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Abstract—Breath analysis techniques offer a potential revolution
in health care diagnostics because of their un-obtrusiveness and
their inherent safety. However, while standard instrumentation
such as mass spectrometers use laboratory settings to provide a
correlation between exhaled substances and physical conditions,
to fully realize the potential of breath analysis as a self-monitoring
tool, its application must take place also in the clinics and at
home and not only in a laboratory. This basic requirement has
stimulated the necessity to develop cheap, portable, real time,
easy-to-use devices for reliable breath tests and analysis. In this
paper, we present the design of a portable breath analyzer, able
to sense a set of breath volatile organic compounds (VOCs), to
perform a processing of the data collected and to generate an
output easily interpreted both by physicians and patients.
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I. INTRODUCTION

Breath analysis may play a key role in health care diag-
nostics [1]. This is because each breath contains fundamental
information about the health status of an individual: breath
molecules are the product of the composition of inspiratory
air and the volatile substances in blood. In addition, also cells
in the mouth, in the upper airways, in the gastrointestinal tract
contribute volatile molecules to the exhaled breath. Conse-
quently, the challenge is to extract from the breath meaningful
data which can be correlated to subject’s health.

On one hand, despite its great potential, breath analy-
sis has not yet been employed in the ordinary diagnostic
clinical trials. First of all, the main bottleneck is the lack
of standardized protocol to collect breath sampling and to
avoid all the confounding factors (such as inspired ambient air
[2], breath flow rate, heart rate [3]). Moreover, the standard
instrumentation (gas chromatography-mass spectrometry, for
instance) is very expensive, time consuming and its use often
requires highly qualified personnel. On the other hand, the
main advantage of breath analysis is its un-obtrusiveness and
safety. As a consequence, it may be a very suitable diagnostic
tool, especially for those people who have to control a set of
parameters daily.

These requirements have solicited the necessity to develop
cheap, portable, real time, easy-to-use devices for breath anal-
ysis, in order to promote not only its purchase, but also its use
in every type of setting (in home environment, for instance).
In human breath, more than 200 volatile molecules have
been identified and assessed. Some of such molecules were
correlated to various diseases such as diabetes, oxidative stress,
lung cancer, gastrointestinal diseases, etc. [4][5][6][7]. Due
to such complex pattern of breath compounds, a design of a
portable device for breath analysis should be based on selected
chemical sensors able to sense specific VOCs. Generally, a
long-term vision for breath analysis performed with a portable
device should follow some basic requirements:

• the breath analysis device should be compact, easy
to use, and able to follow, in real time, the breath
molecules trend;

• the device should be able to transmit breath analysis
results also to a remote personal computer (the family
doctor’s one, for instance);

• since it should be based on array of gas sensors, cross-
correlation between sensors should be carefully taken
in account to improve the sensitivity and the reliability
of the overall device.

Recently, e-noses have gone in this direction. Formerly de-
signed for broader applications (environmental gases monitor-
ing, for instance), in recent years the idea of exploiting e-noses
also for clinical applications has gained increased interest [8].
E-noses allow for performing breath analysis in a very short
time, being quicker than a gas chromatograph. Since they are
able to perform breath tests in real time, in many studies they
have been employed to monitor volatile biomarkers related
to cancer [9], for instance, in infectiology [10], and also
to evaluate VOCs related to asthma [11]. Nevertheless, the
majority of such e-noses exploit very expensive technology
[12][13] or require complex circuitry [14][15].

In this paper, we describe how self-monitoring of some-
one’s own well-being state could be done by means of a low
cost device (called Wize Sniffer, WS) whose basic features



have been described in [16][17]. In particular, the WS was
designed to detect a set of breath molecules related to cardio-
metabolic risk. Neverthless, its modular configuration allows
for detecting a broader set of molecules, simply changing the
gas sensors placed in gas samplig box. The WS is entirely
based on low-cost technology: the semiconductor-based gas
sensors are commercial, and breath signals are analyzed by a
widely employed open source controller: Arduino Mega2560.
In addition, it is programmed to also send breath analysis
results also to a remote care center.

In the paper, Section II summarizes the detected VOCs;
in Section III, the hardware/software architecture is described;
Section IV reports the WS functionality tests and the different
data analysis approaches. We conclude the paper in Section V.

II. CARDIO-METABOLIC RISK PREVENTION

The WS was conceived in the framework of SEMEOTI-
CONS (SEMEiotic Oriented Technology for Individuals Car-
diOmetabolic risk self-assessmeNt and Self-monitoring, grant
N. 611516) European Project [18], which aimed to develop
a multi-sensory platform able to assess individuals well-being
state by detecting in the human face all those signs related
to cardio-metabolic risk [19]. Such multisensory, interactive
platform included a sensorized Mirror (the Wize Mirror) and
the WS. In particular, the WS was designed to help the user
monitor his/her noxious habits for cardio-metabolic risk, by
detecting the following VOCs:

• Carbon monoxide (CO). More than 5000 compounds
in cigarette smoke are dangerous. CO, in particular,
decreases the amount of oxygen that is carried in
the red blood cells. It also increases the amount of
cholesterol that is deposited into the arteries;

• Ethanol (C2H6O). Moderate ethanol consumption, in
healthy subjects, reduces stress and increases feelings
of happiness and well-being, and may reduce the
risk of coronary heart disease. Heavy consumption
of alcohol, instead, causes addiction and leads to an
accumulation of free radicals into the cells, causing
oxidative stress.

In addition, the device can also provide useful information
about metabolism, user’s carbohydrates adsorption and vascu-
lar status by detecting these other molecules:

• Oxygen and carbon dioxide (O2 and CO2): the
amount of O2, which is retained in the body, and the
one of CO2, which is produced as a by-product, can
be considered as a measure of the metabolism;

• Hydrogen (H2): it is related to the carbohydrates
breakdown in the intestine and in the oral cavity by
anaerobic bacteria;

• Hydrogen sulfide (H2S): it is a vascular relax agent;
for instance, it has a therapeutic effect in hypertension.

III. HARDWARE AND SOFTWARE ARCHITECTURE

A. Wize Sniffer’s sensor platform
The core of a portable device designed to detect volatile

molecules (wheather they derive from ambient air, for exam-
ple, or human exhaled breath) is the gas sensors array. For
this purpose, different technologies and sensors’ transduction
principles are exploited to assess the type and the concentration

of the gases under investigation [8]. Regarding the WS, our aim
was to find a trade off between good sensitivity, low cost and
small dimension. As we mentioned in the previous section, the
WS was developed to detect a set of molecules related to those
noxious habits for cardio-metabolic risk; nevertheless, our aim
was to design a modular sensor platform in order to detect
a broader set of molecules, by simply changing the sensors
according to the VOCs to be identified. As a consequence,
the sensors’ ease of integration in the circuitry was another
requirement we needed.

On one hand, optical gas sensors, as well as quartz crystal
microbalance (QCM)-based gas sensors and surface acoustic
wave (SAW)-based gas sensors are very sensitive; on the other
hand, they are expensive (especially in the case of optical gas
sensors) and need complex circuitry (in the case of QCM and
SAW gas sensors). Also, carbon nano-fiber (CNF) based gas
sensors are very expensive, especially for their manufacturing.
We chose metal oxide semiconductor (MOS)- based gas sen-
sors: they are low cost and easy to integrate in the circuitry;
they have very small dimension, long life and rapid recovery.
In Table I, all the employed MOS-based gas sensors are listed.

TABLE I. SENSORS INTEGRATED IN THE WS SENSOR PLATFORM

Detected molecule Sensor Best detection range
Carbon monoxide MQ7 20-200 ppm

TGS2620 50-5000 ppm
Ethanol TGS2602 1-10 ppm

TGS2620 50-5000 ppm
Carbon dioxide TGS4161 0-40000 ppm
Oxygen MOX20 0-16%
Hydrogen sulfide TGS2602 1-10 ppm
Hydrogen TGS821 10-5000 ppm

TGS2602 1-10 ppm
TGS2620 50-5000 ppm
MQ7 20-200 ppm

Unfortunately, humidity and cross-sensitivity strongly af-
fect the behavior of MOS-based gas sensors [20]. In our case,
humidity is a strong influencing parameter, as we deal with
human breath. For this reason, we i)integrated a temperature
and humidity sensor into the gas sampling box (Sensirion
SHT11); ii)put a heat and moisture exchanger (HME) filter
at the mouthpiece to reduce the contribution due to the water
vapor from 90%RH to 65-70%RH; iii)investigated the behavior
of Wize Sniffer’s sensors both in response to a humidity
variation and under precise measurement conditions: 30C+/-
7% and 70%RH+/-5%, that are the ones that occur in the
gases store chamber when a breath analysis is performed,
as shown in Figure 1. Calculating the sensors’ humidity
drift is useful to potentially compensate it during the data
processing. Figure 2 shows how the humidity strongly affects
sensors’ output (in this case, the one of MQ7 gas sensor). The
relationship between humidity and sensors’ output generally
can be modeled by means of a power law:

Vout = f(hum) = a ∗ (humb) + c (1)

where a and c are constant. In addition, we considered the
entire range of humidity variation (for instance, 50%-55%
Relative Humidity (RH) in the case of MQ7, as shown in
Figure 2) and then, we calculated the slope of the curves.
Based on the slope, drift coefficients were assessed (see Table
II) as the decrease in sensors’ output (Volt) per unit decrease
in humidity, as given in (eq. 2):

Sd = ∆V/∆hum (2)



Figure 1. Temperature and relative humidity in the gas sampling box when a
breath analysis is performed.

Figure 2. MQ7 output when a rise in humidity occurs.

TABLE II. SENSORS’ DRIFT DUE TO HUMIDITY

Sensor ∆V/∆hum (mV)
MQ7 296
TGS2620 60
TGS2602 82
TGS821 120
TGS2444 84

By keeping the humidity constant, sensors’ output will
depend on the gas concentration only. For this purpose, we
investigated the sensors’ output in response to a well-known
gases concentration. The sensors were put into a vial. The
humidity into the vial was kept at 70%RH+/-5% by means
of a saturated solution of NaCl placed on the bottom; then,
we injected well-known gases concentration and registered
sensors’ output. The raw sensors’output were read by an
Arduino Mega2560 connected via serial port to a personal
computer. The experimental data were displayed in real time on
the computer screen and stored as text files for later processing.
For example, in Figure 3, we can see TGS2620 output when
well-known concentration of carbon monoxide, ethanol and
hydrogen were separately injected into the vial. Also in this
case, the relationship between sensors’ output and gases con-

centration can be modeled by means of an equation similar to
eq.1. Nevertheless, when a breath analysis is performed, a mix-

Figure 3. TGS2620 output when a well-known concentration of carbon
monoxide, hydrogen and ethanol were injected into the vial.

ture of gases spreads into the gas sampling box and chemically
interacts with the sensors. In this case, the phenomenon known
as cross sensitivity makes these sensors non selective. Such
behavior affects the method for data analysis, as described in
Section IV.

Finally, the final set-up of the device is shown in Figure
4 and Figure 5. In the first one, the internal configuration of
the device is reported: the gas sampling box, on the right,
has a capacity of 600 ml according to the tidal volume [21].
The MOS-based gas sensors are placed within such box.
Sensors’ output is read and pre-processed by a widely used
open source controller: an Arduino Mega2560. In Figure 5,
the two configurations of the WS are shown: the WS can work
both as a Wize Mirror tool and as a stand-alone device. In both
cases, the user blows into a disposable mouthpiece, where a
HME filter is placed. A flowmeter monitors the exhaled breath
volume. Breath gases reach the gas sampling box by means of
a corrugated tube. A fan is switched on between two breath
tests to purge the gas sampling box with ambient air and to
recovery sensors’ steady state.

B. WS Software
Given its unobtrusiveness and its safety, breath analysis

may be used as a daily monitoring analysis tool. To fully
exploit its potential, its application must take place not only
in laboratory settings, but also in the clinics.

In addition, our aim was to develop a device which could
be used also in home environment and which could be able to
send breath analysis results to a remote personal computer (for
instance, to the one of the own family doctor) thus promoting
independent living in community-based, home, and long-term
care settings [22]. Arduino samples sensors’ signals every
250 ms, saves raw vector data and extracts the maximum
value of raw breath curve. Several parameters and features
can be derived from breath curves [23] to fully characterize



Figure 4. Final set-up of the Wize Sniffer. Internal configuration.

Figure 5. Final configuration of the Wize Sniffer. On the left, the WS is used
a Wize Mirror tool. On the right, it is used in a stand-alone configuration.

them. We chose to calculate the value at curve plateau as it
better describes the chemical balance between sensors’sensing
element and target gases. Such data are then processed and
analyzed, as described in Section IV.

In order to send breath analysis results also to a remote
personal computer, we implemented a client-server architec-
ture. It means that, after performing a test and processing the
results, the device, by means of an internet connection and a
TCP/IP communication protocol, can send the results to the
physician, for instance. Arduino is programmed to execute a
daemon on port 23. By implementing a Telnet server, it waits
for a command line from the remote personal computer and
then can provide the data. A measure is valid if the user’s
exhaled volume equals at least the one of gas sampling box.

IV. FUNCTIONALITY TESTS

The aim was to assess if the WS was able to monitor and
evaluate the individuals’ noxious habits for cardio-metabolic
risk (smoke and alcohol intake in particular).

As described in [24], the WS underwent a clinical val-
idation in three research centers: CNR in Pisa and Milan,
CRNH (Centre de Recherche en Nutrition Humaine) in Lyon.
The validation campaign involved 77 volunteers, with different
habits and lifestyle. The subjects had to answer Audit test
and Fagerstrom test, which respectively assessed the alcohol
and smoke dependence, and other questionnaires about their
lifestyle.

Taking into account the methodological issues about breath
sampling [25], we outlined a measuring protocol, which con-
sidered mixed expiratory air sampling, since our interest was
focused on both endogenous and exogenous biomarkers. The
subjects took a deep breath in, held the breath for 10s, and
then exhaled once into the corrugated tube trying to keep the
expiratory flow constant and to completely empty their lungs.
The study was approved by the Ethical Committee of the
Azienda Ospedaliera Universitaria Pisana, protocol n.213/2014
approved on September 25th, 2014; all patients provided a
signed informed consent before enrollment.

As mentioned before, MOS-based gas sensors are strongly
affected by cross-sensitivity. It means that such type of sensors
is not selective for one substance only, but they are sensitive for
a set of VOCs. Such characteristic makes the quantitative anal-
ysis of the detected VOCs very difficult. As a consequence, we
exploited another approach for data analysis, more classical,
based on multivariate methods of pattern recognition. Pattern
recognition exploits sensors’ cross-correlation and helps to
extract qualitative information contained in sensors’ outputs
ensemble. Then, first Principal Component Analysis (PCA)
was performed, in order to provide a representation of the data
in a space of dimensions lower than the original sensors’ space.
After assessing, by the PCA, the presence of clusters (see
Figure 6), the data were processed with a K-nearest neighbor
(KNN) classification algorithm, previously trained with the
data coming from another acquisition campaign. The aim was
to classify the subjects according to their habits: Healthy
(that means, no cardio-metabolic risk), Light Smoker, Heavy
Smoker, Social Drinker, Heavy Drinker, LsSd (Light smok-
ers, Social drinker), LsHd (Light smokers, Heavy drinkers),
HsSd (Heavy smokers, Social drinker), HsHd (Heavy smokers,
Heavy drinker). The Audit and Fagerstrom questionnaires were
our ground truth. The KNN classifier was able to correctly
classify in 89,61% of cases. Errors were due to TGS2602 and
TGS2620 cross-sensitivity for hydrogen. In fact, for instance,
three no-risk subjects were classified as social drinker probably
because of high hydrogen contribution, which caused a rise in
these sensors voltage output.
Then, the population under study was increased, up to 169

subjects. Figure 7 provides a summary of subjects’ habits and
lifestyle in general. In particular, the subjects were divided into
”low risk population”, ”medium risk population”, ”high risk
population” basing on the sum of scores relative to Audit (AS),
Fagerstom (FS) and lifestyle questionnaires, which were our
ground truth also in this case. Also, the measuring protocol for
breath sampling was the same, as well as data pre-processing:
the parameter extracted from raw breath curve by Arduino
was the value at the curve plateau, again. Given the significant



Figure 6. First three principal components.

Figure 7. Population under study.

number of subjects, in this case we tried to implement a
method of data analysis which was able to predict subjects’
risk score (RS, it means, sum of Audit, Fagerstom and lifestyle
questionnaires scores), based on the breath data.
Sensors’ raw data first were zero-centered and normalized, thus
putting in evidence the qualitative aspects of the data. Then,
also in this case, the principal components were extracted and
the PC scores were plotted against the subjects’ RS (Figure
8). As can be deduced from the colours (green points derive
from no-risk subjects, the blue ones from low-risk subjects, the
yellow ones from medium risk subjects, the red ones from high
risk subjects, the magenta ones from very high risk subjects),
subjects’ RS are arranged in ascending order.

Except for PC3, from a visual, exploratory analysis, we
saw that the PC scores did not have a sharp increasing or
decreasing linear trend with respect to RS, thus not having
enough information to contribute to any prediction model.
Such result matches the one reported in [26]. Being inspired by
this study, we also implemented an Independent Component
Analysis (ICA) on our data.

ICA is a high-order transformation method for data rep-
resentation which extracts independent components from the

Figure 8. PC scores against subjects’ risk scores.

data set. If, on one hand, PCA exploits the real sensors’ cross-
correlation, ICA originates from the assumption that the data
has a non-Gaussian distribution, which often is a property of
the gas sensors’ array measurement data [27]. In our case,
breath signals and the environmental ones (noise) get mixed
with each other before the chemical interaction with the sensor
array. As a consequence, each sensor’s output is the result of
a combination of different gaseous contributions.

We applied FastICA algorithm to our data set, and plotted
individual independent components (IC) against subjects’ RS.
As shown in Figure 9, in this case, sharper linear trends
emerge. Then, the data set was split into two data-sets (train

Figure 9. PC scores against subjects’ risk scores arranged in ascending order.

data set and validation data set) to build the prediction model,
which was developed by means of the Matlab LinearModel
Tool. Indeed, by using the independent components, a linear



regression model was built to establish a relationship between
the risk score and the breath data pre-processed by ICA. Then,
such model was validated by using the validation data set.
In Figure 10, we can see that the correlation coefficient (r)
between actual and estimated risk scores is 0.8976.

Figure 10. Actual risk scores against predicted ones.

V. CONCLUSION

In this paper, we describe how breath analysis could be
exploited for daily self-monitoring by using a portable, low
cost, very easy to use device that we developed and called
Wize Sniffer. In the presented use case, the WS could help the
user to monitor his/her habits and prevent the cardio-metabolic
risk. Nevertheless, the WS modular configuration allows for
changing the gas sensors according to the molecules (and then,
to the related diseases) to be monitored. The core of such type
of devices is the gas sensor array. We chose to use MOS-
based gas sensors, because of their low cost, their ease to be
integrated in the circuitry, their long life and rapid recovery
time. Nonetheless, they are affected by humidity, which is, in
our case, a parameter to be taken into account, as human breath
is composed of 90% water vapor. As reported in Section 4, we
faced this issue first by integrating a HME filter and then by
calculating sensors’ drift due to humidity in order to possibly
compensate it. Another peculiarity of MOS-based sensors is
the cross-sensitivity, which makes difficult any quantitative
analysis approach. In this case, we faced this problem by using
multivariate methods of analysis. In addition, our data analysis
directly provides the user with him/her cardio-metabolic risk
score. The safety and the unobtrusiveness of the device allow
for a daily monitoring which, even if without a real diagnostic
meaning yet, could represent a pre-screening, useful for an
optimal selection of more standard medical analysis.
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