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ABSTRACT
In Service-Oriented Computing, contracts provide a way to charac-
terise the behavioural conformance of a composition of services,
and to guarantee that the results do not lead to spurious composi-
tions. Adding variability leads to a product line of services capable
of adapting to customer requirements and to changes in the context
in which they operate. To this aim, we extended a previously intro-
duced formal model of service contracts. In particular, we included:
(i) feature-based constraints and (ii) four classes of service requests
to characterise di�erent variants of service agreement. We then
exploited Supervisory Control Theory to de�ne an algorithm to
synthesise an orchestration of services that satis�es: (i) all feature
constraints of the service product line, and (ii) the maximal number
of service requests for which an agreement can be reached. More-
over, such an orchestration of a service product line, whose number
of products is potentially exponential in the number of features, can
be synthesised from only a subset of its products. A prototypical
tool supports the developed theory. In this short paper, we provide
the intuition for our approach and illustrate it by means of a Hotel
reservation service product line.
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1 INTRODUCTION
Service-oriented computing (SOC) [20] is a paradigm for distributed
computing based on the publication, discovery and orchestration of
services. Web applications reuse services in di�erent con�gurations
over time, e.g. due to the need to adapt to changes in the environ-
ment or to the resources of the devices on which they run. Therefore
the idea to organise them into dynamic service product lines (DSPL)
was �rst explored a decade ago in the SOAPL workshop series at
three consecutive SPLC conferences (cf., e.g., [22, 26, 27]), followed
by applications for Web stores, smart grids, services as used in grid
computing and e-Government public licensing services [1, 12, 18].

On a di�erent line, service contracts [3] have been introduced
to formally describe the behaviour of services in terms of their
obligations (i.e. o�ers of the service) and their requirements (i.e.
requests by the service). Contracts characterise an agreement among
services as an orchestration (i.e. a composition) of them based on the
satisfaction of all requirements through obligations. Orchestrations
can dynamically adapt to the discovery of new services, to service
updates and to services that are no longer available.

In [5], contract automata were introduced as a formal model
for service contracts. They represent either single services (called
principals) or compositions of services based on orchestrated or
choreographed coordination [6]. The goal of each principal is to
reach an accepting (�nal) state by matching its requests with corre-
sponding o�ers of other principals. Through service contracts it is
then possible to characterise the behaviour of an ensemble of ser-
vices. The notion of agreement then characterises safe executions
of services (i.e. all requests matched with corresponding o�ers).

In [8], contract automata were equipped with variability mech-
anisms to distinguish necessary (2) from permitted (3) requests,
mimicking uncontrollable and controllable actions, respectively,
from Supervisory Control Theory (SCT) [16]. O�ers were only
permitted as dictated by agreement. Contract agreement guaran-
teed the ful�lment of all necessary requests and negotiated the
maximum number of permitted requests that could be ful�lled
without spoiling the service composition. However, none of the
above formalisms natively support product line modelling.

In this paper, we brie�y introduce featured modal contract au-
tomata (FMCA) for modelling contract-based DSPL. These FMCA
extend the aforementioned modal service contract automata (MSCA)
from [8] with the possibility to de�ne: (i) feature constraints on
service actions (requests and o�ers); and (ii) urgent, greedy and
lazy necessary service requests. Features are identi�ed as service
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actions, and each FMCA represents a behavioural product line of
services equipped with feature constraints. A feature constraint
can be any of the constraints used in feature models, including
cross-tree constraints, de�ned as its corresponding propositional
formula (cf. [10, 25]). Each product is identi�ed as a truth assign-
ment satisfying the feature constraints.

Urgent, greedy and lazy requests are, in decreasing order of
relevance, necessary service requests with further restrictions on
their satis�ability. Similarly to [8], permitted requests are optional
and can thus be discarded for reaching an agreement.

The main contributions of the approach illustrated in this short
paper are as follows: (i) we informally describe a new formalism for
modelling contract-based DSPL; (ii) an example shows the bene�ts
of adopting the proposed approach; (iii) we discuss an algorithm
for synthesising an orchestration of a service product line model
that allows for dynamic adaptation. The result of the latter is
the so-called maximally permissive controller (mpc) satisfying all
feature constraints, all variants of necessary service requests and
the maximal number of permitted requests.

A main feature of FMCA relies on the synthesis of an orches-
tration for a service product line model. Indeed, the number of
products of a product line is in general exponential in the num-
ber of features, and the problem of generating an orchestration of
services is to scale to larger number of features. To this aim, the
synthesis algorithm of FMCA organises the products in a partial
order. This allows to visit a potentially smaller set than all products,
making the approach scale. This (partial) order relates each product
to its sub- and super-products, i.e. those products in which more or
less, respectively, variability has been resolved. Products in which
not all variability has been resolved are also known as subfamilies.

Finally, the theory presented in this paper has been implemented
in an open-source prototypical tool [7] (cf. Fig. 3), with a demo and
the source available at https://github.com/davidebasile/FMCAT/,
and its applicability is further demonstrated by a running example.

2 ILLUSTRATING THE APPROACH
We informally illustrate the use of FMCA with the help of an intu-
itive example. We consider a simple franchise of Hotel reservation
systems and model it as a service product line. Such a system con-
sists of clients interested in booking a room in a Hotel, which o�ers
either credit card or cash payments and possibly emits an invoice
according to the Hotel feature model depicted in Fig. 1a.

2.1 Feature model
A feature model de�nes all products of a product line and it has a
corresponding propositional formula φ over (primitive) features,
called feature constraint. We identify features as actions (requests
and o�ers) performed by services. Moreover, each product is iden-
ti�ed by its set of required (literals interpreted as true in φ) and
forbidden features (literals interpreted as false in φ). All required
features must be present in the service, while none of the forbidden
features may be present.

For a lighter presentation in this short paper, we consider only
the Hotel product line’s feature model depicted in Fig. 1, i.e. we
ignore the Client’s feature models. Generally, when di�erent service
contracts specify di�erent feature models, their composition takes
the conjunction of the corresponding feature models. This paves

the way to the speci�cation of DSPL, by adding new features to the
existing feature model through composition. Moreover, services
and their feature models are composed at binding time. We remark
that the approach does scale to larger numbers of features [9].

The Hotel’s feature model allows two alternative payment meth-
ods: cash or card. Moreover, any product o�ering cash payment,
requires the invoice feature to be present. Indeed, the Hotel fran-
chise (i.e. the product line) wants to prevent any of its hotels (i.e. a
product) to perform o�-book payments. Thus the feature constraint
corresponding to the feature model of Fig. 1 is:

φ = ((card ∧ ¬cash) ∨ (cash ∧ ¬card )) ∧ (¬cash ∨ invoice )

The three products de�ned by the feature model are depicted in
Fig. 1, together with a super-product p1 in which the presence of
the invoice feature has not yet been resolved (unresolved features
will be activated by the orchestration, if possible). These are the
products satisfying φ (e.g. card = true and cash = false satis�es
φ, denoted by φ |=p1 true). Products can be ordered according to
their required and forbidden actions. In Fig. 1, p2 and p3 are sub-
products of p1, written p2 � p1 and p3 � p1. Indeed, the required
and forbidden actions of p1 are contained in those of p2 and p3. This
ordering is exploited for e�ciently verifying all products.

2.2 Behavioural contracts
A service contract characterises service behaviour in terms of of-
fer and request actions, drawn respectively as overlined and non-
overlined labels, while permitted transitions are depicted as dotted
(cf. Fig. 2). We extend contracts from [8] by indicating “when” (i.e.
in which states) necessary requests have to be matched. Therefore,
we partition the set of necessary service requests into urgent (2u ),
greedy (2д ) and lazy (2` ) requests. Urgent requests are the most
restrictive and must be matched whenever they can be executed.
Greedy requests must be matched as soon as possible, i.e. their
execution can be delayed until a match is available. Lazy requests
are the least restrictive and only require to be matched somewhere.

In the Hotel reservation service scenario, we assume two classes
of Clients: business and economy. In Fig. 2a, the contract of a
BusinessClientG is depicted. It starts by requiring to book a room
(room2u ). The Client request in this case is urgent, due to its
business priority. Once the room is selected, the client can either
perform an o�-book cash-only payment (cash), not requiring any
receipt or invoice, or a credit card payment (card). Assuming a
client travelling for business, an invoice or receipt is needed for
being reimbursed by the clients’ organisation. The organisation
must accept invoices, while receipts may be rejected.

In case of cash payments, a client is (maliciously) using false
invoices to ask larger reimbursement sums (e.g. a hotel could be
owned by an accomplice). In case of (honest) payment by credit card,
the client will require an invoice (invoice2д ) or a receipt (receipt3)
from the hotel. The invoice request is marked as (necessary) greedy.

The contract of an EconomyClientG is similar to that of a Busi-
nessClientG and it is depicted in Fig. 2c. In particular, its room
request is marked as lazy (room2` ), i.e. with a lower priority. We
will also consider a “lazier” version of both clients, depicted in
Fig. 2b and in Fig. 2d. In these contracts, the invoice request is
marked as lazy (invoice2` ), with ClientG and ClientL indicating
the greedy and lazy version, respectively, of the invoice request.

https://github.com/davidebasile/FMCAT/
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Figure 1: The feature model and the partial order of products (with R=Required and F = Forbidden) of the Hotel product line
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(j) KEconomyClientG ⊗ (Hotel ⊗ BusinessClientG) = K(EconomyClientG ⊗ Hotel) 4 BusinessClientG

Figure 2: The Hotel reservation service product line

In Fig. 2e, the Hotel contract is depicted. Recall its feature con-
straint φ. The hotel service starts by o�ering a room (room). It
accepts payments by either credit card (card3) or cash (cash3).
The mutual exclusion (xor) between these features (known to be

not expressible by only an automaton [11]), speci�ed in φ, ensures
that exactly one type of payment is available in each Hotel product.
In case of cash payments, the service returns to its initial (and �-
nal) state qH0. Otherwise, it proceeds by emitting either a receipt
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(receipt) or an invoice (invoice). In the latter case, a free breakfast
o�er (freebrk) is delivered as a gift before or after the invoice was
emitted. After several such interactions, it returns to its initial state.

We also consider two di�erent contracts for the Hotel service
product line, called HotelGreedyBad (cf. Fig. 2f) and HotelLazyBad
(cf. Fig. 2g), which share the same feature model but have a slightly
di�erent behaviour than Hotel. The HotelGreedyBad activates a
captcha in case the clients select the o�er invoice instead of the
free breakfast o�er, to avoid possible denial-of-service attacks. The
HotelLazyBad is similar, except that it does not o�er free breakfast
and always performs a captcha check.

2.3 Composition of contracts
The FMCA composition operators are crucial for modelling DSPL,
in particular for generating (at binding time) an ensemble of ser-
vices. By adding new services to an existing composition, it is
possible to dynamically update the service product line model and
to synthesise, if possible, a composition satisfying all requirements
de�ned by service contracts. Moreover, if newly added service
contracts are equipped with di�erent feature models, the overall
composed feature model will be updated at runtime by adding (and
possibly removing) new features to the model.

The FMCA formalism is endowed with three compositional op-
erators: the product composition ⊗, the projection operator

∏
and

the associative composition 4. Intuitively, product composition ⊗
interleaves the actions of all operands, with the only restriction
that if two operands are ready to execute two complementary ac-
tions (i.e. a request matched by a corresponding o�er) then only
their match will be allowed and their interleaving prevented. The
projection operator

∏i (A) retrieves the principal with index i
involved in A and identi�es its original transitions and feature
constraint. The associative composition operator 4 is de�ned on
top of the operators ⊗ and

∏
. First, the corresponding principals of

the operands are extracted by
∏

and then they are recomposed all
together in a single step by ⊗. This causes all pre-existing matches
to be rearranged. Their formalisation is available in [5, 9].

The sub-portion of the composition BusinessClientG ⊗ Hotel in
agreement (i.e. orchestration) of product p1 is depicted in Fig. 2h:1
in this composition, the outgoing transition ~q0,0

(room2u , room)
−−−−−−−−−−−→ is an

example of an urgent match between the urgent request room2u
of the �rst principal (i.e. BusinessClientG) and the permitted o�er
room of the second (i.e. Hotel). Moreover, transitions ~q0,0

(room2д, •)
−−−−−−−−−→

or ~q0,0
(•, room)
−−−−−−→ are not allowed because (room2д , •) and (•, room)

are two complementary actions, thus removed in the composition.
In this case, the feature constraint (and hence the valid prod-

ucts) of the orchestration is exactly φ (recall that the client has no
feature constraint). This orchestration is identical to the one of
p2 because the required invoice feature (required in p2 and not in
p1) is available in both orchestrations. Conversely, the orchestra-
tion BusinessClientG ⊗ Hotel of products p3 and p4 is empty: no
agreement exists. For product p3, it forbids the necessary (greedy)
invoice request, executable in both states ~q2,2 and ~q2,4.

While p1, p2 and p3 are products featuring payments made by
credit card, product p4 corresponds to the Hotel product requiring

1In Fig. 2, the subscripts of ~q identify the client’s local state and the hotel’s local state,
in the order in which they are composed. Likewise for other compositions.

payments by cash (and hence forbidding payments by credit card).
In this case, the Hotel product line is protected from possible o�-
book payments by also requiring (via φ) the o�er invoice. The
orchestration is indeed empty: the malicious behaviour is blocked.

Note here that requirements of products are stricter conditions
than necessary requests. Indeed, the requirements of a product are
de�ned on top of its behavioural contract, while necessary requests
are de�ned inside the contract. Unreachable necessary requests
do not spoil the contract agreement. Conversely, an unreachable
action required by a product violates the contract agreement (e.g.
invoice in p4 is unreachable because card is forbidden).

Finally, the orchestration of the entire Hotel service product line
is simply the orchestration of one of the products p1 or p2.

We now explain how the di�erent classes of necessary requests
a�ect the orchestration of service contracts. Moreover, below ex-
amples underline how the order in which services are added to the
overall composition is crucial for obtaining a composition in agree-
ment. We note that this order is a key aspect in DSPL, where new
services must be added to the overall composition seamlessly, i.e.
without corrupting the validity of the application. The considered
orchestrations always refer to the entire product line model.

First we consider a composition of the Hotel service with both
business and economy clients and show how urgent requests can be
used to enforce priorities in service requests. If EconomyClientG
is served before BusinessClientG, i.e. (EconomyClientG ⊗Hotel) ⊗
BusinessClientG, then t1 = (~q0,0,0, (room2` , room, •), ~q1,1,0), i.e. a
match between lazy request and o�er, is activated in the compo-
sition instead of transition t2 = (~q0,0,0, (•, room, room2u ), ~q0,1,1),
i.e. an urgent match. As a result, the corresponding orchestration
will be empty. Intuitively, the business client should be served
before the economy client (i.e. t2 instead of t1). Indeed, an orches-
tration in agreement is admitted by EconomyClientG ⊗ (Hotel ⊗
BusinessClientG), with the business client served before the econ-
omy client (cf. Fig. 2j). Figure 3 depicts this orchestration as com-
puted with FMCAT (cf. Sect. 3).

Next we consider the orchestration of the service composition
BusinessClientG⊗HotelGreedyBad, which is empty. This is caused
by the request (~q3,3, (•, captcha3), ~q3,0) not matched (recall that

Figure 3: FMCAT with KEconomyClientG⊗(Hotel⊗BusinessClientG)
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each request must be matched by a corresponding o�er): the or-
chestration cannot prevent the execution of the greedy transition
(~q2,2, (invoice2д , invoice), ~q3,3). Indeed, the greedy invoice request
of BusinessClientG requires to be matched as soon as possible: it
cannot be “delayed” to the subsequent state ~q2,4 (cf. Fig. 2h).

On the other hand, the orchestration of the service composi-
tion BusinessClientL ⊗ HotelGreedyBad, depicted in Fig. 2i, is not
empty. This is because in this case, the necessary lazy transition
(~q2,2, (invoice2` , invoice), ~q3,3), and consequently the permitted re-
quest transition (~q3,3, (•, captcha3), ~q3,0), are removed from the
orchestration. This is possible since the necessary lazy request
invoice of BusinessClientL is delayed to be matched in state ~q2,4.

Finally, consider the orchestration of the service composition
BusinessClientL ⊗ HotelLazyBad. In this composition, all transi-
tions incident in states ~q2,4 of Fig. 2h are absent (recall that Hotel-
LazyBad does not o�er free breakfast). The lazy match transition
(~q2,2, (invoice2` , invoice), ~q3,3) thus cannot be removed from the
orchestration, as it is the only available match and the lazy invoice
request is necessary. Also this orchestration is thus empty.

In the next section, we discuss the synthesis algorithm for com-
puting the orchestration of services for a product line model.

3 COMPUTING THE ORCHESTRATION
In the previous section, several orchestrations have been described.
Here, we will brie�y describe the algorithm for synthesising an
orchestration of FMCA, viz. the maximal sub-portion of an FMCA
that is safe. The orchestration will be the most permissive controller
(mpc for short) in the style of SCT for discrete event systems [16, 28].
A discrete event system is a �nite state automaton, where marked
(i.e. �nal) states represent the successful termination of a task, while
forbidden states should never be traversed in “good” computations.

The purpose of SCT is to synthesise a controller that enforces
good computations. To do so, it distinguishes between controllable
events (those that the controller can disable) and uncontrollable
events (those that are always enabled), besides partitioning events
into observable and unobservable (obviously uncontrollable). If all
events are observable, then an mpc exists which never blocks a
good computation [16]. The purpose of contracts is to declare all
executions of a principal in terms of requests and o�ers. Therefore,
we assume that all actions of a (composed) contract are observable.

FMCA actions. Next we discuss when a transition of an FMCA
is controllable or uncontrollable. The correspondence between per-
mitted/necessary and controllable/uncontrollable was mainly ex-
ploited in [8], where all necessary requests were greedy. We added
an extra layer of information about “when” a necessary request
can be matched, mainly due to how we build the composition of
FMCA (interleavings). All permitted actions are fully controllable.
As brie�y discussed previously, urgent, greedy and lazy requests
have an increasing degree of controllability. An urgent request is
fully uncontrollable: it must be matched in every possible state
in which it can be executed. A greedy request can be disabled by
the controller as long as the �rst match is available. Finally, a lazy
request only requires to be matched: its matches are controllable
by the orchestrator, provided at least one match is available.

The composition of contracts corresponds to the uncontrolled
system (a.k.a. plant) in [16, 28]. Note that the composition of the

mpc and the plant (i.e. controlled system) is not generated through
the operators of composition of FMCA. As usual, the controlled
system can be obtained by a standard synchronous composition of
the mpc with the plant, which blocks all transitions that are in the
plant but not in the mpc. The interactions between the orchestrator
and the principals, that are used for realising the orchestration com-
puted through the mpc, are implicit in our framework [6]. Clearly,
the behaviour that we want to enforce upon a given FMCA corre-
sponds exactly to the traces in agreement; thus we assume both
(i) request transitions and (ii) forbidden transitions to lead to a for-
bidden state. To ful�l the modalities imposed by FMCA, we force
a composition to be in agreement only if there exists a match for
each necessary (urgent, greedy or lazy) request.

Moreover, we want to synthesise an orchestration of services
that satis�es the feature constraint. To this aim, the synthesis
algorithm computes the mpc of a product of the family identi�ed
by the featured constraint. Even though the number of products of
a family is in general exponential in the number of features [15],
through the partial order it is possible to synthesise the mpc for the
entire product family from only a subset of valid products.

Orchestration synthesis. We now brie�y describe the itera-
tive algorithm for computing the mpc of product p of an FMCA
A. In [9] the algorithm is formally detailed. With respect to the
standard synthesis in [28], we exploit non-local information related
to other transitions for deciding whether a given transition is con-
trollable or uncontrollable. At each step i , the algorithm updates
incrementally a set of states Ri and revises an FMCA Ki ; it termi-
nates when no more updates are possible. Intuitively, the property
of agreement requires that all requests are matched. Hence, we
want to remove all possible (non-matched) requests. We also want
to remove all actions that are forbidden by the product. The mpc
must prevent these “bad” transitions (requests and actions forbid-
den by the product) from being executed. This is straightforward
for bad controllable transitions, while we can only try to make the
bad uncontrollable transitions unreachable. To this aim, the sets
Ri contain the “bad” states: those that cannot prevent a necessary
request or a forbidden action to be eventually executed (i.e. states
in uncontrollable disagreement). The algorithm terminates when
no new updates are available. Upon termination, if the initial state
is bad (in Rn ) or some action required by product p is unavailable in
Kn , then the mpc is empty. Otherwise, the synthesised automaton
Kn is the mpc of p. Since the set Ri is �nite and can only increase
in each step, the termination of the algorithm is guaranteed.

4 RELATEDWORK AND CONCLUSION
In this short paper, we brie�y illustrated FMCA as a novel formal
model for expressing contract-based DSPL. We now compare FMCA
with other formalisms from the literature and mention the bene�ts
of adopting FMCA as a formal model for specifying DSPL.

The de�nition of FMCA builds on two automata-based models for
modelling and analysing variability in product lines, both based on
superimposing multiple product automata in a single, enriched fam-
ily automaton. From Modal Transition Systems (MTS) [2], FMCA
inherit the distinction into permitted (may) and necessary (must)
transitions, whereas the explicit incorporation of feature constraints
stems from Featured Transition Systems (FTS) [17].
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MTS were �rst recognised as a suitable behavioural model for
describing product lines in [19], which provided an algorithm to
check the conformance of product behaviour against that of the
product family. Subsequent extensions involving notions from
interface automata and I/O automata were de�ned in [23] and [24],
respectively. Another line of research led to MTS with an associated
set of variability constraints expressed over actions and a dedicated
variability model checker that allows one to verify a property for a
family and conclude the result to hold for all its products [11, 13].

Compared to FMCA, none of these models can explicitly handle
dynamic product lines, a characteristic FMCA inherits from [5, 6].

Furthermore, we tackled the problem of synthesising the mpc
of a family of service contracts ful�lling all feature constraints, all
necessary service requests and the maximal number of permitted
service requests. Building on an earlier model [8], permitted and
necessary transitions are interpreted as controllable and uncontrol-
lable transitions in SCT [16]. In this paper, we partitioned necessary
transitions based on their degree of controllability, thus enriching
the synthesis algorithm by considering necessary transitions whose
controllability can be altered due to non-local information.

SCT was previously applied to Software Product Line Engineer-
ing in [14], where the CIF 3 toolset was used to synthesise all valid
products of a product line composed of behavioural components
and requirements modelled as automata. Based on the synthesis
of the mpc in [8], our approach to synthesise a family of services
does not consider all actions to be controllable, as in [14], but con-
siders increasing levels of uncontrollability (from urgent to lazy
requests). The information related to the speci�c requirements of
each product (required and forbidden features) is also integrated
into the synthesis algorithm.

Moreover, whilst the number of products is in general expo-
nential in the number of features, the organisation of the family’s
products (and their mpc) into a partial order makes our approach
more scalable. As a result, the obtained mpc of the family of services
can be synthesised from only a subset of its products, whereas other
approaches require to synthesise the mpc of each single product.

Software architectural and adaptation patterns for DSPL are
studied in [21], which are triggered automatically by monitoring
executions. An orchestration is assumed to be derived automati-
cally, whilst we focus on how such an orchestration can be syn-
thesised. Moreover, services are described by means of interfaces
(i.e. connectors) and are in correspondence with features, whilst we
provide their behavioural representation and we identify features
as service actions, to be activated according to speci�c products.
FMCA could be used as the underlying formalism for deploying
and updating applications, as well as automatically synthesising a
well-behaving orchestration of services.

Finally, the presented theory has been implemented in a prototyp-
ical tool, which was used to compute all examples given throughout
the paper. It remains to compare our approach with other synthesis
algorithms and to quantify how well it scales. To this aim, we would
like to model and analyse a real world service-based application, as
was done in [4] for a system without variability.

Another direction for future work is to enhance service requests
and o�ers with quantities. In Sect. 2, e.g., Clients could express
the actual amount of money they are willing to pay. Reaching
an agreement would then amount to �nding the optimal trade-o�

among principals such that each one has a positive pay-o� function.
This might lead to a formalisation of Quality of Service parameters
of Service Level Agreements in our model, allowing us to assess
non-functional parameters like reliability or energy consumption
in a composition of service contracts.
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