subsequent seismic assessment at territorial scale. 167 

The blind benchmark was focused at assessing the effects of model framework uncertainties on 168 

those parameters that are of primarily relevance for the definition of the seismic vulnerability of this 169 

typology of structures (herein idealized as a cantilever beam). The benchmark compared the results 170 



6 

offered by different analytical models and numerical analysis techniques (variational approach, 171 

finite elements, macro-elements, equivalent frame, etc.) in the definition of the structural behavior 172 

under horizontal loads of two cantilever masonry elements characterized by different slenderness.  173 

The comparison between the results obtained by different models and computer codes has a twofold 174 

purpose. On the one hand, the estimation of the effects of the epistemic uncertainties (which are 175 

herein mainly related to the different analytical models and numerical analysis techniques adopted); 176 

on the other hand, the definitions of the parameters which describe the crisis of the structural 177 

elements (in order to further proceed with the development of simplified numerical models). The 178 

aim, therefore, is not to calibrate the mechanical and numerical parameters in order to reproduce 179 

experimental or reference results, but to evaluate (assuming a minimum common set of material 180 

parameters) the potential errors made in the prediction of the nonlinear behavior of a simple 181 

structural system using different numerical and/or analytical approaches. 182 

The paper is organized as follows: in a first section the blind benchmark is described together with 183 

the employed mechanical parameters, while the numerical models are briefly described in a 184 

subsequent section. After, the results are summarized and critically compared; some conclusions are 185 

reported at the end of the paper. 186 

 187 

Description of the blind benchmark 188 

 189 

The idea was to perform a blind benchmark among several research groups working in the field of 190 

numerical modeling of the nonlinear structural behavior of masonry structures. Each researcher has 191 

chosen the proper modeling technique, based on his own experience. The benchmark is a “blind” 192 

one as no reference with existing data is done: “real” results are not known and they will never be 193 

available, so every researcher has to do his/her best to guess which were the ultimate capacity of a 194 

given structural elements without any proof of what he/she is assessing is correct. The same 195 

reliability level has been given to each of the analyses, even if an “expert a priori judgment” could 196 

have been assessed to those methods and analyses which are known not to be as accurate as others 197 

in facing the proposed problem.  198 

 199 

Geometric characteristics and mechanical properties 200 

The request of the benchmark was the one of determining the ultimate load and displacement under 201 

an increasing horizontal load of two simple cantilever masonry panels (Figure 1), characterized by 202 

different slenderness. The first case study, in particular, was a purely theoretical panel with 203 

dimensions 10 (B, width) × 40 (H, height) × 1 (t, thickness) meters; dimensions in the second case 204 

were given as follows: 4 × 40 × 1 (B × H × t) meters. The two cantilever beams will be respectively 205 
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referred to as [10 × 40] and [4 × 40] in the following. Both panels are forced to undergo a plane 206 

stress or strain state, that is they are mainly compressed and bent normally to their thickness. The 207 

slendernesses of the case studies, λ=H /B=4 for the first case and λ=10 for the second one, were 208 

selected in order to cover a wide enough range of slenderness of existing masonry tower according 209 

to the goals of the research project RiSEM. Such slenderness may range, taking into account Italian 210 

historic towers, between 3 (Pighin tower in Rovigo; Valente and Milani 2016) and 10 (Mangia 211 

tower in Siena; Pieraccini et al. 2014). The differences in slenderness, moreover, allow analyzing 212 

different failure modes (for bending or shear). Both panels were assumed fixed at the base.  213 

The mechanical properties adopted in the models were assumed on the basis of some experimental 214 

results obtained through in-situ shear-compression tests on a historic masonry (Galano and Vignoli 215 

2001; Chiostrini et al. 2003) characterized by a chaotic texture made of stone or mixed stones and 216 

bricks masonry; the thickness of the panels varied from about 300 mm to about 600 mm (Chiostrini 217 

et al. 2003). Elastic parameters are reported in Table 1, together with the compressive and tensile 218 

strength. The weight of the masonry was assumed equal to 18 kN/m3. Even if a suggested value for 219 

Poisson’s coefficient was reported as an input of the benchmark, in several models a null value was 220 

used. The same was for the tensile and shear strength, assumed null in some models. Additional 221 

physical parameters, when required by each modeling approach, are specified in the corresponding 222 

section; they have been chosen and used independently by all the authors in their numerical 223 

modeling. 224 

 225 

The performed analysis 226 

To model the seismic capacity of the panels, nonlinear static analyses with uniform load 227 

distributions, monotonically increased up to failure, were performed. This procedure, now common 228 

in the structural engineering practice, is used to obtain an estimation of the so-called capacity curve 229 

of a structure (to be compared with the seismic demand), which represents a basic datum to predict 230 

both strength and ductility of the structure under consideration. With the aim to compare the 231 

different approaches, the capacity curves were evaluated, and the comparison was performed by 232 

taking directly into account the pushover curves calculated by each code in term of dimensionless 233 

shear, α = V/W, being V the base shear and W the total weight of the beam. The ratio at the base of 234 

the cantilever beam is hence plotted against the ratio between the horizontal displacement d of the 235 

center of mass of the upper section of the beam and the beam height, H, that is by considering as a 236 

displacement parameter the drift θ = d/H (Figure 1). 237 

 238 

  239 
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 240 

Numerical models and analytical approaches 241 

 242 

The blind benchmark aims at quantifying the effects of the epistemic uncertainties associated with 243 

the different modeling approaches (model framework uncertainties). To this end, the benchmark 244 

tests consider a wide class of analytical models and numerical analysis techniques. A first class of 245 

models includes numerical approaches specifically implemented to analyze the seismic response of 246 

masonry buildings (3Muri, 3DMacro), and resorts in different level of assumptions and 247 

simplification. A second class of numerical applications includes some general-purpose finite 248 

element (FE) codes, distributed under both commercial (DIANA, ANSYS) and OpenSource (Code 249 

ASTER) licenses. Each code adopts a different approach to model the nonlinear behavior of 250 

masonry. An additional class of research numerical instruments has been moreover tested (NOSA-251 

ITACA, MADY, SMARTmasonry, VDM), specifically designed and developed within the 252 

Authors’ research groups to model the mechanical behavior of masonry constructions. Although the 253 

selected codes were chosen with the aim to cover a wide and representative range of tools 254 

commonly employed (or that can be employed) to reproduce the specific nonlinear behavior of 255 

masonry and masonry structures, additional approaches are today available. Among them, it is 256 

noteworthy, f.i., the combined finite discrete element method (FDEM) (Munjiza 2004). In addition, 257 

with specific reference to the general purposes FE codes, worth noting are also, even if not 258 

employed in this research, the codes ABAQUS (Tarque et al. 2014), ADINA (Bennati et al. 2005) 259 

and LUSAS (Adam et al. 2010). To report an exhaustive review is almost impossible, and the 260 

interested reader is referred to Theodossopoulos and Sinha 2013 and Asteris et al. 2015. 261 

Depending on the considered numerical approach, the problem has been analyzed by using one or 262 

two-dimensional elements (with the assumption of plane stress or strain problem, depending on the 263 

model framework), in other cases by using three-dimensional brick elements, depending on the 264 

characteristics of the specific code. An overview of such numerical methods, as well as a brief 265 

description of their specific theoretical aspects, is provided in order to allow easy comparison.  266 

 267 

3Muri 268 

The software 3Muri is a user-friendly computer code specifically proposed for the seismic analysis 269 

of regular masonry buildings through pushover analyses. The code, originally developed at the 270 

University of Genoa (Italy) and subsequently implemented in the commercial software 3Muri 271 

(Cattari et al. 2004; Lagomarsino et al. 2013), uses an equivalent frame modeling (EFM) approach 272 

according which the structure is idealized as a combination of one-dimensional macro-elements and 273 

is analyzed as a framed structure. Therefore, each wall of the masonry structure is subdivided into 274 
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piers and spandrels, modeled with the one-dimensional macro-elements, which are connected by 275 

rigid nodes. The in-plane behavior of the macro-elements, both piers and spandrels, is assumed as 276 

elastic-perfectly plastic, with shear resistance and ultimate displacement obtained according the 277 

provisions of the Italian Code (NTC2008, 2008). In particular, the ultimate shear resistance is 278 

evaluated as the minimum between the resistance values for bending and diagonal cracking (in case 279 

of existing structures); while the ultimate displacement is conventionally assumed as a percentage 280 

of the height of the macro-element, considering the corresponding typology of collapse. The 281 

software, being based on the EFM approach, needs a limited number of degrees of freedom (DOFs) 282 

and it is hence possible to analyze large regular masonry structures with a reduced computational 283 

effort. Herein some attempts were done in order to employ the code to analyze a cantilever masonry 284 

beam. The application is hence interesting in order to evaluate the effects deriving from the use of a 285 

model outside the framework for which it was originally developed. 286 

The [10 × 40] cantilever beam as a first attempt was discretized by using only one macro-element 287 

(Figure 2a). Due to the fact that the distribution of the horizontal load is composed of a single force 288 

on the top of the macro-element, this discretization does not allow the reproduction of the uniform 289 

load distribution. In order to obtain a uniform load distribution, a sensitivity analysis was hence 290 

performed dividing the structure into several horizontal levels, starting from the initial single 291 

macro-element (1×1) until 12 macro-elements (1×12) (Figure 2a - d). The pushover curves show a 292 

convergence on both the collapse multiplier and the drift obtained with a 12 macro-elements 293 

discretization, which allowed the reproduction of the uniform horizontal load distribution: the 294 

collapse multiplier α converges to the value of 0.20, while the maximum drift θ is approximately 295 

equal to 4‰. Starting from the (1×12) discretization, a subsequent sensitivity analysis was carried 296 

out in order to assess the influence of the slenderness of each macro-element, dividing them along 297 

the base length. In the starting discretization (1×12 configuration), the macro-element dimensions 298 

are 10.00 × 3.33 m, with slenderness he/be=0.33 (being he the height of the elements and be their 299 

base). From this configuration, 2×12 (Figure 2e), 3×12 and 4×12 (Figure 2f) configurations were 300 

analyzed. In the last configuration the size of each macro-element was 2.50 × 3.33 m, with a 301 

slenderness he/be=1.33. The comparison of the pushover curves showed that both the collapse 302 

multiplier and the initial stiffness (up to about the 60% of the maximum multiplier) are the same in 303 

each discretization. On the contrary, a dispersion was observed with respect to the ultimate drift, 304 

with a stabilization around the value of 8‰ with the model (4×12). This model was hence assumed 305 

as representative of the cantilever beam: it provides a collapse multiplier equal to 0.193 and a 306 

maximum displacement equal to 8.3‰ of the total height (Table 5). The first elements that collapse 307 

are the ones at the ground level where the axial load decreases during the evolution of the analysis, 308 

reducing the shear strength of the considered elements. 309 
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With respect to the [4 × 40] cantilever beam, as in the previous case, the division into 12 levels 310 

along the height showed a convergence of the collapse multiplier to the value of 0.075, while the 311 

maximum drift is approximately 9.5 ‰. Starting from this discretization (1×12 configuration), the 312 

influence of the slenderness of the macro-elements on the behavior of the beam was again 313 

investigated. In the first model (1×12 configuration) the dimensions of macro-element were 314 

4.00×3.33 m, with slenderness he/be=0.83. Subsequently, 2×12, 3×12 and 4×12 configurations were 315 

evaluated. In the last configuration the size of each macro-element was 1.00 × 3.33 m, with a 316 

slenderness he/be=3.33. As in the previous case both the collapse multiplier and the initial stiffness 317 

are the same in each discretization. The ultimate drift ranges from a value of 9.5‰ (1×12) up to a 318 

value equal to 15.1‰ (2×12, 3×12, 4×12). In this case, the representative model was the one with 319 

the 2×12 macro-elements discretization, where the elements dimension is 2.00×3.33 m with 320 

slenderness equal to 1.67 (similar to the one of the beam [10 × 40]). The representative (2×12) 321 

model provides a collapse multiplier equal to 0.076 and a maximum displacement equal to 15.1‰ 322 

of the total height. Even in this case, the collapse occurs due to the excessive bending at the base: 323 

the vertical load became low with respect to compressive strength, the horizontal loads originate 324 

tensile flexural cracking at left corner, and the panel begins to behave as a nearly rigid body rotating 325 

around the toe with rocking. 326 

 327 

3DMacro 328 

The code 3DMacro, originally developed at the University of Catania (Italy) and subsequently 329 

implemented in the commercial software 3DMacro, allows the analysis of the seismic behavior of 330 

masonry buildings by using a two-dimensional macro-elements approach (Caliò et al. 2005). The 331 

macro-element, in its first version, was a plane pinned quadrilateral element built with four rigid 332 

edges. Two diagonal springs connect two opposite corners to simulate the masonry wall shear 333 

behavior. Additional discrete distributions of nonlinear springs, with limited tension strength, are 334 

employed to connect the rigid edges of neighboring macro-elements to simulate its interaction. 335 

Springs normal to the sides of the macro-elements are introduced to simulate the axial and bending 336 

deformability and to account for the crushing and flexural collapses, while parallel springs simulate 337 

the sliding along macro-elements. The whole set of springs allows to properly simulate the 338 

nonlinear in-plane behavior of masonry buildings through the effective reproduction of the main in-339 

plane collapse mechanisms of the masonry (flexural, shear-diagonal and shear-sliding failure). To 340 

account for the out-of-plane collapse behavior of masonry walls the plane macro-element was 341 

recently enriched by introducing a third dimension with additional nonlinear springs and additional 342 

DOFs (Caliò et al. 2008; Caliò et al. 2012). Both the plane two-dimensional macro-element and the 343 

enriched three-dimensional one allow a discrete equivalent representation of a masonry structure by 344 
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assembling the macro-elements: a masonry panel, considering its dimensions, can be modeled with 345 

a unique macro-element or with a mesh of elements. Because of the reduced number of DOFs (in 346 

case of meshing with two-dimensional macro-element, each panels has 4 DOFs) the approach 347 

requires a suitable computational demand. Furthermore, only few parameters are required to 348 

characterize the nonlinear behavior of the masonry material: the elastic Ew and shear Gw modulus, 349 

the masonry compressive strength fwc and the characteristic shear strength of the masonry τk. 350 

Additional parameters required by the code are the distance between the interface nonlinear springs 351 

and their ductility (both in tension and compression). Through the code, the seismic behavior of a 352 

masonry building is evaluated by performing pushover analyses. 353 

As a first step, in order to reproduce the uniform distribution of the lateral load, a discretization 354 

along the height of the cantilever beams was performed. A parametric analysis was conducted by 355 

varying the height of the macro-elements and additional analyses were performed to investigate the 356 

influence of the horizontal dimension of the macro-elements and of the parameters defining its 357 

behavior (such as the distance between the interface springs). It was verified that the analyzed 358 

results, such as the collapse multiplier of the lateral load as well as the ultimate horizontal drift, are 359 

not significantly influenced by the variations of the investigated parameters (i.e. both the pushover 360 

curve and the collapse mechanism do not change). As a final mesh, the discretization of cantilever 361 

beam in macro-elements involves the use of 16 macro-elements (dimensions 5×5 m) for the [10 × 362 

40] cantilever beam (Figure 3c) and 8 macro-elements (dimensions 4×5 m) for the [4×40] cantilever 363 

beam. As a second step, several parametric analyses were performed to assess the stability of the 364 

results with respect to the spacing between the interface nonlinear springs and their ductility. After 365 

the test, in both cases, the distance between the interface nonlinear springs was assumed equal to 25 366 

cm (i.e. about 20 spring each side). Suggested default values were maintained for the spring 367 

ductility. The model of the cantilever beam [10 × 40] provides a collapse multiplier equal to 0.212 368 

and an ultimate drift equal to about 4 ‰ (Table 5). For the model of the cantilever beam [4 × 40] 369 

the collapse multiplier is about 0.076 and the ultimate drift about 10‰ (Table 6). In both cases, the 370 

collapse occurs due to a flexural mechanism at the basement; both panels develop tensile cracks in 371 

the interfaces. Figure 3 shows the collapse mechanism for the beam [10 × 40]. 372 

 373 

DIANA 374 

The commercial FE code DIANA was used to model the two slender cantilever masonry beams 375 

using three-dimensional (3D) 6-node isoparametric wedge elements (TP18L, Figure 4a). These 376 

elements were selected to avoid mesh dependence of the cracks. After meshing, the final 3D 377 

numerical model of the first cantilever beam [10 × 40] (Figure 4b) consisted of 1,804 nodes, 2,400 378 

3D TP18L elements, corresponding to 5,280 DOFs. The final 3D numerical model of the second 379 
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cantilever beam [4 × 40] consisted of 820 nodes, 960 3D TP18L elements, for a total of 2,400 380 

DOFs. Displacements of the base nodes were fixed and, in addition, displacements of nodes in the 381 

transversal direction were also set equal to zero to analyze the plane strain state problem. 382 

In order to model the cracking/crushing behavior, two models based on total strain (stress is defined 383 

as a function of strain) are implemented in DIANA. The first model is the Total Strain Crack 384 

Rotating (TSCR) where the stress-strain relationship is evaluated in the principle direction of the 385 

strain vector. The second one is the Total Strain Crack Fixed (TSCF), where the stress-strain 386 

relationship is evaluated in a fixed coordinate system which does not change once cracking is 387 

initiated. Both models are smeared-crack models according to which the localized cracking 388 

phenomenon is simulated in a disseminated way (taking advantage of the mesh-assembly of the FE 389 

model in order to facilitate numeric computation) and both models allow the possibility of forming 390 

two orthogonal cracks in each integration point. In this study the TSCF was employed since it has 391 

been shown that this model is more appropriate for most engineering purposes (Lourenço et al. 392 

1998). The compressive uniaxial behavior is characterized by a linear stress-strain relation until 393 

about one third of the compressive strength, followed by a parabolic relation for the hardening 394 

regime until reaching the compressive strength and another parabolic branch for the post-peak 395 

softening according the Thorenfeldt model (Thorenfeldt et al. 1987). This model was chosen since 396 

its formulation does not depend on the fracture energy and only the compressive strength and the 397 

Young’s modulus are required. The tensile uniaxial behavior is modeled according the linear 398 

tension softening model of Hordijk with exponential softening behavior in tension (Hordijk, 1991) 399 

assuming a constant shear retention factor ß. This factor accounts for the residual strength (or 400 

friction) between the two surfaces of a crack. 401 

The values of the inelastic parameters required by the models were selected to reproduce the 402 

uniaxial compressive and tensile strengths reported in Table 1, and are summarized in Table 2. 403 

The fracture energy (corresponding to the integral of the stress-displacement diagram for uniaxial 404 

stress and equating the energy needed to create a unit area of a fully developed crack) was estimated 405 

by: 406 

mN
E
hfG

w

wt
f /97.38

739.0

2

=
⋅
⋅

=  (1) 

 407 

where mVh 75.03 ==  denotes the crack bandwidth and V is the volume of the element. It is 408 

noteworthy that, using a smeared-crack model, the fracture energy must be normalized according to 409 

an equivalent length h in order to obtain mesh-objective results with respect to the mesh refinement. 410 

The crack bandwidth h depends on the elements type, size, shape, integration scheme, etc. For the 411 
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models employed within this study, DIANA assumes the default crack bandwidth h to be the cubic 412 

root of the volume (all of the elements are solid elements).  413 

The model of the cantilever beam [10 × 40] provides a collapse multiplier equal to 0.195 and an 414 

ultimate drift equal to about 8 ‰ (Table 5). For the model of the cantilever beam [4 × 40] the 415 

collapse multiplier is about 0.084 and the ultimate drift about 22.5‰ (Table 6). The cracking 416 

pattern and vertical stresses corresponding to the maximum base shear obtained with the [10 × 40] 417 

cantilever masonry beam are reported in Figure 4c.  418 

 419 

Code ASTER 420 

The two slender cantilever masonry beams were also modeled by means of Code ASTER (acronym 421 

of “Analyses des Structures et Thermo-mécanique pour des Études et des Recherches”), an Open 422 

Source FE solver employed for numerical simulations of materials and structures developed at the 423 

department “Analyses Mécaniques et Acoustiques” of Électricité de France (EDF). The 424 

implementation of the code began in 1989, to meet the internal needs of EDF in the nuclear 425 

industry, and it was released under the terms of the GNU GPL license in 2001. Under the Linux 426 

operative system, Code ASTER is directly integrated with the platform Salome-Meca (a multi-427 

purpose platform for Pre- and Post-Processing for numerical simulation). The validation of the code 428 

was extremely careful, many comparisons with experimental results and benchmarks with other 429 

codes have been carried out by independent bodies by EDF. The code is particularly robust, 430 

containing about 1,500,000 lines of code (written both in Fortran and in Python). 431 

Through the code the two cantilever beams were modeled by using three-dimensional (3D) 8-node 432 

isoparametric elements and, after meshing, the final 3D numerical model of the first cantilever 433 

beam [10 × 40] (Figure 5a) consisted of 11,907 nodes, 9,600 3D elements, totalling 23,400 DOFs. 434 

The final 3D numerical model of the second cantilever beam [4 × 40] (Figure 5b) consisted of 6,237 435 

nodes, 4,800 3D elements, corresponding to about 12,250 DOFs. Displacements of the base nodes 436 

were fixed, and displacements of nodes in the transversal direction were zeroed to account for a 437 

plane strain state problem. 438 

The concrete damage model of Mazars (Mazars and Pijaudier-Cabot 1989) was employed to model 439 

the masonry nonlinear behavior. The model refers to the continuum damage mechanics, according 440 

to the progressive degradation of material stiffness, due to the propagation of micro-cracks, is 441 

described through a continuous approach. The damage model of Mazars is an isotropic scalar 442 

damage model that assumes the damaged stiffness tensor as a scalar multiple of the initial elastic 443 

stiffness tensor. The damage is characterized by a single scalar variable, the damage index, ranging 444 

between 0 (no damage) and 1 (complete loss of strength). Due to the assumption of isotropic 445 

behavior, the stiffness degradation in different directions decrease proportionally and is independent 446 
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of the loading direction. In addition, being a single scalar damage index model, it assumes that the 447 

Poisson’s ratio is not affected by damage (the relative reduction of all the stiffness coefficients is 448 

the same). Strictly speaking, isotropic Mazars constitutive model could not be satisfactory when 449 

used for modeling masonry structures, where orthotropic or anisotropic modeling should be used. 450 

Nevertheless, it has to be observed that in many practical applications this approach is normally 451 

retained as acceptable despite the level of approximation. 452 

Mazars damage evolution law is expressed in an explicit form, relating damage parameter and 453 

scalar measure of largest reached strain level in material, taking into account the principle of 454 

preserving of fracture energy Gf. The model of Mazars is implemented in the code in two versions. 455 

The first is a local approach where the stress at a point depends only on the deformation in the same 456 

point. The second is a nonlocal version where local stresses depend not only on the deformation of 457 

that point, but on the average strain defined in the neighborhood of the point. In this study the local 458 

version was employed, being less computational demanding. Hence a preliminary sensitivity 459 

analysis on the mesh size was performed to avoid stagnation of the results toward non-physical 460 

solution (i.e. objectivity of the results with respect to the finite element mesh was investigated). 461 

Apart the two elastic parameters (the Young’s modulus and the Poisson’s coefficient) the definition 462 

of the model of Mazars requires 6 additional parameters, as reported in Table 3. The values of the 463 

parameters were selected reproducing a uniaxial test on a cube with a material with the compression 464 

and tension strength reported in Table 1. It is worth noting that, with this model, cracks at a 465 

microscopic point have no particular direction and a macroscopic crack is then defined as the locus 466 

of damage points. In fact, one of the advantages of such a model is the independence of the analysis 467 

with respect to cracking directions, which can be simply identified a posteriori once the nonlinear 468 

solution is obtained. 469 

The damage map at collapse is reported (both for the [10 × 40] and the [4 × 40] cantilever masonry 470 

beams) in Figure 5, while the principal compressive stresses are reported in Figure 6. 471 

 472 

ANSYS 473 

The commercial FE code ANSYS was used to model the two masonry beams by means of three-474 

dimensional 8-nodes isoparametric finite elements. The classical smeared-crack approach was 475 

employed and the mechanical nonlinear behavior of masonry was modeled via two approaches.  476 

In a first case the Willam-Warnke (WW) failure criterion was employed (Willam and Warnke 477 

1975). This failure criterion, initially adopted for concrete, accounts for both cracking and crushing 478 

failure modes through a smeared model. Despite the needing for five constants to define the 479 

criterion, in most practical cases (thereby when the hydrostatic stress is limited by √3 fc) the adopted 480 

failure surface is specified by means of only two constants: Ft and Fc (the uniaxial tensile and 481 
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compressive strength respectively). A shear transfer coefficient β is introduced (depending on the 482 

crack status: open - βt - or re-closed - βc -) to take into account a shear strength reduction factor for 483 

those subsequent loads inducing sliding (shear) across the crack face.  484 

In a second case the Willam-Warnke failure criterion was combined with the Drucker-Prager 485 

plasticity criterion (DP) originally proposed for geo-materials (Drucker and Prager 1952). In this 486 

case, as a result, the material behaves as an isotropic medium with plastic deformation, cracking and 487 

crushing capabilities. The material parameters required to define the model, the cohesion c and the 488 

internal angle of friction φ, are introduced in such a way that the circular cone yield surface of the 489 

DP model corresponds to the outer vertex of the hexagonal Mohr-Coulomb yield surface. The 490 

constitutive parameters used for the DP criterion and the WW failure domain are reported in Table 491 

4 (Model 1 combines the WW failure criterion with the DP plasticity one, while Model 2 adopts the 492 

WW failure criterion alone). It is noteworthy to highlight the difference of the tensile and 493 

compressive strengths of the DP criterion (ftDP = 0.34 N/mm2, fcDP = 5 N/mm2) and those of the 494 

WW failure criterion (Ft = 0.24 N/mm2, Fc = 6.0 N/mm2). The combination of these parameters 495 

allows for an elastic-brittle behavior in case of biaxial tensile stresses or biaxial tensile-compressive 496 

stresses with low compression level. On the contrary, the material is elastoplastic in case of biaxial 497 

compressive stresses or biaxial tensile-compressive stresses with high compression level (Betti et al. 498 

2016). 499 

The load control Newton-Raphson method was selected to solve the nonlinear equations and the 500 

analyses were carried out by assuming a plane strain state; the Poisson's coefficient was assumed 501 

equal to zero. Analyses were eventually conducted with and without geometric non linearities. 502 

Preliminary tests were conducted to estimate the optimal mesh size, and the adopted size was 503 

0.5×0.5×0.5 m. Consequently, after meshing, the final 3D numerical model of the first cantilever 504 

beam [10 × 40] consisted of 5,103 nodes, 401 3D Solid65 elements, corresponding to 15,120 DOFs. 505 

The final 3D numerical model of the second cantilever beam [4 × 40] consisted of 2,187 nodes, 506 

1,280 3D Solid65 elements, for a total of 6,470 DOFs. Increasing the number of finite elements did 507 

not lead to any variation of results.  508 

The cracking pattern obtained at collapse is reported, both for the [10 × 40] and the [4 × 40] 509 

cantilever masonry beam in Figure 7, while the principal compressive stresses are reported in 510 

Figure 8. 511 

 512 

NOSA – ITACA 513 

The FE code NOSA (acronym of “NOn-Linear Structural Analysis”) has been developing since the 514 

1980s, by the Mechanics of Materials and Structures Laboratory of ISTI – CNR in Pisa, Italy 515 

(Lucchesi et al. 2008), with the aim of testing new constitutive models for material. Within the 516 
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code, masonry is modeled as a homogeneous nonlinear elastic material with zero tensile strength 517 

and either infinite or finite compressive strength (Del Piero 1989; Di Pasquale 1992) according to 518 

the framework of no-tension (masonry-like) materials. The NOSA code has been successfully 519 

applied to the static analysis of several historical masonry buildings (Lucchesi et al. 2008; Girardi et 520 

al. 2015) and more recently to the seismic and dynamic analysis of masonry towers, beams and 521 

domes (Binante et al. 2012). 522 

The constitutive model and numerical techniques for solving equilibrium problems of masonry 523 

constructions implemented in NOSA are described in Lucchesi et al. (2008). Briefly, masonry is 524 

modeled as a nonlinear hyperelastic material with Young’s modulus, E>0, Poisson ratio ν (where  525 

0 < ν < 1/2), zero tensile strength and maximum compressive stress 0 0σ < . Sym indicates the 526 

vector space of symmetric tensors, while Sym- and Sym+ stand for the subsets of Sym constituted by 527 

the negative and positive semidefinite tensors, respectively. It is assumed that the infinitesimal 528 

strain, E∈ Sym, is the sum of an elastic part, eE ∈  Sym, and two mutually orthogonal inelastic 529 

parts, fE ∈  Sym+ and cE ∈  Sym-, respectively called fracture strain and crushing strain. It is 530 

moreover assumed that the Cauchy stress T depends linearly and isotropically on Ee . Finally, some 531 

orthogonality conditions are imposed among tensors, to describe the elastic behavior of the 532 

material, which cracks and crushes without dissipating energy. By exploiting the coaxiality of E, T, 533 

Ef  and Ec , the stress tensor T satisfying the constitutive equation can be expressed as a nonlinear 534 

function of the total strain E. The explicit expression for T(E) can be found in Lucchesi et al. 535 

(2008), together with its derivative with respect to E. These expressions are then implemented in 536 

the Newton-Raphson scheme for solving the nonlinear algebraic system derived from discretisation 537 

of the equilibrium problem.  538 

In recent years NOSA code has been further enhanced within the framework of the NOSA – 539 

ITACA project (www.nosaitaca.it/en) by integrating the NOSA code with the Open Source 540 

platform Salome-Meca (employed to provide the pre-post processing environments for defining 541 

geometries and visualizing results). The NOSA code has been substantially modified and equipped 542 

with new finite elements, thus extending its application capabilities. An efficient implementation of 543 

numerical methods for constrained eigenvalue problems, which enables conducting modal structural 544 

analyses while taking into account the features of master-slave constraints (tying or multipoint 545 

constraints), has been also embedded in NOSA (Porcelli et al. 2015). 546 

The two slender masonry structures in the benchmark test have both been modeled via the NOSA – 547 

ITACA code using eight-node plane stress elements. The assumed mechanical properties are those 548 

reported in Table 1, except for the uniaxial tensile strength fwt, which has set equal to zero. For the 549 

beam [4 × 40], a mesh composed of 640 elements has been used, while 1600 elements were used to 550 

http://www.nosaitaca.it/en�
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discretize the [10 × 40] beam. After the dead load has been applied, the uniform lateral load is 551 

subsequently increased incrementally and the nonlinear equilibrium equations are solved by means 552 

of the Newton-Raphson scheme. It has been shown in Lucchesi et al. (2008) that the solution to the 553 

equilibrium problem of masonry-like materials is unique in terms of stress, while special attention is 554 

required when computing the displacements field. The results of the present pushover analyses have 555 

been carefully tested for different meshes, element types and load histories; the analyses were 556 

continued until numerical stability of the results was guaranteed. Figure 9 shows the distribution of 557 

the σzz component of the stress tensor at the final step in the two cases.  558 

Figure 10 and Figure 11 instead show the εf
xx and εf

zz components of the fracture strain tensor, which 559 

reveal the distribution of cracked material in the structures and, lastly, Figure 12 shows the 560 

distribution of the isostatic lines in the structures at collapse. The limit compressive strength is 561 

attained in only a small portion of the structures. However, the high values reached by the fracture 562 

strains, as well as their distribution in the structures, reveal the presence of a large triangular shaped 563 

portion of masonry that is almost inactive, starting at about one-third the panels height on the 564 

loaded side and reaching the opposite right corner. The high values of the fracture strain εf
xx on the 565 

panel right side are induced by the concentration of vertical stresses in masonry, in the absence of 566 

horizontal restraints. These phenomena are also confirmed by the distribution of the isostatic lines 567 

(Figure 12). 568 

 569 

MADY 570 

MADY is a non-commercial code developed at the University of Florence (Italy) to perform 571 

nonlinear (static and dynamic) analyses of masonry structures with predominantly flexural 572 

behavior. It relies in a finite element discretization of the structures that are modeled through one-573 

dimensional elements. To describe the constituent masonry, the nonlinear elastic constitutive 574 

equation for beams presented in Lucchesi and Pintucchi (2007) and Pintucchi and Zani (2009) is 575 

used. It is developed in terms of generalized stress and strain, accounting for the axial stress 576 

component alone and under the Euler-Bernoulli hypothesis. The material is assumed unable to 577 

withstand tensile stresses and with limited compressive strength. Specifically, the model has been 578 

developed for both solid and hollow rectangular cross-sections in order to study masonry arches as 579 

well as free-standing masonry towers.  580 

The FE procedure used to solve the equations of flexural and axial equilibrium, which in the 581 

nonlinear range become coupled, make use of finite beam elements with three DOFs at each node: 582 

axial and transverse displacements, plus rotation. The transverse displacement and rotation are 583 

approximated using cubic interpolation, i.e. Hermite shape functions, which guarantee the 584 

continuity of both of them, while linear shape functions are adopted for the axial displacement.  585 
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To obtain the solution, standard numerical procedures – the Newton-Raphson method and the 586 

Newmark one for dynamic problems – are then used, which however require defining the element 587 

stiffness matrix. The geometric nonlinearity can also be accounted for, as detailed in Pintucchi and 588 

Zani (2009). 589 

The model enables to perform static, pushover and nonlinear dynamic analysis with a minimum of 590 

computational effort (Pintucchi and Zani, 2014). Moreover, for these one-dimensional masonry 591 

structures, the uniqueness of the solution to static and dynamic problems has been proved in 592 

Lucchesi et al. (2012) and Lucchesi et al. (2015) respectively. Enhancements of the model can also 593 

be found in Pintucchi and Zani (2016). 594 

The two cantilever beamns have been analyzed with MADY using 45 one-dimensional elements; 595 

increasing the number of finite elements did not lead to any significant variation of results. In the 596 

first step of the analyses the vertical loads are applied, then the lateral loads are added 597 

incrementally. Herein, the geometric nonlinearity has not been accounted for. The distribution of 598 

the axial stress at collapse is reported (both for the [10 × 40] and the [4 × 40] cantilever masonry 599 

beams) in Figure 13, while the obtained distribution of the damage is showed in Figure 14. 600 

 601 

SMARTmasonry 602 

SMARTmasonry is a code specifically developed at the University of Florence (Italy) to perform 603 

hybrid modelling of masonry structures, allowing the mixing in the same structural model of 604 

Discrete Elements and Finite Element discretized continuum. The latter can be possibly related to a 605 

certain micro-structural modelling (Salvatori and Spinelli, 2010). In the proposed modelling for the 606 

masonry cantilever, only rigid blocks put one on top of the other are used. The tower is discretized 607 

in 20 rigid blocks, interacting through nonlinear interfaces. The models and their deformed 608 

configuration at failure are reported in Figure 15a for the [10 × 40] cantilever beam and Figure 15b 609 

for the [4 × 40] one. More refined discretizations result in no appreciable improvements in the 610 

output quantities herein taken into consideration (first flexural bending mode and pushover capacity 611 

curve). 612 

Kinematic effects related to the displacements of centres of gravity of each single block have been 613 

included in the co-rotational adopted model (large displacements and small deformation of the 614 

interfaces between blocks). The constitutive model for the interface is nonlinear elastic in the 615 

normal direction (with a limited compressive strength and a null tensile resistance), while it follows 616 

an elastic - perfectly plastic law along the tangential direction (according to a Mohr-Coulomb 617 

yielding criterion and non-associated flow rule). Damage in compression is related to the normal 618 

strain level (corresponding to a volume-specific fracture energy). As a matter of fact, in the present 619 

analyses the friction is large enough for not having any slip movement in the investigated structures. 620 
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In a first stage of the loading process, the self-weight is incrementally applied through a non-linear 621 

load-controlled static procedure. In the final configuration, the tangent stiffness matrix is evaluated 622 

and the modal analysis is performed. Then a nonlinear horizontal pushover analysis is performed, 623 

by using an indirect displacement-controlled static procedure, where the displacement at the top of 624 

the cantilever beam is evaluated by taking into account also the rotational contribution of the 625 

topmost block. The same model has been also used to investigate effects of material uncertainties 626 

(Salvatori et al. 2015) and of record-to-record variability in case of incremental nonlinear dynamic 627 

analyses (Marra et al. 2016). 628 

The analyses are carried out with and without compression damage. The latter case is useful to 629 

highlight the nonlinear geometric effects (especially in the slenderer [4 × 40] structure).  630 

Among the parameters previously described, the tensile strength has not been used, while a friction 631 

coefficient 0.4 is assumed. In the analyses where the damage is included, an ultimate strain εu, 632 

corresponding to a value of compressive strain ductility µε = εu/εe = εuE/fwc = 2.0, is considered. 633 

This is a realistic value for historical masonry and corresponds to a volume-specific fracture energy 634 

in compression GcV = 25.0 kJ/m3. 635 

The capacity curves reported in Figure 18 and Figure 19 follow the same path in the models with 636 

and without damage. Of course, in presence of damage the capacity curves terminate at smaller 637 

values of the top displacement. All curves show a progressive stiffness reduction due to the 638 

reduction of the resisting section and progressive compression crushing. When compressive failure 639 

does not occur earlier, after a peak where maximum load capacity is attained, a “softening” branch 640 

arises due to geometrically nonlinear effects (this is particularly evident for the slenderer [4 × 40] 641 

structure, in absence of damage; Figure 19). When damage is not included the conventional ultimate 642 

displacement is assumed correspondingly to a reduction of the base shear of 15% with respect to the 643 

peak. This non-realistic condition could be reached if the strain ductility were µε = 90.1 for the [10 644 

× 40] structure and µε = 7.8 for the [4 × 40] one. 645 

 646 

Variational Damage Model (VDM) 647 

The variational approach to fracture was firstly proposed by Francfort and Marigo in their 648 

pioneering paper (Francfort and Marigo 1998). They supposed that the formation and propagation 649 

of cracks in brittle materials are governed by a minimization problem where the energy functional is 650 

given by the sum of a bulk term and a Griffith’s fracture term (linearly proportional to the area of 651 

the fracture surface). Later on, a variational approximation of the free-discontinuity problem 652 

(Francfort and Marigo 1998) was proposed in (Bourdin et al. 2000), essentially to bypass the 653 

numerical difficulties in representing discontinuous fields. The energy of the approximated problem 654 

is a two-field functional, depending on the displacement field u(x): Ω→R3, and on the scalar field 655 
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s(x): Ω→[0,1], which represents a damage parameter, with s = 1 for sound material and s = 0 for 656 

fractured material. In an evolution process, s can only decreases, thus avoiding material healing. 657 

The form of the functional, as proposed in Pham et al. (2011), is: 658 
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where the first term in the integral represents the elastic strain energy, which is an increasing 659 

function of both s and u. The second term is the damage energy, a decreasing function of s, and the 660 

third term is a non-local damage contribution, with w1=w(1) and l an intrinsic material length scale 661 

related to the width of the damaged regions. In the minimization of Eq. (2) is engaged a competition 662 

between the first integral, which is minimized for fixed u by s = 0, and the second one, minimized 663 

by s = 1. But the transition from s = 0 to s = 1 is associated with a non-null value of ∇s, indeed 664 

penalized in the second integral. Here, we assume: 665 
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where the displacement gradient is +∇u , if 0 div >u  and −∇u , if 0 div ≤u . C is the elasticity 666 

tensor of an isotropic linear elastic material. Since s affects the elastic energy only when the volume 667 

increases, the material experiences damage only in the case of tensile loadings, maintaining 668 

undamaged in the case of compressive loadings. The damage energy density is the linear function 669 

),1()( 1 swsw −=  (4) 

where 1w  is related to the energy toughness cG  through the relation )24/(31 lGw c= , deduced in 670 

(Pham et al. 2011). The expression relating the internal length l and the width D  of the so-called 671 

process zones, i.e., that thin strip where the transition from s = 0 to s = 1 occurs, is 2/2Dl =  672 

(see Pham et al., 2011 for details). In such a way, all the constitutive parameters are related to 673 

quantities, which can be easily measured from experiments. 674 

The model based on the energy in Eq. (2) mainly reproduces the evolution of cleavage fracture 675 

(mode I fracture) due to tensile loadings, typical of brittle materials. However, in the last years, 676 

many variations of the functional reported in Eq. (2) were proposed to capture different fracture 677 

mechanisms. In Del Piero et al. (2007), the problem was reformulated in the most general finite 678 

elasticity setting. This extension was justified by the fact that, usually, fracture is preceded by large 679 

deformations. It has permitted to avoid problems of material interpenetration, and has furnished a 680 

more realistic description of fracture caused by compressive loads. In Lancioni and Royer-Carfagni 681 

(2009), a decomposition of the bulk energy into deviatoric and spheric parts has allowed to 682 

reproduce the formation of shear bands, and their coalescence in mode II cracks, typical of quasi-683 

brittle materials. The behaviours under tensile and compressive loads have been differentiated in 684 

Freddi and Royer-Carfagni (2010). 685 
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The functional in Eq. (2) is numerically minimized by means of incremental energy minimization, a 686 

powerful mathematical tool used in many problems of fracture and plasticity (Del Piero et al. 2013; 687 

Lancioni 2015; Lancioni et al. 2015). At each time increment, an iterative scheme is performed, 688 

consisting in finding the local minimizers of the functional in Eq. (2), keeping s and u fixed, 689 

respectively. Since the functional reported in Eq. (2) is quadratic with respect to u and s, separately, 690 

the numerical algorithm is based on a sequential quadratic programming scheme.  691 

Herein simulations are performed under the hypothesis of generalized plane stress. The geometric 692 

and material characteristics are assumed according the values reported in Table 1. Further quantities 693 

required by the variational model are the fracture toughness Gc=0.039 N/mm and the internal length 694 

l=750 mm. The numerical code includes a mesh refinement, which operates in those parts of the 695 

body where cracks develop. In these parts the refined mesh size is x∆ =100 mm. The loading step is 696 
510−=∆q  N/mm2. 697 

The obtained ductility is equal to 2.94 for the [10 × 40] beam, and 3.12 for the [4 × 40] one. 698 

The fracture field s for different values of the load q are plotted in Figure 16 and Figure 17 for the 699 

[10 × 40] and [4 × 40] beams, respectively. The evolution of the fracture is similar in the two 700 

simulations. The fracture forms in the left bottom corner and evolves horizontally toward the central 701 

part, at the base of the wall. Then multiple cracks form on the left side and develop toward the 702 

centre of the beam base. It has been observed that, in the case of the [4 × 40] beam, the model gives 703 

a diffuse representation of the fracture, and it does not distinguish single fractures, because of the 704 

small width of the beam, comparable with the width of the damage localization zone.  705 

 706 

Synthesis of the results and comparison 707 

The analysis of the pushover curves allow to make comparison among them, and the following 708 

parameters were specifically estimated: i) the initial elastic stiffness (ke); ii) the maximum base 709 

shear (Vmax) and the correspondent load peak multiplier (αmax=Vmax/W); iii) the secant stiffness at 710 

60% of maximum load (ks); iv) the ultimate base shear (Vu) and the ultimate load multiplier 711 

(αu=Vu/W); v) the elastic displacement (de) and the elastic drift (θe=de/H); vi) the ultimate 712 

displacement (du) and the corresponding ultimate drift (θu=du/H); vii) the ductility (μ=du/de). In 713 

addition, when the code allows for this calculation, the fundamental period (T1) was calculated. 714 

The initial elastic stiffness, the secant stiffness, the maximum base shear and the ultimate 715 

displacement can be directly evaluated from the pushover diagram. The ultimate displacement has 716 

been estimated as the displacement corresponding to a shear value equal to 0.85·Vmax in the post-717 

peak softening branch of the pushover curve; for those models where damage has not been taken 718 

into account, the maximum reached displacement has been considered, i.e. the one just before the 719 

absence of convergence in the analysis. The ultimate load multiplier, the elastic drift and the 720 
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ductility were evaluated, when possible, through the estimation of the equivalent bilinear system. 721 

The bilinear system was evaluated according to an equivalent energy criterion and taking into 722 

account an initial elastic branch with a stiffness equal to the secant stiffness corresponding to a load 723 

level equal to 0.60·Vmax. For each quantity the mean value and the coefficient of variation (ratio 724 

between the standard deviation and the mean value) have been calculated (Table 5 and Table 6). 725 

 726 

Comparison of the pushover curves 727 

Results of both case studies ([10 × 40] in Table 5 and [4 × 40] in Table 6), show a good agreement 728 

with respect to the evaluation of the initial elastic stiffness, the fundamental period, and the ultimate 729 

base shear (the coefficient of variation is lower than 10%). On the contrary, differences are visible 730 

with respect to the estimation of the ultimate displacement (and drift, and consequently ductility). 731 

Comparisons of the pushover curves are reported in Figure 18 and Figure 19. As general remark, all 732 

the codes agree with respect to the evaluation of the stress conditions. With respect to the evaluation 733 

of the ultimate displacement, the numerical instruments can be grouped as follows: 734 

 735 

a) codes 3Muri and 3DMacro evaluate the collapse load in accordance with the Italian 736 

recommendation (DM2008, 2008) based on a selected ultimate drift; 737 

b) codes DIANA, Code ASTER, VDM, and SMARTmasonry (with damage) provide an estimation 738 

of the ultimate displacement according to the adopted damage models that allows for the 739 

evaluation of the softening branch of the pushover curve; this estimation depends on the 740 

parameters ruling the evolution of the damage (e.g. fracture energy); 741 

c) the code ANSYS performs control force analysis hence is able to reproduce the initial branch of 742 

the pushover curve, but not the descending branch; then the ultimate drift is the one 743 

corresponding to the maximum base shear; 744 

d) codes NOSA-ITACA and MADY do not have control on the ultimate displacement, which can 745 

be carried on until numeric convergence is reached. The analyses shown in the paper have been 746 

performed in force control mode and carried on until numerical stability of the results is 747 

guaranteed; 748 

e) the code SMARTmasonry (without damage) originates a capacity curve where the reduction of 749 

strength of 85% is reached due to geometrical effects at very large values of the drift. 750 

 751 

All the codes, but especially those adopting a damage model, provide estimations of the ultimate 752 

load quite different one from each other, highlighting a very strong dependence of the collapse 753 

displacement on the adopted constitutive model. The issue of the displacement capacity for masonry 754 

panels with dependence on their slenderness and compressive state is addressed by Orlando et al. 755 
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2016. This is a very critical point since, for instance, the Performance-Based Earthquake 756 

Engineering (PBEE) or the Capacity Spectrum Method (CSM) take into account displacements as 757 

verification parameters.  758 

 759 

Further discussion and additional analyses 760 

The results showed a significant dispersion associated with deformation capacity and post-peak 761 

softening branch of the pushover curves. This dispersion can significantly affect the predicted 762 

collapse performance affecting, on its turn, the confidence in structural analysis results. This 763 

demonstrated that model framework uncertainties (the uncertainties that are due to the uncertainty 764 

in the underlying science and algorithms of a model) play a key role when employed to assess the 765 

nonlinear behavior of masonry structures.  766 

Starting from the available results, some additional analyses were performed in order to better 767 

characterize the ultimate displacement of the two examined beams and to estimate the reliability 768 

level connected to the epistemic uncertainty. 769 

Firstly, a mean collapse curve has been determined, by considering the i-th average load multiplier 770 

αi,avg obtained among the mi analyses still running at each of the i-th displacement level di, i.e.  771 

𝛼𝑖,𝑎𝑣𝑔 =
1
𝑚𝑖

�𝛼𝑗(𝑑𝑖)
𝑚𝑖

𝑗=1

 (5) 

with: 772 

𝑚𝑖 = �𝛿𝑖𝑗

𝑛

𝑗=1

,      𝛿𝑖𝑗 = �
1 𝑖𝑓   𝑑𝑚𝑎𝑥,𝑗 ≥ 𝑑𝑖
0 𝑖𝑓   𝑑𝑚𝑎𝑥,𝑗 < 𝑑𝑖

�   (6) 

where n=10 (in case of SMARTmasonry, only the case with damage has been considered) is the 773 

number of the approaches, dmax,j the maximum displacement estimated for the j-th approach and 774 

αj(di) the load multiplier of the j-th approaches at the i-th displacement di. 775 

As, for a given force value, each analysis provides different values of the displacement d (some 776 

analyses are force controlled, so that no fixed values for displacements are assumed), all curves 777 

have been resampled at given values of displacements di; the spacing ∆𝑖= 𝑑𝑖+1 − 𝑑𝑖,   𝑖 = 1,⋯ ,𝑁 778 

has been selected as 1/100 of the maximum displacement obtained among all curves (N=100). 779 

At the same time, a curve reporting for each displacement level di the value of the number mi of 780 

analyses still considering an ultimate displacement dmax,j higher than the considered displacement 781 

level di has been evaluated. Once the obtained histogram has been normalized with respect to the 782 

total number n of the performed analysis, it can be fitted in a way of representing an exceedance 783 

probability distribution of the di values (reliability curve); the obtained curve then represents the 784 

reliability level of the displacement level di. In other words, if mi analyses out of n assert that this 785 
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displacement can be reached and if the same degree of soundness is given to each individual 786 

analysis, it means that this value can be viewed as the value which has a probability 787 

𝑃𝑟𝑜𝑏[𝑑𝑚𝑎𝑥 ≥ 𝑑𝑖] =
𝑚𝑖

𝑛
 (7) 

of being exceeded. The value corresponding to an exceedance probability of 0.50 (median) has been 788 

selected as the most probable collapse value for the examined structures. As shown in Figure 20, the 789 

two examined cases exhibit a similar behavior and the proposed curve can be retained as a 790 

reliability function for the ultimate displacement; the spreadiness of the distribution makes evidence 791 

of the large variability of this parameter. 792 

A second analysis has been performed by analyzing the standard deviation values σi at each di level; 793 

the parameter accounts for the dispersion of the results given by the various analyses at an assigned 794 

displacement level, and it is meaningful only if mi >2. 795 

The obtained σi values have then been normalized with respect to mean value αi,avg previously 796 

determined, then obtaining the function describing the evolution of the Coefficient of Variation 797 

(CoV) at increasing displacement levels: 798 

(𝐶𝑜𝑉)𝑖 =
𝜎𝑖

𝛼𝑖,𝑎𝑣𝑔
 (8) 

In Figure 21, the mean curve and the curves corresponding to αi,avg + σi and αi,avg - σi have been 799 

reported. In the same graphs, the values of (CoV)i as a function of di have been reported, too. 800 

Due to the strong analogy between the graphs related to [10 × 40] and [4 × 40] beams, a 801 

normalization has then been proposed, by scaling the ordinates and the abscissae of the two curves 802 

with respect to the values at the elastic limit, i.e. to the values αel and del corresponding to the end of 803 

an equivalent elastic branch. The latter has been determined, for each analysis, as the displacement 804 

value at which the difference between the actual force level and the one obtained by using the 805 

elastic stiffness (i.e. the value corresponding to the initial tangent stiffness) overpass a given 806 

threshold fixed at 5%. 807 

With respect to this normalization, the two curves show a very similar trend (as reported in Figure 808 

22). It can be stated that both the analyses give the same normalized ultimate load level, which can 809 

be estimated as  𝛼𝑎𝑣𝑔 / 𝛼𝑒𝑙  ≅ 1.7 (i.e. the ultimate load is 1.7 times the load at the elastic level), 810 

while the ultimate normalized displacement, which plays the role of the ductility of the beams, 811 

depends on the geometry; in the investigated cases, the average ductility (with respect to the 812 

performed analyses) can be assumed equal to about d/del  ≅ 6. 813 

 814 
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It is indeed interesting to observe that, in normalized form, the evolution of the coefficient of 815 

variation with respect to the displacement level has the same shape for both cases, so a common 816 

expression can be proposed as a reasonable approximation of the obtained results: 817 

(𝐶𝑜𝑉)𝑖 = 0.025 + 0.01
𝑑𝑖
𝑑𝑒𝑙

 (9) 

or, in an equivalent form: 818 

𝜎𝑖 = 𝜎(𝑉𝑖/𝑉𝑒𝑙) =
𝑉𝑖
𝑉𝑒𝑙

�0.025 + 0.01
𝑑𝑖
𝑑𝑒𝑙

� (10) 

The obtained line is reported as a dashed line in the graphs in Figure 22.  819 

 820 

This result is quite relevant as it assesses that the obtained average curve has a growing standard 821 

deviation (i.e. a lowering confidence level) which is proportional to both the load level and the 822 

displacement level. 823 

The same level of soundness can be attributed to the result of a single analysis to account for the 824 

epistemic uncertainty. As a first approximation, the obtained value for the standard deviation could 825 

be attributed to each of the curves obtained by the different analyses to take into account the 826 

uncertainties related to the specific mechanical and numerical model.  827 

 828 

Concluding remarks 829 

 830 

The paper reported the results of a blind benchmark aimed at comparing the results obtained with 831 

different analytical models and/or numerical analysis techniques (macro-elements, equivalent 832 

frame, finite elements, energy approach, etc.) for the assessment of the structural behavior of a 833 

series of slender masonry elements under increasing horizontal loads. The comparison, aimed at 834 

deepening the effects of the so-called model framework uncertainties, showed a good agreement in 835 

terms of all the main parameters that define the capacity curve, except for the ultimate drift, whose 836 

determination is crucial to the audit: it is subject to uncertainties that are reflected on the entire 837 

chain of seismic risk assessment. 838 

As a matter of fact, all the approaches, but especially those adopting a damage model, provide 839 

estimations of the ultimate load quite different one from each other, highlighting a very strong 840 

dependence of the collapse displacement on the employed constitutive model. This is a very critical 841 

point, since deformation capacity has a direct consequence in decision-making, because both the 842 

assessment (or retrofitting) of existing structures and the design of new buildings depend on seismic 843 

capacity predictions: for instance, the Performance-Based Earthquake Engineering (PBEE) or the 844 

Capacity Spectrum Method (CSM) take into account displacements as verification parameters. This 845 

enlightens that, at the present state of knowledge, engineering expert judgment still plays a strategic 846 
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role to assess the seismic safety of masonry structures when a nonlinear numerical code is 847 

employed.  848 
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 1042 

 1043 

Table 1. Mechanical parameters: Ew (elastic modulus); v (Poisson’s coefficient); fwc (uniaxial 1044 

compressive strength); fwt (uniaxial tensile strength); τk (characteristic shear strength). 1045 

 1046 

Ew 
(N/mm2) 

ν fwc 
(N/mm2) 

fwt 
(N/mm2) 

τk 
(N/mm2) 

1500 0.25 5.00 0.24 0.293 

 1047 

 1048 

Table 2. DIANA model: additional mechanical parameters. 1049 

 1050 

Poisson’s coefficient ν 
(-) 

Fracture energy Gf  
(N/m) 

crack bandwidth h 
(m) 

shear retention factor β 
(-) 

0.00 38.97 0.75 0.35 

 1051 

 1052 

Table 3. Code ASTER model: additional mechanical parameters required to define the Mazars 1053 

model. 1054 

 1055 

Parameter Value 

κ0 damage threshold [-] 3.2 10-5 

Ac shape coefficient (compression asymptote) [-] 1.0 

Bc shape coefficient (compression peak) [-] 2.2 103 

At shape coefficient (tensile asymptote) [-] 0.8 

Bt shape coefficient (tensile peak) [-] 2 104 

β coupling coefficient of the damage in compression and tension [-] 1.06 

 1056 

  1057 
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 1058 

 1059 

Table 4. ANSYS model: additional parameters for DP yield criterion and WW failure surface. 1060 

 1061 

Nonlinear Material parameters Model 1 (DP&WW) Model 2 (WW) 

Drucker-Prager yield criterion parameters 

c (cohesion) 0.5384 MPa / 

η (flow angle) 65.69° / 

φ (friction angle) 43.79° / 

f
cDP

 (uniaxial compressive strength) 5.0 MPa / 

f
tDP

 (uniaxial tensile strength) 0.34 MPa / 

Willam-Warnke failure criterion parameters 

F
c
 (uniaxial compressive strength) 6 MPa 5 MPa 

F
t
 (uniaxial tensile strength) 0.24 MPa 0.24 MPa 

β
c
 (shear transfer coeff. for close cracks) 0.75 0.75 

β
t
 (shear transfer coeff. for open cracks) 0.25 0.25 

 1062 

 1063 

 1064 

 1065 



 1066 

 1067 

 1068 

Table 5. Cantilever beam [10 × 40]. Fundamental period (T1), initial elastic stiffness (ke), peak multiplier (αmax=Vmax/P), ultimate drift (θu=du/h), secant 1069 

stiffness (ks), elastic drift (θe=de/h), ductility (μ=du/de), ultimate load multiplier (αu=Vu/P). 1070 

 1071 

  

3Muri 3DMacro DIANA Code 

ASTER 

ANSYS NOSA MADY VDM SMARTmasonry Mean CoV 

(1) (2) (3) (4) 

T1 [s] 0.99 - 1.13 1.13 1.14 1.14 1.33 1.09 - 1.14 1.14 1.14 0.0768 

ke [kN/mm] 34.78 36.50 37.22 36.80 37.10 37.23 36.79 39.06 37.00 36.32 36.32 36.83 0.0275 

αmax [-] 0.193 0.212 0.195 0.212 0.208 0.199 0.178 0.217 0.203 0.206 0.206 0.203 0.0542 

θu [‰] 8.30 4.03 8.30 14.10 10.63 6.90 11.31 18.46 5.00 8.60 51.19 13.35 0.9888 

ks [kN/mm] 33.52 35.90 37.15 - - - 35.11 - - 30.66 30.65 33.83 0.0806 

θe [‰] 2.44 2.46 2.18 1.30 5.28 1.32 2.16 1.63 1.70 2.74 2.69 2.35 0.4661 

μ [-] 3.39 1.64 3.80 10.85 8.05 5.24 5.24 11.33 2.94 3.08 19.06 6.78 0.7655 

αu [-] 0.182 0.196 0.184 0.212 0.208 0.199 0.168 0.209 0.203 0.194 0.187 0.195 0.0692 

          Note: (1) DP&WW criteria; (2) WW criterion; (3) with damage; (4) without damage. 1072 
 1073 

  1074 
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 1076 

 1077 

Table 6. Cantilever beam [4 × 40]. Fundamental period (T1), initial elastic stiffness (ke), peak multiplier (αmax=Vmax/P), ultimate drift (θu=du/h), secant 1078 

stiffness (ks), elastic drift (θe=de/h), ductility (μ=du/de), ultimate load multiplier (αu=Vu/P). 1079 

 1080 

  

3Muri 3DMacro DIANA 

 

Code 

ASTER 

ANSYS NOSA MADY VDM SMARTmasonry Mean CoV 

(1) (2) (3) (4) 

T1 [s] 2.25 - 2.73 2.68 2.76 2.76 2.73 2.71 - 2.84 2.84 2.70 0.0659 

ke [kN/mm] 2.38 2.43 2.48 2.24 2.48 2.48 2.48 2.50 2.53 2.29 2.29 2.42 0.0415 

αmax [-] 0.076 0.0756 0.084 0.071 0.082 0.077 0.073 0.087 0.088 0.068 0.068 0.077 0.0923 

θu [‰] 15.10 10.00 22.46 11.38 18.21 12.35 25.25 43.80 15.00 24.61 34.61 21.16 0.4968 

ks [kN/mm] 2.31 2.43 2.47 - - - - - - 2.13 2.13 2.29 0.0701 

θe [‰] 5.55 5.04 5.64 4.23 3.33  3.31 5.00 6.50 4.80 5.43 5.25 4.92 0.1973 

μ [-] 2.72 1.98 3.98 2.69 5.47 3.73 5.00 6.73 3.12 4.53 6.59 4.23 0.3759 

αu [-] 0.071 0.076 0.079 0.071 0.082 0.077 0.068 0.083 0.080 0.065 0.063 0.074 0.0930 

          Note: (1) DP&WW criteria; (2) WW criterion; (3) with damage; (4) without damage. 1081 
 1082 

 1083 

 1084 



 1085 

 1086 

 1087 

 1088 
 1089 

Figure 1. The cantilever masonry beam. 1090 
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 1094 

 1095 

      
(a) (b) (c) (d) (e) (f) 

 1096 

Figure 2. 3Muri: discretization of the [10 × 40] cantilever masonry beam (pink elements denote 1097 

those collapsed at the end of the pushover analysis). 1098 
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 1105 

Figure 3. 3DMacro: discretization of the [10 × 40] cantilever masonry beam and corresponding 1106 

collapse configurations. 1107 

 1108 

  1109 



39 

 1110 

 1111 
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(a) (b) (c) 

 1113 

Figure 4. DIANA: (a) 6-node isoparametric TP18L element; (b) discretization of the [10 × 40] 1114 

cantilever masonry beam; (c) cracking pattern and vertical stresses corresponding to the maximun 1115 

base shear for the [10 × 40] cantilever beam. 1116 
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(a) (b) 

 1123 

Figure 5. Code ASTER: damage map at collapse for (a) [10 × 40] and (b) [4 × 40] cantilever 1124 

masonry beams. 1125 
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 1132 

Figure 6. Code ASTER: principal compressive stresses (MPa) at collapse for (a) [10 × 40] and (b) 1133 

[4 × 40] cantilever masonry beams. 1134 
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Model 1 (DP&WW) Model 2 (WW) Model 1 (DP&WW) Model 2 (WW) 

(a) (b) 
 1141 

Figure 7. ANSYS: cracking pattern at collapse for (a) [10 × 40] and (b) [4 × 40] cantilever masonry 1142 

beams. 1143 
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Model 1 (DP&WW) Model 2 (WW) Model 1 (DP&WW) Model 2 (WW) 

(a) (b) 
 1149 

Figure 8. ANSYS: principal compressive stresses (MPa) at collapse for (a) [10 × 40] and (b) [4 × 1150 

40] cantilever masonry beams. 1151 
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 1158 

Figure 9. NOSA-ITACA: distribution of the σzz (N/m2) stress tensor component at collapse obtained 1159 

for (a) [10 × 40] and (b) [4 × 40] cantilever masonry beams. 1160 
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 1167 

Figure 10. NOSA-ITACA: distribution of the εf
xx component of the fracture strain tensor at collapse 1168 

obtained for (a) [10 × 40] and (b) [4 × 40] cantilever masonry beams. 1169 
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 1176 

Figure 11. NOSA-ITACA: distribution of the εf
zz component of the fracture strain tensor at collapse 1177 

obtained for (a) [10 × 40] and (b) [4 × 40] cantilever masonry beams. 1178 
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 1185 

Figure 12. NOSA-ITACA: distribution of the isostatic lines at collapse obtained for (a) [10 × 40] 1186 

and (b) [4 × 40] cantilever masonry beams. 1187 
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 1193 

Figure 13. MADY: distribution of the axial stress σz  (MPa) at collapse for (a) [10 × 40] and  1194 

(b) [4 × 40] cantilever masonry beams. 1195 
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 1202 

Figure 14. MADY: distribution of the damage map at collapse for (a) [10 × 40] and (b) [4 × 40] 1203 

cantilever masonry beams. 1204 
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(a) (b) 
 1210 

Figure 15. SMARTmasonry: deformed shape at collapse for (a) [10 × 40] (displacement 1211 

amplification factor 47.0) and (b) [4 × 40] (displacement amplification factor 7.5) cantilever 1212 

masonry beams. 1213 

 1214 

  1215 



51 

 1216 

 1217 

 1218 

 1219 
 1220 

Figure 16. VDM: damage field s at different values of the drift θ  for the [10 × 40] cantilever 1221 

masonry beam. 1222 
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 1229 
 1230 

Figure 17. VDM: damage field s at different values of the drift θ  for the [4 × 40] cantilever 1231 

masonry beam. 1232 
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 1239 
 1240 

Figure 18. Comparison of pushover curves for [10 × 40] cantilever beam. 1241 
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 1248 

Figure 19. Comparison of pushover curves for [4 × 40] cantilever beam.  1249 
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 1255 

  
(a) (b) 

 1256 

Figure 20. Mean capacity curve for (a) [10 × 40] and (b) [4 × 40] beams. Collapse points for the 1257 

various approaches are reported as crosses onto the curve, median value of the collapse 1258 

displacement is reported as a heavy circle. The histogram below reports, at each displacement level, 1259 

the number of analyses still active together with its curve fitting.  1260 
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 1266 

Figure 21. Mean capacity curves (μi) for (a) [10 × 40] and (b) [4 × 40] beams. Median collapse 1267 

point is reported as a solid circle onto the curve, dashed curves represent the curves μi+σi and μi -σi. 1268 

The histogram below reports, at each displacement level, the standard deviation of the value 1269 

according to the curves, referring to still active analyses. 1270 
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 1277 

Figure 22. Normalized mean capacity curves (μi)  for (a) [10 × 40] and (b) [4 × 40] beams. Median 1278 

elastic-limit and collapse points are reported as solid rhombus and circle onto the curve, red dashed 1279 

curves represent the normalized curves μi+σi and μi -σi. The graph below reports the CoV for the 1280 

nondimensional curve (blue dashed line is the approximation reported in the text). 1281 
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