QUANTICOL quanticol

o 0 0 0 oGEEENEED
A Quantitative Approach to Management and Design of http://www.quanticol.eu

Collective and Adaptive Behaviours

D5.3

The QUANTICOL software tool suite for modelling smart
cities (Final)

Revision: 1.0; March 30, 2017

Author(s): Vincenzo Ciancia (ISTI-CNR), Diego Latella (ISTI-CNR), Mieke Massink
(ISTI-CNR), Laura Nenzi (IMT), Mirco Tribastone (IMT), and Andrea Vandin (IMT)
Due date of deliverable: Month 48 (March 2017)

Actual submission date: March 30, 2017

Nature: R. Dissemination level: PU

Funding Scheme: Small or medium scale focused research project (STREP)
Topic: ICT-2011 9.10: FET-Proactive ‘Fundamentals of Collective Adaptive Systems’ (FOCAS)
Project number: 600708

Coordinator: Jane Hillston (UEDIN)
e-mail: Jane.HillstonRed.ac.uk
Fax: +44 131 651 1426

Part. no. Participant organisation name Acronym | Country

1 (Coord.) University of Edinburgh UEDIN UK

2 Consiglio Nazionale delle Ricerche — Istituto di Scienza e CNR ltaly
Tecnologie della Informazione “A. Faedo”

3 Ludwig-Maximilians-Universitat Minchen LMU Germany

4 Ecole Polytechnique Fédérale de Lausanne EPFL Switzerland

5 IMT Lucca IMT Italy

6 University of Southampton SOTON UK

7 Institut National de Recherche en Informatique et en Automatique INRIA France

——

COOPERATION

(Revision: 1.0; March 30, 2017) March 30, 2017

Executive Summary

This deliverable is an account of the QUANTICOL software tool suite, with application to the smart city
scenarios studied in the project. While Deliverable D4.3 focuses on the CARMA language and its implemen-
tation with the CARMA Eclipse plug-in, in this deliverable we present software tools developed to support
further techniques such as model checking, model order reduction, and reachability analysis. Their integration
with the CARMA Eclipse plug-in is discussed in Deliverable D4.3. Instead, here we provide detailed account
of such tools as stand-alone products. We present FlyFast, a probabilistic model checker for mean-field mod-
els; jSSTL, for the analysis of Signal Spatio-Temporal Logic; ERODE, for the reduction of systems of ordinary
differential equations; UTOPIC, for the reachability analysis of nonlinear dynamical systems; and topochecker,
a spatio-temporal model checker.

While an application of FlyFast to smart cities is presented in D4.3, in this deliverable we discuss an
application of jSSTL and ERODE to the verification and reduction, respectively, of a model of a bike-sharing
system. Instead, bus transportation systems are studied with topochecker, to detect problems in vehicle location
data and clumping in frequent services.

QUANTICOL 1 March 30, 2017

(Revision: 1.0; March 30, 2017) March 30, 2017

Contents
(I__Introduction| 3
3
21 TInterface Overview] e 5
[2.2 Available Analysis Techniques| L o 6
8
3.1 Runningexample| e e e 8
B2 dnterface o 10
4 FERODE/UTOPIC 12
K1 Architecture] L 15
4.2 Ilustrating Example|. 15
/ SUAZE|, e e e e e 19
[S topochecker]| 21
BI Architecturel 21
5.2 Usage| o e 21
[6 Applications to Smart Cities| 23
[6.1 Bike-sharing Analysis|. e 23
6. 1.1 Modell. e 23
|6.1.2 Verification of spatio-temporal logics using jSSTL| 24
|6.1.3 Model reduction using ERODE| 25
[6.2 Bus transportation|. e e e e e e 28
[6.2.1 Identifying Diverted Bus Positions| L. 28
[6.2.2 Bus Clumping in Frequent Bus Services|. 28
7 Conclusion 32

QUANTICOL 2 March 30, 2017

(Revision: 1.0; March 30, 2017) March 30, 2017

1 Introduction

Whereas Deliverable D4.3 focuses describes the CARMA Eclipse plug-in, this deliverable reports on the
QUANTICOL Software Tool Suite. This represents a collection of other tools developed during the project
in order to make our scientific results applicable to a range of case studies of collective adaptive systems, and
beyond. In accordance with the Description of Work, this deliverable is concerned with presenting the tools
and showing how they can be applied for the analysis of the smart city case studies that have been considered
throughout the entire duration of the project. Specifically, we present:

e FlyFast, a first-of-its-kind, on-the-fly mean-field probabilistic model checker for bounded PCTL (Proba-
bilistic Computation Tree Logic) properties of a selected individual in the context of systems that consist
of a large number of independent, interacting objects. The underlying on-the-fly mean field model check-
ing algorithm was developed and proven correct in [37,138] (in the context of WP3). FlyFast is provided
within the jSAM (java StochAstic Model Checker) framework which is an open source Eclipse plug-irﬂ
integrating a set of tools for stochastic analysis of concurrent and distributed systems specified using
process algebras.

e jSSTL, a Java tool for the specification and the verification of Signal Spatio-Temporal Logic (SSTL)
properties [43) 44]]. It consists of a library (the jSSTL API) and a front-end developed as an Eclipse
plug-in. The plug-in provides a user friendly interface to the tool, whereas the library can be used to
integrate jSSTL within other applications and tools, as it has been done in [4].

e ERODE, a tool for the evaluation and reduction of ordinary differential equations implemented as an
Eclipse plug-in [16]. It supports the results of [[12, (15113} [14] (in the context of WP3).

e UTOPIC, which supports an under-approximation technique for the reachability analysis of nonlinear
systems of ordinary differential equations (ODEs). It implements an algorithm based on control-theoretic
principles of optimal control, originally developed in [[10] (in the context of WP1). UTOPIC itself is
implemented as an extension of ERODE.

e topochecker, a spatio-temporal model checker based on closure spaces and Kripke frames. Currently
it checks a spatial extension of Computation Tree Logic named STLCS (Spatio-Temporal Logic for
Closure Spaces). The spatial fragment was originally presented in [20], and then extended in [21]; the
spatio-temporal logic was introduced in [[19]]. The underlying theory has been developed in the context
of WP3.

This deliverable is closely related to Deliverable D4.3, which focusses on the CARMA language and its
implementation in the CARMA Eclipse plug-in. The integration possibilities for some of the tools (e.g. jSSTL
and FlyFast) are explained in more detail in Deliverable D4.3. Here we describe how the tools operate as
stand-alone products.

2 FlyFast

The on-the-fly mean-field model-checker FlyFast has been briefly introduced in Deliverable 5.2, whereas an
outline of its underlying theoretical framework can be found in Deliverable 3.1. In this section, we illustrate the
various analysis options offered by the tool in more detail [39]. We do this using the gossip shuffle protocol,
as presented in [2, 3]], as a running example. We analyse the replication and coverage for a generic data item
d (called “d-item” in the following) in a fully connected network in which the nodes execute the shuffling
protocol. We consider the discrete time variant of this protocol with a maximal delay between two subsequent
gossips of a node denoted by G,,,. Following the mean field approximation technique, the behaviour of an
individual node is based on its local state and the current occupancy measure vector. Figure |1{ shows the states

Uhttp://quanticol.github.io/jSAM/

QUANTICOL 3 March 30, 2017

(Revision: 1.0; March 30, 2017) March 30, 2017

dlr

ogr

Figure 1: Push-pull gossip model of individual gossip node with rounds of length 3 (i.e. gmqx = 3). Active
states are red, passive ones blue.

const N = 2500 const P.01.10 = 2 % "= const P_.11_10 = P_11_01

const n = 500 const P_10_.01 = P_01_10 const P_.01.11 = 2 &2 5 1=¢

const ¢ = 100 const P.01.01 = <* const P_.10_11 = P_01_11

const S = 50 const P_10_10 = P_01_01 const P_11.11 =1 —2x 3 5 S84 2
const P_111.01 = 2 x = const P_00.00 = 1

Figure 2: Constants of the FlyFast Gossip model.

and transitions of a single node where G,,,, = 3. The red states, DO and OO0, denote states in which the gossip
node is active, i.e. it can initiate an exchange of local information with a passive node; in DO (resp. OO0) the
node has (resp. does not have) the data element in its local store. The blue states denote states in which the
node is passive and can be contacted by an active node. The number in the node-labels denotes the value of
the current gossip delay g, ranging from 0 to 3. The D/O convention with respect to having the data element
applies also to the passive nodes.

The modelling language of FlyFast consists of basic constructs to describe the probabilistic behaviour of
an individual object, such as constants, states, action probabilities and transitions. The constants in the gossip
model are the total number of nodes N, the number of different data elements in the system 7, the size of the
cache c and the number of data elements exchanged between two shuffling nodes s. Their definition is shown
in Figure[2| Furthermore, the action probabilities make use of a number of conditional probabilities, expressed
in terms of the constants n, ¢ and s. For example, P_01_10 stands for P(01]10) [2,[3]] and denotes the conditional
probability that after a shuffle the active node loses the data element, whereas the passive node acquires it (the
‘01’ part of P_01_10) given that before the shuffle the active node had the data element and the passive one did
not (the ‘10’ part of P_01_10). Action probabilities are defined as shown in Fig|3| The action labels are those
of Figure [T} For example, the action dIr (‘has d, loses it and resets gossip delay’) labels the transition from
the active state in which the object has the d-element (DO0) to the passive state without d in which the clock
is reset to Gyax, 1.6. O3 in this case. The probability of action dIr depends on the occupancy measure via the
quantities frc(Xi), with X € {O,D} and i € {0,...,3}, which denote the fraction of objects that are in state
Xi. The expression e~ 2*(fre(00)+e(D0)) denotes the probability that no ‘collision’ occurs in the communication
between two nodes, such as two active nodes or two passive nodes that contact each other. Finally, Figure 4]
shows the definition of the states and transitions of a single node as in Figure[I] and the non-empty elements of
the initial occupancy measure vector mainO0. By default, the first element of the vector is the object selected
for FlyFast analysis. Elements with initially zero occurrences are omitted. We refer to [2]] for further details of
the gossip model.

QUANTICOL 4 March 30, 2017

(Revision: 1.0; March 30, 2017) March 30, 2017

action dIr : // has d, looses it, resets delay

(fre(01) +fre(02) + fre(03))xP_01_10xe~2#(fre(00) +re(D0)) 1.

(fre(D1) +fre(D2) + fre(D3))xP_01_1 15~ 2+ (fre(00) +fre(D0)

action dIs : // has d, looses it, one time step passes

frc(00)*P_10_01 e~ 2x(fre(00)+fre(DO)) frc(DO)+P_10_11 xe—2*(frc(00)+re(DO))
action dkr : // has d, keeps it, resets delay

(fre(01) +frc(02) +fre(03) 4 fre(D1) + fre(D2) + fre(D3)) + (1 — e~ 2(fre(00)+re(D0)))
(frc(00) + fre(DO))+

(fro(01) +fre(02) +fre(03))#(P_10_-10 +P_11_10)xe~2+(fre(00)+fre(D0))
(fre(D1) 4 fre(D2) 4 fre(D3))x(P_10_11 4-P_11_11)xe~2(fre(00) +iro(D0))
action dks : // has d, keeps it, one time step passes

(frc(00) +fre(D0)) * (1 — e~ 2+(e(00)+ro(DO)y 4 (1 — (frc(00) + fre(DO))) +-
frc(00)+(P_01_01+P_11_01)xe24(fre(00)+ire(D0)) 4.
fre(D0)*(P_01_114P_11_11)xe2+(fre(00)+ire(D0))

action ogr : // no d, gets it, resets delay

(fre(D1) +fre(D2) + fre(D3))+(P_10_01 +P_11_01)xe~2+(re(00)+ire(D0))
action ons : // no d, no get, one time step passes

(fre(00) + fre(D0)) * (1 — e~ 2(re(C0)+reDO))) 1 (1 — (frc(00) + fre(DO)))+
frc(00)*P_00_00xe~>(re(00)+e(D0)) 4 fre(DO)+P_10_10xe~2+(fre(00)+re(D0)
action onr : // no d, no get, resets delay

(fre(01) 4 fre(02) 4 fre(03) +fre(D1) + fre(D2) + fre(D3)) * (1 — ¢~ 2+(fre(00) +iro(D0)))
(frc(00) + fre(DO))+

(frc(01) + fre(02) + fre(03)) «P_00_00sxe 2+ (re(00)+re(D0)) .

(fre(D1) 4 fre(D2) + fre(D3))xP_01_01 xe~2+(re(00)+re(D0))

action 0QgS : // no d, gets it, one time step passes
frc(D0)*(P_01_10+P_11_10)xe2+(fre(00)+fre(D0))

Figure 3: Actions and their probability functions in the FlyFast Gossip model. Comments in blue.

2.1 Interface Overview

Figure [5] provides a screenshot with an overview of the Eclipse-based user interface for FlyFast. Three main
panels are shown. The left panel shows the repository structure, with the current population models in directory
‘model’. The panel at the top shows part of the specification of the current model. FlyFast uses different colours
to distinguish language keywords from comments and user definitions. The panel at the bottom shows analysis
results in graphical form. Graphs can be easily customised using the radio buttons in the upper-left corner of
this panel. These customisations allow for an interactive inspection of details of the graph, such as vertical and
horizontal zoom, addition of annotations, insertion of labels for the axes and title of the graph, use of colours,
selection of particular trajectories, manual and automatic rescaling for both axes, including the selection of
log-scale. Furthermore, the results can be exported in numerical form for customised processing by external
tools such as Octave, Matlab or gnuplot.

state DO {dIr.O3 + dkr.D3} state O0 {ogr.D3 + onr.O3}
state D1 {dIs.O0 + dks.DO} state O1 {0gs.DO + ons.O0}
state D2 {dIs.O1 + dks.D1} state O2 {ogs.D1 + ons.O1}
state D3 {dIs.O2 + dks.D2} state O3 {0gs.D2 + ons.0O2}
system mainO0 = <OO[(N/4)-1],01[N/4], ..., O3[N/4],DO[1]>

Figure 4: States and initial configuration of the FlyFast Gossip model.

QUANTICOL 5 March 30, 2017

(Revision: 1.0; March 30, 2017) March 30, 2017

The bottom panel of Figure [5] shows the evolution of the values of the deterministic approximation of the
occupancy measure vector, i.e. the fraction of nodes that are in a particular local state at any time—note that in
this gossip model the values of all D-states nearly overlap, and the same holds for the O-states. This analysis
provides a fast way to approximate the true occupancy measure values. In the case of the gossip model the
occupancy measure of the D-states show the replication of the d-item throughout the network. Computing the
true occupancy measure values via full stochastic simulation of a model with N objects may be very costly
when N is large. Mean field approximation for fast simulation, used also by FlyFast, instead, is independent
of the number of objects in the model and provides good approximations as long as N is large enough [40].
However, FlyFast also provides full stochastic simulation that may be used to compare results. For example,
Figure [6] (top) shows the mean of 10 simulation traces, whereas Figure [6] (bottom) shows a close-up of part of
the upper traces concerning O-states with their variance indicated by vertical bars.

2.2 Available Analysis Techniques

The various analysis techniques can be selected from a pop-up menu. In that menu also further options for each
technique can be provided, such as the length of the trajectories and, in case of full simulation, the number
of replications. Figure [/| (right) shows the menu options for fast (i.e. mean field based) probabilistic model
checking of population models. In the top-panel the initial state of a system is selected that has been included
in the textual specification of the model. It provides both the initial state of the individual component selected
for model checking and the initial values of the state counters, from which the initial occupancy measure vector
is computed. By default, the first element of the counters vector is the selected individual component. Several
different initial states may be defined in the model file indicated by the keyword ‘system’. The initial occupancy
measure vector and the state of the individual of interest can also be set directly from the menu using the second

PG

®B
o @

03))*P_01_10%ponCe, (1-2)*2%(Frc(08)4rc(08))) +

ctions f
set : (Fre(OLfre NeE
03))*P_01_11*ponCe, (1-2)*2%(Frc(08)+Fre(D0))) ;

(Fre®1)sfre

00))) +
>

Gossip gmax=3 Fast Simulation

Limit Occupancy Measure

.04
002

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 3B 400 420 440 460 480 500 520 540 SEO 580 60O 620 640 66O 680 700 720 740 760 780 800 820 80 8GO B0 900 920 940 96O 8O 1010
Time (in steps)

[y p——————

2s0mofazom | 2 2 a

Figure 5: Overview of the FlyFast Eclipse user interface and replication of the data element.

QUANTICOL 6 March 30, 2017

(Revision: 1.0; March 30, 2017) March 30, 2017

Simple Example

L e A L L L A L M A A A A M A M S A A A A AR AR AR e AR AR]
410 20 40 B0 8O0 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 B0 60D B20 640 BE0 €O FOO 720 740 76O 780 80D 820 840 B0 88O 000 920 940 960 980 1010
X-Axis

‘*DD ——D1 ——D2 ——D3 ——00 ——02

Stochastic simulation with variance
0.2127

0212 —"\‘ \
0211
CETINE
0208 §
0.208 §

0.207

)
=

0.205

0.204

Oceupancy measure

0.203

0.202 4

0.201

0z A

0.199 4

0108

L L D A ARt AR ARt A At A M A A A A A

356.2 360 362 364 366 368 370 372 374 376 378 380 382 384 386 388 300 302 304 306 308 400 402 404 406 408 410 412 414 416 418 420 422 424 426 428 430 432 434 436 438 440 442 444 446 448 450 452 454 456 458 460 462 464 466 468 470 472 474 477.23
ime

|=—D0 ——D1 ——D2 ——D3 ——00 ——02

Figure 6: FlyFast stochastic simulation (top) and close-up (bottom) of data item replication.

panel.

The third panel (still in Fig.[7| (right)) shows the different fast probabilistic model-checking options. Prop-
erties always refer to the selected first object and are evaluated in the context of the large population of which
the selected object is a part. The first two options, ‘State Formulae’ and ‘Path Formulae’, are used to verify a
single PCTL formula of the selected kind, providing either a yes/no answer in the former case and a path prob-
ability in the latter case. The two right-most options, i.e. ‘Time dependent satisfaction’ and ‘Path Probabilities’
provide more complex analysis (the latter is shaded in Figure [/| (right) because it is currently being selected
and therefore less visible.) In population models the probability of an individual to perform a particular transi-
tion may depend on the state (approximated by the occupancy measure in this case) of the rest of the system.
This means that the probability value of a path formula may depend on the time at which it is evaluated. The
evolution over time of this probability value can be analysed with the option ‘Time dependent satisfaction’. It
requires the selection of a path formula, defined in the model file, a starting time and an end time. The result is
presented graphically for the selected time interval.

The right-most option ‘Path Probabilities’ is the most complex one. It requires the specification of an until
path formula that is parametric in the time-bound ¢ and an interval for the time-bound. It computes the relevant
probability when ¢ varies in the given interval. A plot is produced in the bottom panel. There is no restriction
on the state-formulas which appear in the specified until-formula, except that these state formulas have to be
selected from the menu and are of course among those the user defined in the model specification file.

Figure [/ (left) shows the probability, for a gossip model extended in the obvious way to one in which
Gmax = 9, that the selected node ‘has seen’ the data element within time ¢z € {0, ...,3000}:

isTrue U <t hasD where hasD =inDO0 | ... | inD9

Since all nodes have the same probabilistic behaviour, this probability corresponds to the fraction of the network
that has seen the data-element within time ¢ (i.e. the coverage and convergence). This parametric analysis

QUANTICOL 7 March 30, 2017

(Revision: 1.0; March 30, 2017) March 30, 2017

FlyFast | Individuals
+) Fast state from a declared system
main00 v
State and occupancy measure
Occupancy

Coverage Gmax=9
19 D0: [1.0

D1: 0.0
D2: 0.0

State: v

State Fomulae Path Formulae Time dependent satisfaction
First: | isTrue v
Second: hasD v

&0.34 Steps: 3000

: Precision: | 0,000000001
|

T T T T T T T T T T T T T 1
0 200 400 600 800 1000 1200 1400 1800 2200 2400 2800 3001
t (in steps) Ok Cancel

—*—isTrue U<=t hasD

Figure 7: Network coverage for a model with G, =9, N = 2500, n = 500, s = 100 and ¢ = 50.

required 16,997 ms. on an iMAC, 2,66GHz ICi5, with 8GB memory (same for any population size N > 2500).
The results in [2]] show close correspondence to those obtainecﬂ with FlyFast for an initial state defined as
system main in Figure @] but for G, = 9.

3 jSSTL

In this section, we introduce jSSTL [45], a Java tool for the specification of Signal Spatio-Temporal Logic
(SSTL) properties and their robust monitoring on spatio-temporal trajectories. SSTL is a linear-time temporal
logic, recently designed [43]144] , suitable for describing behaviours of spatio-temporal traces generated from
simulations or measured from real systems. It spatially extends Signal Temporal Logic (STL [41, [28]) with
a number of spatial modalities that permit us to specify metric and topological properties in discrete space.
In [43] 144], the authors provide a Boolean and quantitative semantics of SSTL, efficient monitoring algorithms
for both semantics and case studies to show the usefulness of the logic.

In order to make the logic usable in practice, an efficient and usable implementation has been developed,
JSSTL. The tool consists of a jSSTL API and a front-end, integrated in Eclipse. The API, available at https:
//bitbucket.org/LauraNenzi/jsstl, provides the backend classes and can be used to integrate jSSTL
within other applications and tools, as it has been done in [4]. The Eclipse plug-in, available at http://
quanticol.sourceforge.net/?page_id=90, provides a user friendly interface to the tool. Below, we
describe the framework and the use of the plug-in through a running example of a cholera outbreak, a prominent
case study of a waterborne disease [7, 42]]. We will use it here to introduce the type of models that we can
consider, to give some examples of SSTL properties and to show the tool at work.

3.1 Running example

Model. As mentioned above, as a running example we consider a model of Cholera spread among commu-
nities that live close to a river. The space is represented as a weighted graph, see Figure [§] The nodes ¢y, ...,
{7 represent the communities; the edges describe the connection between the communities through the river.
The graph is equipped with a weight function w : E — R that returns the cost of each edge; for this model we
interpret the cost w(¢;,/;) of an edge as the distance between the locations /; and ¢;.

ZNote that there is no need to extend the model with additional states that represent the fact that a node ‘has seen’ the data element,
as was the case in [2].

QUANTICOL 8 March 30, 2017

https://bitbucket.org/LauraNenzi/jsstl
https://bitbucket.org/LauraNenzi/jsstl
http://quanticol.sourceforge.net/?page_id=90
http://quanticol.sourceforge.net/?page_id=90

(Revision: 1.0; March 30, 2017) March 30, 2017

Figure 8: Representation of the space of the epidemic model. The nodes ¢, ..., #7 represent the different com-
munities; the edges represent the link between the communities through the water basin. The green numbers
correspond to the values w of the weight function for each edge.

There are two agent classes: the bacteria and the individuals. The bacteria have only one state (B) but they
can be transported to different nodes via the river. An individual can be in three different states: susceptible (S)
infected (/) and recovered (R), but cannot change location. Beside the inter-node movement of the bacteria, the
dynamics of individuals is specified by transitions encoding birth, death, and the epidemic behaviour.

The model of this system has state variables X = (Xs,Xr,Xr,Xp), counting the number of susceptible,
infected, and recovered individuals, and the concentration of the bacteria in each location, respectively. The
dynamics is specified by a list of transitions, each corresponding to an event and changes the system according
to the transition rule (e.g,. I — R means an infected individual becomes recovered). Each transition has a speed
governed by a rate function, that can depend on the concentration of the bacteria and individuals in each state.

For such a description, we can derive both a deterministic model (a set of ODEs) or a stochastic one (a patch
CTMCs), that can respectively be integrated with an ODE solver or simulated with standard algorithms such as
SSA or Gibson-Bruck. The solution of the integration/simulation is a spatio-temporal trace X(¢,¢) = (xs(z,¢),
x;(t,0),xg(t,0)xp(t,¢)) that describes the concentration of susceptible, recovered, infected individuals and bac-
teria, at each time, in each location. Such spatio-temporal trajectories are the input of our jJSSTL tool. This
means that SSTL specifies properties directly over the spatio-temporal traces of the system (with continuous
time and discrete space). An interesting consideration about this is that we do not necessarily need a mathe-
matical model but just observable traces of some process, including real observations. Hence, the tool can be
used also for the analysis of black box systems for which we do not have a model but only information about
their behaviour.

SSTL properties. SSTL integrates the temporal modalities of STL with two spatial operators: the somewhere
operator, @y, 4,, and the bounded surround operator .%|4, 4,, where [d1,d>] is a closed real interval with d; <
d,. There is a third derivable operator: the everywhere operator Gy, 4,] ¢ = — ©(4,.,) 7 P-

Let us consider the epidemic model described above, with an infection that starts at location ¢;. Suppose we
wish to describe the diffusion of the epidemic among the communities. In particular, we wish to check whether
the infection has propagated a certain distance from ¢ after a given time. This behaviour can be captured by
the SSTL formula:

01 = Fio,1,,19(ay) (X1 > cing), (1)

verifying it in location ¢;. The precise meaning of the formula is:

Eventually, in less than T, unit time, the number of infected individuals becomes more than c, s
in a location ¢ with d({,,0) € [d,dy], i.e., at a distance from location {1 equal or greater than d,
and equal or less than d».

Let us see also a more complicated property:

P2 = B(0,d,e) (V1 — Y2), (2)

QUANTICOL 9 March 30, 2017

(Revision: 1.0; March 30, 2017) March 30, 2017

where:

ll/l = F‘[OvTSfart] (Q[Owdnear] (XI > ciﬂf))
WQ = (ff[TstarhTstart+DT]G[dﬂzr-,dmwc] (X[> Cinf))

The property states that a large infection (with at least c;,s individuals) happening at some time ¢ € [0, Ti,¢] and
localised within distance d,,., from a given reference point, will spread further away, at a location at distance
between dp,, and dy4y, at some time t" € [Tytare, Tstare + DT]. Furthermore, this is true for every reference point
(say at distance at most d,, from /7).

Verification. Similarly to STL, SSTL has two semantics, the classical boolean semantics and a quantitative
semantics. The boolean semantics returns true or false depending on whether the trace satisfies the SSTL
property, i.e. (X,z,£) |= ¢ is true if and only if the trace X(z,¢) satisfies ¢. The whole trace satisfies a property
in location ¢ iff it satisfies the property at time zero, i.e. (¥,¢) |= ¢ < (X,0,¢) = ¢. The trace is verified in each
point in space, as we assume no privileged direction or location. The quantitative semantics, instead, returns
a real value p(¢,X,7,/) that quantifies the level of satisfaction of the formula by the trajectory X at time ¢ in
location £. The sign of p(¢@,X,t,¢) is related to the truth of the formula: if p(¢@,%,7,¢) > 0, then (X,7,£) = @,
and similarly if p(¢,X,t,£) <0, then (X,7,£) = ¢. In accordance with the boolean semantics, the quantitative
value of the whole trace in location ¢ is given by its value at time zero, i.e. p(X,¢) = p(X,0,¢). Given a
spatio-temporal trace X(z,¢) and a property ¢, the logic has specific algorithms to compute the boolean and the
quantitative satisfaction. For details about monitoring algorithms we refer the reader to [43]44]].

3.2 Interface

An Eclipse plug-in provides the user interface to specify and verify SSTL properties of spatio-temporal trajec-
tories generated from the simulation of a system or from real observations. The user can specify the properties,
describe a model of the space (i.e., its graph structure), import the trajectories, and then verify if such trajecto-
ries satisfy the specified properties. The instructions to download the plug-in and to create a jJSSTL Project are
available at http://quanticol.sourceforge.net/. Figure E] shows a screenshot. It provides an editor,
containing the script with the SSTL properties that we want to analyse in our scenario (on the left) and a view
to visualise the space model, the data and the results of the analyses (on the right).

In the jSSTL editor, it is possible to define a script that contains the list of properties to be analysed.
The editor is based on Xtexﬂ a framework for development of programming languages and domain-specific
languages. The syntax of the script of our language is reported in Figure Besides the list of formulas, each
script contains the list of the variables considered in the model, a set of constants, and a list of parameters that
may occur in the formula. The parameters can be declared to take values in an interval. When the monitoring
procedure is performed, the user can select a specific value for each parameter in the corresponding interval.
Standard expressions can be used to define both constant and parameter intervals. In the script, each formula is
associated with a name, that is used to select the specific property during the monitoring procedure.

On the left of Figure [J]is the file containing the script of properties and (2)), described in the previous
subsection. First, we have the declaration of the value of each parameter (const cinf= 150, ...), then the declara-
tion of the variables (variable 1,..), and finally the description of each property, e.g., property (I) is defined as:
formula phil = F[0,5]<<>>[12,15] { I>cinf }.

The jSSTL view provides three different panels: to visualise the spatial models (Model panel), to summarise
the relevant data declared in a script (Script panel), and to plot the system’s trajectories and the Boolean and
quantitative satisfaction signals (Signal panel). Clicking on the icons on the top right of the view can perform
the following actions: open a graph model, create a grid model, open an SSTL script, open signal data (the
trajectory), execute the monitor, display the signal, and clear the data. The Model panel can be used to see a
graph-based representation of the spatial model. The spatial model can be imported as a . tra file or, in the case
of a regular grid, can be directly created, selecting the number of rows and columns. In Figure[TT] we can see,

3https://eclipse.org/Xtext/

QUANTICOL 10 March 30, 2017

http://quanticol.sourceforge.net/
https://eclipse.org/Xtext/

(Revision: 1.0; March 30, 2017) March 30, 2017

= N A5y O Qv 8 @B LG g | =
& Cholera.sstl §2 = B8 [7]JSSTL View 82 Outline E®|ea pa v =8
] 1 const cinf = 150; Model | Script | Signal
2 const T_Start = 1; Variables
const DT = 4; Name

const dnear = 3; 8

const dfar = 13; ,s
6 const dmax = 15; R

Y

§ variable B;
) variable s;
10 variable I;

11 variable R;
Parameters

formula phil = Name Min Value Max Value Current Value
14 F[2,5]
15 <>>[12, 15]
16 {I>cinf};

5= formula psil =

1

19 F[0, T_Start]

20 <<>>[0, dnear]

21 {I > cinf};

3 Formulas
23~ formula psi2 = ::i’;‘e
24 F[T_Start, T_Start + DT] phi2

25 <<>>[dfar,dmax] psit

26 {I>cinf}; psi2

)= formula phi2 =
29 [[J1[0,dmax]!(psil&(!psi2));

Figure 9: The jSSTL Eclipse plug-in.

in the model panel, the representation of the space for the Cholera model that corresponds to the graph reported
in Figure[8] The Script panel outlines the information about our scenario. We can see here the list of variables,
parameters and formula names. Currently, CSV and tabular based ASCII files are supported for both input and
output of signals.

The traces have to be imported with a single file for each variable and location, e.g., for the infected
individual I we will have the files values_i_I.dat, with i € {1,..,7}. Having selected the space model, the
trajectory and the property, we can compute the related Boolean and quantitative satisfaction signals. To do
that, we have to select from the Script panel which property we want to verify, and to chose the specific values
for the parameters for which we considered a range. In the Signal panel, the spatio-temporal trajectories and
the Boolean and quantitative signals can be visualised. We can choose which variables and which locations to
plot. In Figure we can see the trace x;, the variation in time of the number of infected individuals in each
location. We can observe that, at time 0, we have infected individuals only in #;. The temporal trajectories of
each location are indicated adding @i to each variable, e.g., x;(¢, ;) is indicated in the plot as I@1.

Figure (13| shows the Boolean satisfaction of property psil1 (in each location). Instead, in Figure (14} we
can see the quantitative satisfaction of phi1 and psi1 for location ¢; only. We can see from the plot that the
trajectories satisfy both properties, but that property psi1 is more robust than property phil. The different
length of the signals is due to the different temporal intervals in the two formulas. Indeed, in the monitoring
procedure, if the signal has duration 7', and a formula has temporal horizon 4 (i.e. its truth depends on what
happens in % units of time in the future), then the duration of the Boolean/ satisfaction signal will be T — h. We
recall that the satisfaction of a formula for the whole trace is determined at time zero and for a specific location;
hence, we can say that the X satisfies ¢; in location ¢; iff phil @1 at time O is greater than 0.

Both the plots of the trajectories of Boolean and quantitative signals can be easily exported. Furthermore,
the tool also permits one to import a set of trajectories, instead of a single one, to compute the Boolean and
quantitative satisfaction signals of such trajectories for a specific property and then to evaluate their mean (the
average robustness) and their variance. This can be very useful when we want to analyse stochastic systems.

Here the model has been kept simple for the sake of clarity. However, the plug-in may work with much
more complex models such as the one in [44]].

We stress here a few features of the tool: it can handle traces coming from different sources, hence it can be

QUANTICOL 11 March 30, 2017

(Revision: 1.0; March 30, 2017)

March 30, 2017

script 1= element”
element := variableDec | constDec | parameterDec | formulaDec
variableDec variable name
constDec ::= const name = expr
parameterDec ::= parameter name in interval
interval = [expr,expr]
expr ::= baseExpr | expr+ expr | expr x expr | ---
baseExpr = int | float | literalExpr
formulaDec ::= formula name = formula
formula := formula&formula | formula|formula
| formulaUinterval formula | Ginterval formula
| Finterval formula | formulaSinterval formula
| <<>>interval formula | [[]]interval formula
| !formula | relExpr
relExpr = expr<expr | expr<expr | expr>expr | expr=>expr
| expr==expr | ! =expr

Figure 10: jSSTL formula syntax.

used to monitor simulations but also real systems, the parametrisation of formulas enables us to integrate the
tool to perform parameter synthesis and estimation, see for instance [4], the possibility to directly check a set
of trajectories can simplify the statistical analysis of stochastic systems, it has a quantitative semantics that can
be used to evaluate the robustness of the satisfaction and to drive the behaviour of the system, see for instance

(5]

4 ERODE/UTOPIC

ERODE is a recently developed software tool [[16]], which supports two complementary equivalence relations
over ODE variables [15]: forward differential equivalence, yielding a self-consistent aggregate system where
each ODE gives the cumulative dynamics of the sum of the original variables in the respective equivalence
class; and backward differential equivalence identifies variables that have identical solutions whenever start-
ing from the same initial conditions. As backend ERODE uses the well-known Z3 SMT solver [26]], which
computes the largest equivalence that refines a given initial partition of ODE variables. In the special case of
ODEs with polynomial derivatives of degree at most two (covering affine systems and elementary chemical
reaction networks [[12])), it implements a more efficient partition-refinement algorithm in the style of Paige and
Tarjan [14]. The theory has been developed in the context of WP3 and is reported in D3.3 as well as in the
earlier D3.2.

ERODE is a mature tool that distinguishes itself from the prototypes accompanying [12, [14} [15] (and
discussed in Deliverable D5.2) in that:

(1) Itis not a command-line prototype but a mature tool with a modern integrated development environment;
(i1) It collects all the techniques of our framework for ODE reduction in a unified coherent environment;

(iii) It offers a language, and an editor, to express the entire class of ODEs supported by the reduction tech-
niques, while the prototypes could reduce only chemical reactions networks (CRNs);

(iv) It implements an ODE workflow consisting of numerical solution and graphical visualisation of results;

QUANTICOL 12 March 30, 2017

(Revision: 1.0; March 30, 2017) March 30, 2017
[7]iSSTL View 8 5= Outline E@BHyaprsess Y= 8
m Script ‘ Signal ‘

Figure 11: Visualisation of space in the j]SSTL Eclipse plug-in.
7 JSSTL View 52 ERyapsry Y8
Model ‘Script Signal
Signals
» Locations
V¥ Variables
v |
1
2
3
a
Monitoring
» Boolean
Quantitative
K|+ +])| o e N SN K PR
359.18—_
Figure 12: Plot of x;, number of infected individual in each location.
QUANTICOL 13 March 30, 2017

(Revision: 1.0; March 30, 2017)

March 30, 2017

o | s
5

|6] |

L

alofk [ale| @)

1104

80 -
60

Y -Axis

40 -
20 4

-10 f———

-0.07 1

3 4 5 6 7 8 9.09

X-Axis

—psi1@7

—psi1@4 —psi1@5 —psi1@6

Figure 13: Plot of the Boolean semantics of the properties psit.

e i TR ajo k|| 6@l @
208.4 -
100
]
x
%
> 0]
100 -
174.06 H——— T e e e e e e e e
-0.09 05 1 3 35 4 45 5 55 6 65 7 75 8 85 9.1
X-Axis
—phi1@1 —psi1@1 |

Figure 14: Plot of the quantitative semantics of the properties phi1 and psi1 for location 1.

QUANTICOL

14 March 30, 2017

(Revision: 1.0; March 30, 2017) March 30, 2017

ERODE
™
~)

\

G
U ODE and RN ERODE ERODE
I Editor Views Wizards
v 7 S
_ ,
/ s N\ [N \\)
Microsoft |, BDE/FDE ODE —RN . .| Apache
Z3 1le Reducer Encoder PESIEE | | commons
fo) \ J L J N 7/ ——
R (N\ N\ A)
E BB/FB Importer- Stochastic _ R EERN
Reducer (RN) Exporter Simulator (RN)
&\ J L f J L 4) \ y,

\] ¥ L/ v

Matlab BNG LBS SBML

Figure 15: ERODE’s Architecture.

(v) It offers import/export facilities for other formats like biochemical models for the well-known tools
BioNetGen [8] and Microsoft GEC [31]], or ODEs defined in MATLAB.

More recently, it has been extended with UTOPIC, a command to obtain an under-approximation, at a given
time point, of the reachable set of a linear combination of ODE variables under time-varying uncertainties. In
particular, UTOPIC exploits properties (i), (iii), and (v) in that its input language is an ERODE model, which
is automatically translated into a Matlab script which can be invoked to perform the required analysis.

4.1 Architecture

ERODE is an application based on the Eclipse framework for Windows, Mac OS and Linux. It does not require
any installation process, and is available athttp://sysma.imtlucca.it/tools/erode, together with
a manual and sample models. Figure |15|provides a pictorial representation of the architecture of ERODE. It is
organized in the presentation layer, with the graphical user interface, and the core layer. The main components
of the GUI layer are depicted in the screenshot of ERODE in Figure [I6] including a fully-featured text editor
based on the XTEXT framework which supports syntax highlighting, content assist, error detection and fix
suggestions (top-middle of Figure[I6). This layer also offers a number of views, including a project explorer to
navigate between different ERODE files (top-left of Figure[I6); an outline to navigate the parts of the currently
open ERODE file (bottom-left of Figure[I6)); a plot view to display ODE solutions (top-right of Figure[I6); and
a console view to display diagnostic information like warnings and model reduction statistics (bottom-right of
Figure[I6). Finally, the GUI layer offers a number of wizards for: (i) updating ERODE to the latest distribution;
(ii) creating new ERODE files and projects; and (iii) importing models provided in third-party languages.

The core layer implements the minimisation algorithms and related data structures. A wrapper to Z3 via
Java bindings is included. The core layer also provides support for numerical ODE solvers, using the Apache
Commons Maths library [1]. When the input is a CRN (i.e. an RN with only positive rates) it can also be
interpreted as a CTMC. Using the FERN library [29], ERODE features CTMC simulation.

4.2 Illustrating Example

Let us consider an idealised biochemical interaction between molecules A and B; A can be in two states, u
(unphosphorylated) and p (phosphorylated) and can bind/unbind with B. This results in a network with five
species, denoted by A,, A,, B, A,B, and A,B.

QUANTICOL 15 March 30, 2017

http://sysma.imtlucca.it/tools/erode

(Revision: 1.0; March 30, 2017) March 30, 2017

g [] ERODE - Examples/ExampleODE.ode - ERODE
i @i e B Le
[?5 Project Explorer 83 =8 = O | ||afi ERODE -ExampleRN-[15/05/2016 18-57-46-218])X | = O
= % ¥ || € ExampleODE.ode % &) ExampleRN.ode 53 >, ‘,;ﬁ|+‘ H ‘[3|'4|'4|ﬁ|’|$|‘3k“51\“f"." [N ‘
v [Examples begin model ExampleODE begin model ExampleRN ==
& ExampleODE.ode begin parameters begin parameters @|| @
& ExampleRN.ode ri=10r2=20 ri=1.0r2=2.0 simulateODE(tEnd=1.0)
» (> InfluenceNetworks Z::j”::’i"zt"s ;:gi:“;:'l”it"s - ODE solutions - All speci
33
Au=1.0 Au=1.0
Ap = 2.0 Ap = 2.0 '
B =3.0 B =-3.0 S
AuB ApB AuB ApB E
end init end init t
, = begin ODE begin reactions g2 4
oz =2 g2
&= Outline 33 5= 0 // C-style comments Au -> Ap el g]
v = ExampleODE dCAu) = -r1*Au + r2*Ap - 3*Au*B + 4*AuB Ap -> Au , r2 o 15
» i=2 parameters dCAp) = rl*Au - r2*Ap - 3*Ap*B + 4*ApB Au + B -> AuB , 3.0 2]
¥ 25 species d(B) = -3%AU*B + 4*AUB - 3*Ap*B + 4*ApB AB ->Au+B , 4.0 51
VIZAy,IC=10 d(AUB) = 3*Au*B - 4*AuB Ap + B -> ApB , 3.0 <
=1 d(APB) = 3*Ap*B - 4*ApB ApB > Ap + B , 4.0 205
end ODE end reactions H
begin views begin views &,
vl = Au + Ap V1= Au + Ap 0s
- - 03 e e
e:i \'”::2 e‘ﬂ’s ;‘::E 001 01 02 03 04 05 06 07 08 09 L0f
Time
reduceBDE(reducedFile="ExampleODE_BDE") simulateODE(tEnd=1.0)
end model end model |—m ——p ——8 ——AB —— 8
v i=d(Ay)
VES(((r1) " Au) + (2" Ap) - (|| E) Console 82 |[2] Problems * b #BE-r-= 8

viz .
(et * Au) = (027 AB) | eR0DE _ExampleRN-[15/05/2016 18-57-46-218]

=Au

b =02 Ap) - (3.0 At ERODE -ExampleRN-[15/05/2016 18-57-46-218]
> 1=4.0* AuB
> i=d(Ap)
» I=d(B) .
» 1= d(AuB) Reading ExampleRN...
» i=d(ApB) Parameters: 2
v I=2 views Species: 5
> =i Reactions: 6.
> i=v2 . i
» EEreduceBDE Solving ODEs of ExampleRN... completed in 0.006 (s).

0 items selected

Figure 16: A screenshot of ERODE.

The dynamics of the system is described in Figure (a) through a CRN with six reactions, where ry, 1, 13
and ry4 are the kinetic constants. By applying the well-known law of mass action, each species is associated with
one ODE variable which models the evolution of its concentration as a function of time, with reactions that fire
at a speed proportional to their rate times the concentrations of their reagents. For example, A, + B 5y A,B fires
at speed r3[A,][B], where [-] denotes the current concentration of a species. Consequently, this term appears
with negative sign in the ODEs of its reagents (A, and B), and with positive sign in the ODE of its product,
A,B. The resulting ODEs for our sample system are shown in Figure[17] (b), where the ‘dot’ operator denotes
the (time) derivative. The model is completed by an initial condition which assigns the initial concentration
[X](0) to each species X in the network.

Differential equivalences. It can be shown that {{[A,],[A,]},{[B]},{[AuB],[A,B]}} is a forward differential
equivalence (FDE) for our running example. Indeed, exploiting basic properties one can write self-consistent
ODE:s for the sums of species in each equivalence class:

A+ [Ap] = —r3 ([Au] + [Ap]) [B] + ra([AuB] + [A,B]),
[B] = —r3([Ad] + [A,]) [B] + ra ([AuB] + [4,B)), 3)
[AuB]+ [A,B] = r3([Ad] +[A,))[B] — ra([AuB] + [A,B]).
By the change of variables [A] = [A,] +[A,] and [AB] = [A,B] + [A,B], we get:
[A]=—r3[A][B] + r4[AB], [B]=—r3[A][B] +r4[AB], [AB]=r3[A][B] - r4[AB]

This quotient ODE model essentially disregards the phosphorylation status of the A molecule. Setting the
initial condition [A](0) = [A,](0) 4+ [A,](0) and [AB](0) = [A,B](0) + [A,B](0) yields that the solution satisfies
[A](1) = [Au](2) +[A,](?) and [AB](t) = [AuB](t) + [A,B](t) at all time points ¢.

Backward differential equivalence (BDE) equates variables that have the same solutions at all time points,
if initialised equally. It can be shown that {{[A,],[A,]},{[B]}, {|{AuB],[A;B]}} is also a BDE if r; = r,. In this

QUANTICOL 16 March 30, 2017

(Revision: 1.0; March 30, 2017) March 30, 2017

A5 A, [Au] = =r1[Au] + r2[Ap] = r3[Au][B] + rafA,B]
A, A, [Ap) = rilAu] = r2lAp) = r3[A,][B] + ra[A,B]
Ay+B 2 AB [B] = —r3[Au][B] + ra[AuB] — r3[Ap][B] + r4[A,B]
AB" A, 4B [AuB] = r3[AJ][B] — r4fAuB]
A,+B r—3>ApB [AI;B] = 13[Ap][B] —r4[ApB]
A,B™A,+B
(b)

(@)
Figure 17: CRN model (a) and underlying ODEs (b) of an idealised biochemical interaction.

case, we obtain a quotient ODE by keeping only one variable (and equation) per equivalence class, say [A,], [B]
and [A,B], and rewriting every occurrence of [A,] and [A,B] as [A,] and [A,B], respectively:

[A.] = —2r1[AL] — r3[AL][B] + r4[A.B]
[B] = —2r3]A,][B] 4 2r4[A,B]
[A;,B] = rA,][B] — r4]A,B|

Both FDE and BDE yield a reduced model that can be exactly related to the original one. BDE is lossless,
because every variable in the same equivalence class has the same solution, but it is subject to the constraint that
variables in the same block be initialised equally. Instead, with FDE one cannot recover the individual solution
of an original variable in general, but no constraint is imposed on the initial conditions.

Symbolic minimisation algorithms. In [15]], establishing that a given partition is a differential equivalence
amounts to checking the equality of the functions representing their derivatives. This is encoded in (quantifier-
free) first-order logic formulas over the nonlinear theory of the reals. The problem is decidable for a large
class of ODEs (and Z3 implements a decision procedure [35]]). Such a class is identified by the IDOL lan-
guage of [15]], covering polynomials of any degree, rational expressions, minima and maxima. This captures
affine systems, CRNs with mass-action or Hill kinetics [51], and the deterministic fluid semantics of process
algebra [32] 149].

A partition of variables is a BDE if any assignment with equal values in any equivalence class has equal
derivatives within each equivalence class. Thus, {{[A.],[A,]}, {[B],[A.B],[A,B]}} is a BDE if and only if the
following formula is valid (i.e. true for all assignments to the real variables [A,], [A,], [B], [A.B], and [A,B]):

[Au] = [Ap] A [B] = [AuB] = [ApB] = fia, = fia,] N fiB) = fia.B) = fia,B) 4)

where f|; stands for the derivative assigned to the corresponding species in Figure|17|(b). As usual, the SMT
solver will check the satisfiability of its negation.

To automatically find differential equivalences of an ODE model, the SMT checks are embedded in a
partition-refinement algorithm that computes the largest differential equivalence which refines a given input
partition of variables. In particular, a current partition is refined at each step using the witness returned by
the SMT solver, i.e. a variable assignment that falsifies the hypothesis that the current partition is a differential
equivalence. The algorithm terminates when no witness is found, guaranteeing that the current partition is a dif-
ferential equivalence. Let us fix the rates r; =, = 1, r3 =3 and r4 = 4. Then, {{[A.],[A,]},{[B],[A.B],[A,B]}}
is not a BDE for our running example. Indeed, the assignment {[A,] = 1,[A,] =1,[B] =2,[A,B] =2,[A,B] =2}
is a witness for the negation of Equation since we get fia,] =2, fia,] =2, fig =4 fla,p) = —2and fj4 g =—2
under this assignment. This information is used to refine the current partition by splitting its blocks into sub-
blocks that have the same computation of derivative, obtaining {{[A,],[A,]},{[B]},{[A.B],[A,B]}}. No witness
can be generated for this partition, ensuring that it is a BDE.

QUANTICOL 17 March 30, 2017

(Revision: 1.0; March 30, 2017) March 30, 2017

ERODE specifications of the running example in FigureM

begin model ExampleODE begin model ExampleRN
begin parameters begin parameters
rl = 1.0 rl = 1.0
r2 = 2.0 r2 = 2.0
end parameters end parameters
begin init begin init
Au = 1.0 Ap = 2.0 B = 3.0 Au = 1.0 Ap = 2.0 B = 3.0
AuB = 0 ApB = 0 AuB ApB
end init end init
begin partition begin partition
{Au,Ap}, {AuB}, ({B,ApB} {Au,Ap}, {AuB}
end partition end partition
begin ODE begin reactions
// C-style comments Au -> Ap , rl
d (Au) = —-rlxAu + r2+Ap - 3xAuxB + 4xAuB Ap -> Au , r2
d(Ap) = rlxAu - r2%xAp - 3xAp*B + 4xApB Au + B —> AuB , 3.0
d(B) = —-3%xAuxB + 4xAuB - 3%xApx*B + 4xApB AuB -> Au + B , 4.0
d (AuB) = 3%xAuxB - 4%AuB Ap + B —> ApB , 3.0
d(ApB) = 3%Ap*B - 4xApB ApB -> Ap + B , 4.0
end ODE end reactions
begin views begin views
vl = Au + Ap vl = Au + Ap
v2 = AuB v2 = AuB
end views end views
reduceBDE (reducedFile="ExampleODE_BDE.ode") simulateODE (tEnd=1.0)
end model end model
Listing 1: Direct ODE specification. Listing 2: Reaction network.

The FDE case is more involved, as discussed in [15)]. Considering our running example, we have that
{{[Au],[Ap]},{[B],[AuB],[A,B]}} is an FDE if and only if

(fia + fia,) = Fia + Fia)) A (i + fiaus) + fia, 5 = Jis) + fiaus) + Fia,) (5)

is valid, where each f[_] is obtained from the corresponding derivative f{; by replacing each variable with the
sum of the variables in its block divided by the size of the block. For example, each occurrence of the term
r4[A,B] is replaced by mw. It can be shown that the partition is not an FDE, because a witness
falsifying Equation [5] can be found by the SMT solver. However, differently from the BDE case, Equation [3]
does not compare single derivatives, but sums of derivatives, hence it cannot be used to decide how to refine
the partition. For this, a “binary” characterisation of FDE performs SMT checks on each pair of species in the
same block of a partition to decide if they have to be split into different sub-blocks.

We remark that the algorithms allow the preservation of user-defined observables. For instance, a variable
of interest can be put in an initial singleton block when reducing with FDE. Similarly, in order to meet the
constraints on BDE, one can build an initial partition consistent with the initial conditions of the original model
(that is, two variables are in the same initial block if their initial conditions are the same).

Syntax-driven minimisation. A reaction network (RN) differs from an elementary CRN in that the kinetic
constants may be negative. This gives rise to an ODE system with derivatives that are multivariate polynomials
of degree at most two [14]. Forward and backward bisimulation are equivalence relations over variables/species
in the Larsen-Skou style of probabilistic bisimulation [36]. They are defined in terms of quantities computed
by inspecting the set of reactions [36]. In [14]], this bisimulation style enabled the adaptation of Paige and
Tarjan’s coarsest refinement problem [46]] to compute the largest one. This is done by generalising algorithms
for Markov chain lumping [27, 50], obtaining algorithms with & (m-n-logn) and & (m-n) time and space
complexity, respectively, with m being the number of monomials appearing in the underlying ODE system, and
n the number of ODE variables.

QUANTICOL 18 March 30, 2017

(Revision: 1.0; March 30, 2017) March 30, 2017

4.3 Language

The two alternative specification formats of our running example from Figure [17|can be expressed in ERODE
in Listings[T]and 2] There are six components of an ERODE specification:

(i) Parameter specification to set values of initial conditions, kinetic rates, or views (block parameters).
(ii) Variable declaration and corresponding initial conditions (block init).

(ii1) Initial partition of variables to be used as the initial partition of the partition-refinement algorithms, as
described later (block partition). The user is required to specify only the partition blocks of interest,
while all variables not mentioned explicitly are assigned to an implicit additional block.

(iv) ODE system either in plain format (block ode) or as an RN (block reactions).

(v) Views, i.e., the quantities to be tracked by the numerical solver. For instance, in Listings[I|and [2]the intent
is to collect the total concentration of the A-molecules, regardless of their phosphorylation state (view
v1), and the concentration of the species AuB (view v2).

(vi) Commands for ODE numerical solution, reduction, UTOPIC, and exporting into other formats.

Reduction commands. All ODE reduction commands share the common signature
reduce<kind> (prePartition=<NO|IC|USER>, reducedFile=<name>)

where kind can be FDE, BDE, FB, or BB. The ODE input format affects which reduction options are available.
For an ODE system defined directly, only FDE and BDE are enabled. Polynomial-time minimisations up to
forward and backward bisimulation (FB and BB, respectively) are additionally available for RNs representing
polynomial ODE systems of degree at most two [[14]]. This is imposed by having reagents multisets of size at
most two in each reaction and restricting to mass-action type rate expressions.

The optional parameter prePartition defines the initial partition for the minimisation algorithm. The
maximal aggregation is obtained with the NO option (which is the default). If itis set to IC, the initial partition is
built according to the constraints given by the initial conditions: variables are in the same initial block whenever
their initial conditions are equal. If the option is set to USER, then the partition specified in the partition
block will be used.

If reducedFile is present, then a reduced model will be generated according to the computed partition
following the model-to-model transformation from [12] (for FB and BB) and [[15] (for FDE and BDE). This
will have the same format as the input, and will contain one variable for each equivalence class. The name of
the variable is given by the first variable name in that block, according to a lexicographical order.

Considering our running example, no reduction is found executing reduceFDE on Listing |1} with the
pre-partitioning option set to USER. Instead, when it is set to NO we find the FDE {{A,,A,},{B},{A.B,A,B}}
discussed in Section[4.2] implying that it is the maximal one of the model. The output file for the case without
pre-partitioning is provided in Listing [3) which also shows that the association between the original ODE
variables and those in the reduced model is maintained by annotating the output file with comments alongside
the new Variablesﬂ This information can be useful for visually inspecting the reduced model in order to gain
insights into the physical interpretation of the reduction [12]. Finally, we note that each reduced species has
initial concentration equal to the sum of those in the corresponding block.

In Section [4.2| we have shown that the partition {{A,,A,},{B},{A.B,A,B}} is also a BDE provided that
r1 = rp. However, this reduction is not found if running reduceBDE with pre-partitioning set to IC, as it
violates the initial conditions for Au and Ap. Instead, if the pre-partitioning is disabled, then the above partition
is the coarsest refinement, but the user is warned about the inconsistency with the initial conditions. The BDE
reduction without pre-partitioning for r1=r2=1. 0 is given in Listing |4 The initial condition for the ODE of
each representative is equal to that of the corresponding original variable.

“4Here output files have been typographically adjusted to improve presentation.

QUANTICOL 19 March 30, 2017

(Revision: 1.0; March 30, 2017) March 30, 2017

ERODE reductions of the running example in Figurelﬂl

begin model ExampleODE_FDE begin model ExampleODE_BDE begin model ExampleRN_BB
begin parameters begin parameters begin parameters

rl = 1.0 rl = 1.0 rl = 1.0 r2 = 1.0

r2z = 2.0 r2 = 1.0 end parameters

end parameters end parameters begin init

begin init begin init Au = 1.0 B = 3.0 AuB SINK

Au = 1.0 + 2.0 Au = 1.0 end init

B = 3.0 B = 3.0 begin reactions

AuB AuB Au -> 2xAu , r2

end init end init Au -> SINK , rl

begin ODE begin ODE Au + B -> Au , 3.0

d (Au) = — 3%Au*B + 4*xAuB d (Au) = — 3%Aux*B + 4*xAuB Au + B -> AuB , 3.0

d(B) = — 3%Au*xB + 4xAuB d(B) = - 6%AuxB + 8xAuB AuB -> Au + B, 4.0

d (AuB) = 3xAuxB - 4%AuB d (AuB) = 3xAu*B - 4xAuB AuB -> B + AuB , 4.0

end ODE end ODE end reactions

//Comments of the species //Comments of the species //Comments of the species
//Au: Block {Au, Ap} //Au: Block {Au, Ap} //Au: Block {Au, Ap}
//B: Block {B} //B: Block {B} //B: Block {B}

//AuB: Block {AuB, ApB} //BuB: Block {AuB, ApB} //AuB: Block {AuB, ApB}
end model end model end model

Listing 3: FDE reduction. Listing 4: BDE reduction. Listing 5: BB reduction.

The model of Listing[2]is not reduced by FB, independently on the pre-partitioning choice. This is consistent
with the fact that FB is only a sufficient condition for FDE (although it is effective on many meaningful models
from the literature, as discussed in [14]). The result of the BB reduction is instead provided in Listing |§[
As for BDE, we considered the case r1=1.0 and r2=1.0 without pre-partitioning. It can be shown that the
underlying ODE:s of the reduced model correspond to those of Listing[d} as expected. (The place-holder species
SINK is created to rule out reactions that have no products.)

UTOPIC. UTOPIC (Under-approximation Through Optimal Control) implements an algorithm from [10],
where the basic idea is to interpret uncertain parameters of an ODE system as controls and to minimise and
maximise a given linear combination of state variables using Pontryagin’s principle, a well-established result
in optimal control theory. The interval spanned by the so-obtained extrema can be shown to be an under-
approximation of the reachable set of the linear combination. Moreover, thanks to the fact that Pontryagin’s
principle is a necessary condition for optimality, the aforementioned interval can be expected to be tight enough
to cover the actual reachable set in many cases.

ERODE acts as a front-end that generates a MATLAB script implementing the algorithm. In our running
example we have two parameters: r1l and r2, to which we arbitrarily assigned values 1 and 2, respectively.
With the following ut opic command we can study the impact on the dynamics of a relaxation of such as-
sumptions, considering r1 and r2 as uncertain time-varying parameters in [0.9, 1.1] and [1.9,2.1], respectively:

utopic (fileOut="bu.m", tEnd=1, paramsToPerturb={rl in [0.9,1.1],r2 in [1.9,2.1]},
coefficients={AuB:1}, kMax=400, epsilon=le-3)
Coherently with the view v2 from Listings [[H2] here the modeller is interested in studying the concentration
of species AuB. This is indicated by the option coefficients used in the command. The command takes
the further additional settings: the output MATLAB file; the time horizon (here this is set to 1.0, as done
in Listing |Z[); the maximum number of iterations (kMax); and the relative tolerance €. Instead, the initial
conditions are taken from the ODEs specification (within the init block).

By running the generated script, UTOPIC returns the interval [0.81867,0.89381] as an under-approximation
of the concentration of AuB at time 7 = 1.0. This is consistent with the simulateODE command from
Listings 2] which computes value 0.878 for the view v2 at time time 7 = 1.0 when r1 and r2 have their
original constant values.

QUANTICOL 20 March 30, 2017

(Revision: 1.0; March 30, 2017) March 30, 2017

S topochecker

topochecker is a spatio-temporal model checker based on closure spaces and Kripke frames. It checks a spatial
extension of CTL (Computation Tree Logic) named STLCS (spatio-temporal logic of closure spaces). The
spatial fragment was presented in [20} 21]], whereas the spatio-temporal logic was introduced in [[19]].

topochecker has been used in the QUANTICOL project in the smart buses [18], and bike sharing [22]
scenarios. Integration with other tools in order to extend it to statistical model checking has been done, in
the bike sharing context, in [23]]. Recently (see the position paper [6]), topochecker has been extended in
collaboration with Azienda Ospedaliera Universitaria Senese (the university hospital of Siena). The tool is
currently in use in case studies aimed at segmentation of medical images via spatial model checking. The
extended version of topochecker is available in the experimental branch of the source code repository of the
tool. Multi-dimensional medical images are loaded as spatial models. The tool is capable of distance-based
reasoning in linear time, using the techinque of distance transforms, borrowed from the field of Computational
Imaging. Furthermore, a logical operator for statistical texture analysis has been implemented. The expressive
power of the obtained logical language is high. In first experiments, using about 30 lines of specification,
medical physicists in Siena have been able to identify glioblastoma and the associated oedema with confidence
and execution times in line with the state of the art in the field of automated segmentation of the tumour. A
clinical study is currently in progress.

5.1 Architecture

The tool, available as a stand-alone applicatiorﬂ and distributed under an open source license, is a global
model checker using a dynamic programming algorithm to verify STLCS formulas on finite models. Models
are composed of a temporal part, which is a Kripke structure, and a spatial part, which is a finite, quasi-discrete
closure space (see [21]). The Kripke structure and the spatial structure are given in the dot graph description
languageﬂ and valuations of atomic propositions are provided by a comma-separated-values file associating
to each point in space-time a list of propositions. The tool enriches basic STLCS by allowing users to specify
that some atomic properties have an associated floating-point value; therefore, atomic propositions can be basic
comparisons between the name of an atomic property and a floating point value. The tool permits parametric
macro abbreviations.

The model checker is written in the programming language OCamﬂ and carefully optimised. Native arrays
and native memory management are used (through the OCaml library bigarzray); the algorithm uses a table
of k x s X f memory words, where k is the number of temporal states, s is the number of spatial locations,
and f is the number of subformulas of a formula. One pass is executed over this table, filling it with a truth
value for every cell, running in O(k x s X f) steps. The model checker uses memoization of results for each
subformula. The cache is stored on-disk, so that checking again the same formulas over the same models is done
in negligible time, leveraging incremental design of complex formulas through multiple execution sessions.

5.2 Usage

A topochecker session consists of a text file, usually identified by the extension .topochecker, containing
instructions for the model checker, and in particular: a model declaration; an optional list of macro declarations;
a list of commands, instructing the model checker on what formulas to verify and where to save output files.
The tool is simply invoked on the command line as follows:

topochecker filename.topochecker

and produces as output a set of files representing the spatial snapshot of the valuation of formulas at temporal
states that are specified in the session file.

SWebsites: http://topochecker.isti.cnr.itlhttps://github.com/vincenzoml/topochecker
Shttp://www.graphviz.org/Documentation.php.
7Seelhttp://www.ocaml.orgl

QUANTICOL 21 March 30, 2017

http://topochecker.isti.cnr.it
https://github.com/vincenzoml/topochecker
http://www.graphviz.org/Documentation.php
http://www.ocaml.org

(Revision: 1.0; March 30, 2017) March 30, 2017

Model declarations. A model declaration specifies the kind of model to be loaded. The stable branch of the
tool currently has loaders for graphs in the graphviz format, whereas the experimental branch also loads images
(including multi-dimensional medical images). We shall discuss the stable branch in the following. Model
declaration (one per topochecker session) is written as

Kripke "kripke.dot" Space "space.dot" Eval "eval.csv";

where kripke.dot, space.dot and eval.csv are arbitrary file names. The file kripke.dot is a
graphviz file defining a directed graph, which is the Kripke frame describing the temporal evolution of the
system. Node identifiers must be numbers starting at 0 and with no gaps. The file space . dot is another graph,
obeying the same conventions on node identifiers, which is the quasi-discrete closure space used as a spatial
part of the model. Both graphs can be weighted; to achieve this, one adds the property weight=n to each
edge, where n is a floating point constant (with default value 1.0). In the experimental branch of the tool, also
implementing distance-based operators, such weights are used to compute shortest-path distances (Euclidean
distances are also implemented using node positioning, but this has been mostly tested with medical images
rather than graphs). The file eval.csv contains the valuation of atomic propositions. Proposition symbols
follow standard conventions for identifiers in programming languages; for each state in the Kripke structure,
and each point in space, any proposition may be assigned a truth value (if a truth value is not assigned, the value
false is assumed). Furthermore, propositions may also assume quantitative values; the syntax of the logic
is extended with basic constraints on such quantitative values. Concretely, eval .csv is a comma-separated
values file with three or more columns. Each row takes the form

state,point, propl, prop2, ..., propN

In each row, state is a node identifier present in kripke.dot, point is a node identifier present in

space.dot, and propl, ..., propN are identifiers (at least one must be present for each row). The mean-
ing is that each of propl, ..., propN is true at the specified state and point of the space. Alternatively,
each of propl, ... propN may take the form prop=num, associating a numeric (possibly floating point)

quantity to each proposition letter. Actually, the first form is a shorthand for prop=1. The tool represents truth
values as floating point constants, where 1 is the value true, and O is the value false. Note that each pair of state
and point identifier can be repeated many times, if needed; different atomic propositions will be accepted in
different rows.

Macro declarations and commands. Macro declarations are defined as lists of statements in the following
form: Let ide = FORMULA; or Let ide (argl,...,argN) = FORMULA;;macros are simply re-
placed in formulas; recursion is not permitted. Model checking is invoked by the Check statement as follows:

Check "COLOUR" FORMULA;

where COLOUR is an integer constant (either decimal, or hexadecimal, as in 0xRRGGBB), that denotes an
RGB color. FORMULA is a STLCS formula (which can use macros as explained above). The effect of such
command is to colour the points satisfying FORMULA, using COLOUR, in the current output file. Output files
are specified by statements in the form:

Output "PREFIX" statel,...,stateNlN;

where PREF IX will be used as a prefix for saving a spatial snapshot at each state; statel, ..., stateN
is an optional list of state identifiers (defined in kripke.dot), which, if present, restricts output to only
the specified states. If such state identifiers are not specified, one file for each state in kripke.dot is
saved. Once an output prefix has been defined, subsequent Check statements will create several files, named
PREFIX-N.dot, where N is replaced by a state identifier (one per requested state, or per existing state, as
explained above). More than one Output statement may be included per session; this permits one to save
results for several different formulas, in the same model checking session (therefore, reusing the global model
checking cache for each output prefix).

QUANTICOL 22 March 30, 2017

(Revision: 1.0; March 30, 2017) March 30, 2017

Syntax of formulas. The concrete syntax of the tool is described by the following grammar.

P =TT true
| FF false
| [p] proposition letter
| [p=n] atomic constraint
| 1@ not
‘ @1 &@2 and
| &;|®, or
| N& closure
| 1% interior
| &;S®, surrounded
| AD for all paths
| E® exists path
Y = X next
| G® globally
|

®,U®, until

where > is a comparison operator drawn from =, <, >, <, >. Elements of the language are: the usual Boolean
truth values and connectives; proposition letters; constraints on the quantitative value of propositions; the spatial
operators near and surrounded; the temporal operators for all paths and exists path from CTL; the well-known
path operators of CTL. Examples of use on the smart bus scenario are presented in Section[6.2]

6 Applications to Smart Cities

In this section we describe how the QUANTICOL software tool suite can be put to work for the analysis of
CAS using the project’s case studies. Specifically, Section[6.I] presents an analysis of bike-sharing systems that
involves spatio-temporal model checking with jSSTL and model reduction with ERODE. Instead, Section [6.2]
discusses applications of topochecker to the analysis of data from a bus transportation system. The application
of FlyFast to smart-city scenarios as well as further analysis with jSSTL are illustrated in D4.3 in the context
of the tools’ integration with the CARMA Eclipse plug-in.

6.1 Bike-sharing Analysis

In this section, we present an analysis of the London Santander Cycles Hire scheme, a bike sharing system,
modelled as a Population Continuous Time Markov Chain (PCTMC) with time-dependent rates. We use jSSTL
to study a number of spatio-temporal properties of the system and to explore its robustness for a set of formulas
parameters. Then, in Section we show how ERODE can be used to identify symmetries within a time-
homogeneous variant of the model.

6.1.1 Model

The Bike-Sharing System (BSS) is composed of a number of bike stations, distributed over a geographic area,
for example a city. Each station has a fixed number of bike slots. The users can pick up a bike, use it for a while,
and then return it to another station of the area. Following [30], we model the BSS as a PCTMC with time-
dependent rates. The model, given the bike availability in a station at time t, predicts the probability distribution
of the number of available bikes in that station at time 7 + 4 with & € [0,40] minutes. The parameters of the
model have been set using the historic journey data and bike availability data from January 2015 to March 2015

QUANTICOL 23 March 30, 2017

(Revision: 1.0; March 30, 2017) March 30, 2017

from the London Santander Cycles Hire scheme. In detail, the model contains the following transitions:

Bi — S; at rate out;(t), Vie (1,N)
S; — B; at rate in;(t), Vje (1,N)
B; — Si—l—Tj" at rate out", (t), Vi, j € (1,N)
S,~—1—T}—>Bi at rate in'; (# J’), Vi,j€ (1,N)

where B; (respectively S;) represents the bike agent (respectively the slot agent) in the i station, out;(t) (re-
spectively in;(t)) is the bike pickup (respectively return) rate in station i at time ¢, Tji is the agent of a bike
picked up in station i that will be returned in station j, out;- (t) = out;(t) * p; (1), Where p; (¢) is the probability
that a journey will end at station j given that it started from station / at time ¢, in’; is the return rate of a bike
picked up in station i that will be returned in station j, #TJ? denotes the population of an agent type TJ? and N is
the number of stations. Overall, the model consists of 733 bike stations and 57713 agents.

6.1.2 Verification of spatio-temporal logics using jSSTL

We simulated the model using Simhya [9], a Java tool for the simulation of stochastic and hybrid systems. In
particular we exploit its Gibson-Bruck algorithm. The time-dependent rates change 2 times, all at the same
time unit: the first interval is 14 minutes, the second interval is 20 minutes, the third interval is 6 minutes; we
simulate the model for 40 minutes. Then, we consider the trajectories only of the bike (B) and slot (S) agents,
in each station. Our spatio-temporal trace is then Xp(z,¢) = (Xp(t,£),Xs(z,¢)), i.e., the number of bikes and
free slots at each time, in each station. The space is represented by a fully connected weighted graph, where the
nodes are the stations and the edges describe the connections between stations. The weight function w: E — R
returns the distance between stations, where E = L x L is the set of edges and L is the set of stations.

One of the main problems of these systems is the availability of bikes or free slots in a specific station at a
given time. Two important questions related to this issue are:

e If I do not find a bike/free slot, how long should I wait before another user returns a bike/picks one up?

e If I do not find a bike/free slot, is there another station at the distance less than a certain value where 1
can find a bike/free slot?

These behaviours can be captured with the SSTL properties described below.

¢1 =Yo7, {®0.aq(B>0) A\ 04 (S>0)} (6)

A station /£ satisfies ¢; if and only if it is always true that, between 0 and T,,,; minutes, there exists a station at
a distance less than or equal to d, where there is at least one bike and a station at a distance less than or equal
to d where there is at least one free slot.

In the analysis, we explore parameter d € [0, 1] to see how the satisfaction of the property in each location
changes with respect to the walking distance to another station. In Figure we plot the approximate prob-
ability satisfaction py, for 1000 runs for all the stations, ford =0, (b)d =0.2, (c)d = 0.3 and (d) d = 0.5
(expressed in kilometres). We can see that for (a) d = 0 many stations have a high probability to be full or
empty (red points). Already with d = 0.2 km, i.e. walking 200 metres from the station with no bikes or slots,
we greatly increase the probability of ¢ and that, at d = 0.5, py, is larger than 0.5 for all the stations.

The behaviour “if I wait r minutes, I will always find a bike and a free slot” can instead be captured by the
following property:

¢ = Y01, {F00(B>0)A(S>0))} (7)

A station ¢ satisfies ¢, if and only if it is always true, for each time & € [0, T,,4|, that eventually, in a time
between & and h + ¢, there will be a bike and a free slot.

In the analysis, we explore parameter ¢ € [0, 10] minutes to see how the satisfaction of the property in each
location changes with respect to the waiting time for a bike or a free slot. In Figure[I9] we plot the approximate

QUANTICOL 24 March 30, 2017

(Revision: 1.0; March 30, 2017) March 30, 2017
51.55 \ \ \ \ 1 51.55 : : : : 1
4'0;;.09' ° .o'q.... 2 I .'.O};.ok’. ° .o'%..-' R I
o o0 o o H o0 ° ®f
Fope iSO B0 0 0 | 108 CARY ek v ot LR R
O\JQ oo &L 987 % e o.:.o. o % ‘O’- 8% % © o.:... o
0 5% SE S AT o 0% JUADS L AT RN
Rl aar SRS WAL ST S .
o 0 %0 o e o %00 0.6) ° o.l&. ® &) Lee 10.6
g qfos o S Tgre AT 8 3fey o odepne &
2 515 ?;;’,.;;:..ﬁ 0%’0&:’ & 2 515 dé'l:..oﬁ.’ S ot 3
o 00 ¢® o.”? G'.. oo o 90 ¢® 0 @ !?. ‘..0 o'
- “woh AR TSNS, gl | 04 A “wo® RN Toeyied g | | 104
QOQ) VO.’ :‘].o% 'O- l.. ..’
0® %000 ofs o 0 0% %o ofs o 0
.h.:‘(f..: :.. Y 0.2 .k.: ‘C,:?:g' ® 0.2
Pk P et
L] [}

51.45 : : : : 0 51.45 : : : : 0
-0.25 -0.2 -0.15 -0.1 -0.05 0 -0.25 -0.2 -0.15 -0.1 -0.05 0
Longitude Longitude

(@) (b)
51.55 51.55 " 1
® ° °
o8 *° oo o ..oo'ﬁ.:. %o I o8 *° oo oy .o'°.~"-:. 23 I
O‘ 0% e e Goo0 99 0%0 ¢ 0.8 .J 0% %o .’.p’:'. (40 0.8
0% 2 .g&." &...'::..o o ®s® $ ® rh @, ...-::...
° o.! O' (] ° %*.':.:.: L .'? " (J ° .O.t.':.'::
. Fys u:?f?‘ nlef 3w jos g Al AL
S ° e 8 @¥ee , <2 i) ° e 8 @, St
2 too¥@on IT o & Sungie . 2 eo¥Bop T o & Sese g
CRNREALT o Pt
° o® °
— w28 e o Fs, (] oo 10.4 - ‘..‘l:"‘: O Iataie oo 10.4
Sns 8% oo e, S BN e e,
2 o ?.o 'o ° 2 e ‘:.c 'o °
A S A
i;:"..?.:... 0.2 .k.:"..?.:..' 0.2
S O S O
[] [}

51.45 : : : : 0 51.45 : : : : 0
-0.25 -0.2 -0.15 -0.1 -0.05 0 -0.25 -0.2 -0.15 -0.1 -0.05 0
Longitude Longitude

(© d

Figure 18: Approximate probability satisfaction degree of formula ¢; for 1000 runs for each BSS station for
(@)d=0,b)d=0.2,(c)d =0.3 and (d) d = 0.5. The value of the degree is given by the colour legend.

probability satisfaction py, for 1000 runs for all the stations, for (a) # = 0 and (b) # = 10. In this case, we can
see that waiting a certain time does not greatly increase the probability to always find a bike or a free slot;
even after 10 minutes we can see in Figure[T9](b) that there are still many stations with satisfaction probability
close to zero. This means that there are stations that remain for more than 10 minutes always full or empty.
Considering that the average human walking speed is about 5.0 kilometres per hour (km/h), we can conclude
that if a user does not find a bike or a free slot in a station, she has usually more probability to find the bike/free
slot in another stations than waiting in the same station.

6.1.3 Model reduction using ERODE

In this section we use ERODE to identify symmetries among the dynamics between different bike stations,

potentially leading to: (i) more insights into the nature of the studied model; and (ii) a more compact represen-
tation.

QUANTICOL 25 March 30, 2017

(Revision: 1.0; March 30, 2017)

March 30, 2017

51.55 " " " " 1 51.55 " 1
% oo o o..0.~"(.. 0:0. l ..};o....p o....’.éc.o 0:0. l
?f 0% %o o c:’; %% $ e 0.8 o8 % % 0‘30:. 8% é . 0.8
o%%.. g% &% % e ¢ o....o. B34 ‘.’&;-.. 808, » é\.% e’ 0.:0‘.
R o L IO oo PEADSE ﬂ‘#‘% iens,
A 3P0 N ag ®0 52° g & %o 10.6 .‘s%.\o % AV Sou 106
o eo Po 8 %0 .S ° o co o g %0 &S o
ko) S @ Q ..‘ o %00 o8 o o @0 .?.oﬁ 0, 20° age
é 515" P.g’..o.z..o‘? o ‘)0(9..' g E 51.5F Pogé.ﬁ..ou; S :.....0 s
(o] ° (8] ®
3 R S5l joa 3 vty S >3 | foa
Tl P oSN tns S8 0w It
2 e 2 e
..;o.'O:...:" oo -:o :33'.:..‘0.0'-'.” o:o
RPp0 o820 © 0.2 oep0 o0 °© 0.2
LY 494 o £.°°
by 22l woghlr
51.45 ' ' ' ' 0 51.45 : ' ') 0
-0.25 -0.2 -0.15 -0.1 -0.05 0 -0.25 -0.2 -0.15 -0.1 -0.05 0
Longitude Longitude
(@) (b)

Figure 19: Approximate probability satisfaction degree of formula ¢, for 1000 runs for each BSS station for
(a)t =0and (b) t = 10. The value of the degree is given by the color legend.

The model. As discussed in Section[d] ERODE is designed for time-homogeneous systems. For this reason,
we consider a variant of the model from Section [6.1.1| where we fix the parameters of the first time interval. In

other words, we consider a model of the form:

B, — S; at rate out;(0),
S; — B; at rate in;(0),
B — Si+ Tji at rate outj-(O),
Si+ Tji — B; at rate m’J (#T;‘)7

Vie (1,N)
Vje (1,N)
Vi, j € (1,N)
Vi, j € (1,N)

We remark that this is not a real limitation, as it would just suffice to apply our techniques to the three distinct
models obtained in the three considered time intervals. Furthermore, we consider an ODE interpretation of the
model as a standard first-order approximation of the Markov population process (e.g., [11]]). For example, the

reaction
B; — §; at rate out,-(O)

fires at speed out;(0). This term appears in the ODE of B; (with negative sign) as well as in the ODE of §;.

Therefore, the obtained ODE system consists of 57,713 ODE variables.

Exact reduction. We applied BDE to the obtained ODE system. Since this captures ODE solutions that are
equal at all time points, it required us to pre-partition the variables according to their initial conditions, taken
from the model analysed in Section [6.1.1] This results in 49 blocks of variables. The coarsest BDE refining
such initial partition has 32,037 blocks, corresponding to a reduction of about 45% in the number of ODE

variables.

By studying the obtained BDE partition it turns out that this is only an “artificial” reduction due to the
assumption of time-homogeneity. Indeed, a number of rates were set to O in the first time interval where the
model is assumed to be homogeneous. (The rates have positive values only in the later intervals.) This led
to many variables without dynamics: in particular we obtained a singleton block per variable with non-zero
dynamics and a large block of 25,749 variables without dynamics. Interestingly, part of the ODEs for variables
Tji agents have no dynamics, while all variables corresponding to bikes (B;) and slots (S;) agents have dynamics.
This means that a number of movements of bikes between pairs of stations are not taking place during the first

time interval.

QUANTICOL 26

March 30, 2017

(Revision: 1.0; March 30, 2017) March 30, 2017

(b) Free slots in stations 451, 514, and 733.

Figure 21: Trajectories relative to three bikes stations of the original model (solid lines), together with those of
the corresponding BDE block in the reduced truncated model (dashed lines).

Approximate reduction. We use this model to motivate ongoing work on approximate notions of reductions,
which can still be experimented with using the theory and technology developed so far. One well known
problem of exact model reductions is the sensitivity to the rate parameters. For instance, in our model we have

outys; (0) = 0.00759924 outs14(0) = 0.00759848

A possible solution would be to develop approximate variants where the equivalence conditions are con-
sidered up to a given threshold on the parameters. This would be backed, at least for asymptotically small
perturbations, by the well-known Gronwall inequality which guarantees nearby solutions. Then, it might be
interesting to investigate if it is possible to recast an approximate reduction technique as an exact one applied
to a slightly perturbed, more symmetric, model. An immediate way of obtaining such perturbation consists in
considering a truncated version of the model, obtained by rounding the rates to a given significant decimal.
Here we round all parameters up to two decimals, obtaining, e.g.:

0Ml‘451(0) =0.01 out514(0) =0.01

Clearly, such truncation has consequences for the system dynamics. However we observed that it preserved the
general trends. This is confirmed by Figure 20} which compares the evolution in time of the number of bikes in
three representative stations (namely, Bg, B7, and Bg) in the original model and in the perturbed one.

The perturbed model now allows for interesting BDE aggregations. The largest BDE has 14,835 blocks
only (thus leading to a reduced ODE system with 14,835 variables). Instead, less aggressive perturbations (e.g.,
rounding up to the third decimal) did not lead to any additional reduction with respect to the original model.
The following are two examples of BDE blocks obtained when rounding up to the second decimal:

{Bus1,Bs14,B733} {S4s1,8451,5733}

QUANTICOL 27 March 30, 2017

(Revision: 1.0; March 30, 2017) March 30, 2017

These two BDE blocks tell us that the three stations 451, 514 and 733 always have same number of bikes (and
hence of free slots) in the perturbed model. Instead, this was not the case in the original model. However,
Figure [21] shows that the introduced error is limited in this case. Furthermore, it shows that the model is still
physically meaningful, in the sense that the sum of bikes and free slots in each station remained unchanged
across all time points (and is equal to 1).

This discussion has shown that the approach is promising. Indeed, by resorting to just simple rounding
operations, BDE has been able to identify variables with similar, but not identical, dynamics. This paves the
way to more sophisticated approaches, e.g., aiming to obtain the smallest perturbation that enables a significant
reduction, which are the subject of ongoing investigations.

6.2 Bus transportation

We now proceed with an application to bus transportation systems. We show an example of use of topochecker
identifying diverted bus positions based on GPS data and the detection of bus clumping or platooning in frequent
bus services. Bus clumping, and, more in general, issues related to headway and slack time of buses, are the
subject of an active research field; see for instance [34, 33, 25| [24) i47]] and references therein. Promising
self-regulating strategies have been proposed such as [34} [33] [25]], by letting buses wait at pre-defined control
points in order to maintain a constant headway between subsequent buses. Such strategies have shown to be
resilient to several kinds of perturbations in the system such as buses breaking, change in traffic conditions
and temporary re-routing of buses, as long as these perturbations are not too severe. Such strategies depend
critically on information on the position of buses at specific times and on the correctness of GPS data.

6.2.1 Identifying Diverted Bus Positions

In [18} [17], topochecker has been successfully applied to detect problems in the automatic vehicle location
(AVL) data, which is the input to other systems that provide information to passengers and system operators
such as bus arrival predictions. Such data may contain errors originating in a problem with the hardware of
the measurement device or also indicate operational problems experienced by bus drivers that encountered
unexpected road works or accidents and have to deviate from their planned route. The GPS data of the position
of the buses can be automatically projected onto a portion of the digital map (such as for example provided
by OpenStreetMaIﬁ) of the area where the bus is operating, after which spatial model checking can be applied
on an image of the map to identify those bus positions that may indicate a problem. An example of buses
apparently being diverted or in an off-road position is shown in Figure The following formulas specify
a diverted bus and a bus that is off-road. First, different types of streets are characterised by their colour on
the map and defined as atomic propositions. For example, small streets are white, the main street is pink, etc.
Also a bus is specified by a particular colour. Then a diverted bus can be specified by a bus surrounded by the
colour of the smallStreet, meaning that the bus is on a small street. A bus that is off-road is not on a street,
and thus not surrounded by any colour that is associated to streets, be they main streets or small streets in this
particular case. An excerpt from the topochecker specification is shown in Figure 22]

Being able to detect and identify errors in AVL data, associating them with the right category of error in an
automatic way, is of great use in obtaining better prediction algorithms. More complicated examples are those
related to operational errors. For example one can detect buses of the same route that have overtaken each other
or that are approaching the same bus stop within a too short interval of time.

6.2.2 Bus Clumping in Frequent Bus Services

The next example concerns the analysis of some specific problems in modern public transport systems such
as the so-called “frequent” bus services operating in many densely populated cities [18, [17]. Frequent bus
services are public bus services without a published timetable but with regular and frequent buses operating
along pre-established routes. In such services a particular phenomenon may occur that is commonly known

8https://www.openstreetmap.org.

QUANTICOL 28 March 30, 2017

(Revision: 1.0; March 30, 2017)

March 30, 2017

255] & [blue

255715

S street));

Colours in red the points
satisfying divertedBus
Colours in magenta the points

Let smallStreet = [red = 255] & [green
Let mainStreet = ;
Let bus = [red = 0] & [blue = 255];
Let street = smallStreet | mainStreet;
Let divertedBus = bus S smallStreet;
Let busOutOfStreet = bus & (! (bus
Check "O0xFF0000" divertedBus; //

//
Check "OxFFOOFF" busOutOfStreet; //

//

satisfying busOutOfStreet

Figure 22: Spatial formulas to detect diverted buses

O(__ Diverted position

P

Off-road position

Figure 23: Diverted positions (neither off road, nor on a main street) are automatically highlighted in red by the
spatial model checking procedure, off-road positions are highlighted in violet.

QUANTICOL

29 March 30, 2017

(Revision: 1.0; March 30, 2017) March 30, 2017

3 L 4
- ~ o
=
P X = IS
e ‘B,p L 3
4 =p (¢ 3
S/ e
N ’ B, T p Pl
’ ~ =
> N . ® ’ 3
’ &n. &) N
s ks " 4 SON
’ 2 w7 /e
’ +4 = P
& AV O GV,
= .l . ! A \
7 ,I ,‘I . '_
AN o s = o T » >
P 1 = =1 Sy an T
>) 7 P
| ot \@I}'P £ v = \
L 4 " ¢
¥, il ¢, 4 ,fr
+ v R 4 »
N (3 %ﬂv /P Pl /
W -.‘ /e ll - ’,Q
B 4.t o’ Wy
e + 70 4 B 3
o 7/ 0
"N % wy'/o
j‘ G S D 17 i*’\
S " b= ,1
., ’ '_.
F-2 P .
[} & ’ &
= v 4 ! 5,
e
- A . 'l " \ :I
; -
i R R £=d
D NP Cadd ,
= & 1 7 '
+ R &, 1 y 2 4
“* Vo ® L oy
3 B, PF'.\ 'I i P
NN u ¢ W %‘,’
(", Fa . o A
.55 + A N A g
" syr/qd
L Ve | VA N
6 g el
N -
N
el = = 2
X N Fl
N 2 X

Figure 24: Because of delays caused by boarding passengers the headway between buses is successively eroded
over time until the buses are essentially ‘clumped’ together. The successive time frames run from top to bottom.

as bus bunching or bus clumping. Bus clumping occurs where one bus catches up with — or at least comes
too close to — the bus which is in front of it. In the absence of a published timetable for frequent services the
important performance metric to consider is not timetable adherence but headway, a measure of the separation
between subsequent buses. This separation can be defined both in terms of distance between buses on the same
route or in terms of the time between two buses on the same route passing by the same bus stop. It is possible
to identify these two notions of clumping using STLCS on a time series of street map images on which the
bus positions are projected. The problem is illustrated in showing three successive “satellite view”
images of the position of three different buses on the same route projected on a portion of a map of a city. The
buses are shown as three small red dots on the main road. The distance between the buses is getting smaller
in each successive image, resulting in the three buses being lined up in the final image as indicated by the red
arrows left-bottom).

In the sequel, we focus on the spatio-temporal characterisation of clumping. Consider a single bus route,
served by k buses. At each instant of time, the state of the system is completely described by a tuple of k
GPS positions; therefore, a system trace is a finite sequence of such tuples. We can distinguish two different
variants of clumping that differ in a subtle way. One in which two consecutive buses serving the same route
are spatially close to each other, and one in which they pass by the same bus stop within a too short amount
of time. Here we formalise the latter variant considering three buses on the same route. The input code of
the model checking session is shown in Figure @ Formulas bus1, bus2, bus3, and busStop serve the
purpose of identifying bus positions on a digital map of the city. In this example, colours are used to distinguish
the different buses serving the same route, so that each bus has a specific colour. Similarly, formula busStop

QUANTICOL 30 March 30, 2017

(Revision: 1.0; March 30, 2017) March 30, 2017

Let busl = [red = 155] & [green = 0] & [blue = 0];
Let bus2 = [red = 188] & [green = 0] & [blue = 0];
Let bus3 = [red = 221] & [green = 0] & [blue = 0];

Let bus = busl | bus2 | bus3;
Let busStop = [red = 55] & [green = 55] & [blue = 255];

Let close(x) = N"7 x;
Let busAtStop(x) = busStop & close(x);

Let busAfterBusl = busAtStop (busl) &
EX busAtStop (bus2 | bus3);

Let busAfterBus2 = busAtStop (bus2) &
EX busAtStop (busl | bus3);

Let busAfterBus3 = busAtStop (bus3) &
EX busAtStop (busl | bus2);

Let timeConglomerate = (busAfterBusl | busAfterBus2 | busAfterBus3);

Check "OxFF0000" timeConglomerate; // Colours in red the points
// satisfying timeConglomerate

Figure 25: Spatio-temporal formulas for time conglomerates

identifies the position of a bus stop. The formula t imeConglomerate, that we explain below, is true at
points of a bus stop whenever clumping is happening (formation of a conglomerate of buses) at that particular
stop.

A spatio-temporal conglomerate happens when two buses serving the same route pass by the same stop
within a short amount of time. This case is subtler than the spatial one, as it does not necessarily imply that the
headway between two buses becomes too small. This event is described by the formula t imeConglomerate,
which features a combination of spatial operators (used to detect that a bus is close to a stop) and temporal oper-
ators (used to identify the spatio-temporal conglomerate). For instance, consider the formula busAfterBusl.
This formula is true on points that are: i) part of a bus stop, and close to bus1, because busAt St op must be
true for bus1; ii) such that, in the next snapshoﬂ these will be part of a bus stop, and close to either bus?2
or bus 3. Note that the use of spatial and temporal connectives in the same formula permits one to refer to the
colour of points at a specific time, and at subsequent time instants.

Figure [26] is obtained from the spatio-temporal model checker, starting from the positions of three buses
serving the same route. Figures are obtained by mapping bus coordinates over a base map. Buses
are represented by small squares of different shades of red on the roads. To make them more visible they are
also highlighted by the red circles in Figure The small dark blue square is a bus stop (see Figure [26¢).
Figure [26f] shows the output of the model checker when checking the formula EF timeConglomerate in
the initial state shown in Figure 26a] Indeed, Figure [26f]is the same as except for the colour of the
bus stop, whose points are now turned green by the model checker, indicating that clumping happens at that
stop, at some point in the future.

9More than one time step can be required. This can be achieved by repeated nesting of the EX operator. We did not do so for the

sake of clarity in[Figure 26|

QUANTICOL 31 March 30, 2017

(Revision: 1.0; March 30, 2017) March 30, 2017

(e) Final state (f) Result from the model-checker. Points of the

initial state that will be involved in a future con-
glomerate are coloured in green and indicated by
the red circle

Figure 26: Spatio-temporal conglomerate.

7 Conclusion

Summary. We presented the QUANTICOL software tool suite, a collection of mature tools for the analysis
of collective adaptive systems. Taken together, our software supports many notable phases of a typical mod-
elling workflow, such as specification (by means of domain-specific languages), model checking, and model
reduction. Each tool has been developed having in mind important principles of software engineering such
as robustness, usability, re-usability, and scalability. This has led, for instance, to ease of interoperability, as
witnessed by the integration efforts with the CARMA Eclipse plug-in which are documented in D4.3.

QUANTICOL 32 March 30, 2017

(Revision: 1.0; March 30, 2017) March 30, 2017

In the wider perspective of the whole project, we believe that this deliverable has demonstrated a successful
synergy between the theories developed in the other work packages and their practical repercussions in terms of
software implementation and applications to realistic models. The combination of theory and practice produces
a virtuous self-reinforcing circle whereby the theory can impact on real systems, which in turn solicit further
theoretical results to tackle problems of increasing complexity.

Deviations from plans. Overall, the work carried out in WP5 has been in line with what had been planned in
the Description of Work. This deliverable is no exception since its intent was to showcase a CAS toolkit and
apply it to our case studies. However, we did register a more pronounced interest in case studies concerning
bus transportation systems and bike sharing systems than smart grids. This is consistent with a similar situation
observed in D1.4 and can be attributed to the same fact, namely one principal investigator (Nicolas Gast)
moving to INRIA from EPFL, where most of the expertise on smart grids resided. On the other hand, it is fair
to say that the amount of research on buses and bike sharing exceeded our expectations.

Future work. Although our tools — and the theory behind them — have been motivated by the smart city
scenarios of the QUANTICOL project, their applicability has been demonstrated to go beyond: FlyFast has
analyzed network protocols for gossiping, jSTTL can be used for studying epidemiological systems, ERODE
finds applications in systems biology, and topochecker is being experimented with for medical imaging. We
believe that such a diversity of application areas adds significant value to our contributions and serves as a
motivation to pursue new avenues of research in the future.

FlyFast will be used for further case studies, among which a continuation of the work on gossip models,
and will remain publicly available and supported as part of the jSAM framework. Recent work on a front-end
language for predicate-based communication will be further consolidated (see Deliverables 3.3 and 4.3).

JSTTL is still under development and new features will be integrated. For instance, we are working on new
kinds of formats and sources for input and output of data, and on a better integration with Matlab. We are also
developing better monitoring algorithms and extending the logic with new operators, implementing them in
the tool. In particular, we are developing an online monitoring procedure where trajectories are collected from
external data sources, and a semantics to incorporate uncertainty in measurements.

We plan to continue supporting ERODE for the foreseeable future, with the implementation of techniques
for approximate model reduction (discussed in Deliverable 5.3), the consolidation of prototypes supporting
recent research papers [13, 48], and the extension to other classes of dynamical systems such as differential-
algebraic equations, which is the subject of current research.

The spatio-temporal model checker topochecker is currently being extended with further operators con-
cerning collective properties on sets of points in space. Furthermore, the work on medical imaging using
topochecker [6] has been extended and is currently under review for publication in an international scientific
journal (available also as Quanticol Technical Report TR-QC-02-2017). Also a clinical trial is in progress at
the University Hospital of Siena and an investigation is being carried on to explore how the research results can
be further exploited after the end of the project.

References

[1] Apache Commons Mathematics Library, http://commons.apache.org/proper/
commons-math/|

[2] R. Bakhshi. Gossiping Models — Formal Analysis of Epidemic Protocols. PhD thesis, Vrije Universiteit
Amsterdam, January 2011.

[3] R.Bakhshi, L. Cloth, W. Fokkink, and B. R. Haverkort. Mean-field framework for performance evaluation
of push-pull gossip protocols. Perform. Eval., 68(2):157-179, 2011.

QUANTICOL 33 March 30, 2017

http://commons.apache.org/proper/commons-math/
http://commons.apache.org/proper/commons-math/

(Revision: 1.0; March 30, 2017) March 30, 2017

[4] E. Bartocci, L. Bortolussi, D. Milios, L. Nenzi, and G. Sanguinetti. Studying Emergent Behaviours
in Morphogenesis Using Signal Spatio-Temporal Logic. In Hybrid Systems Biology, number 9271 in
Lecture Notes in Computer Science, pages 156—172. Springer International Publishing, Sept. 2015. DOI:
10.1007/978-3-319-26916-0.9.

[5] E. Bartocci, L. Bortolussi, L. Nenzi, and G. Sanguinetti. System design of stochastic models using ro-
bustness of temporal properties. Theoretical Computer Science, 587:3-25, July 2015.

[6] G. Belmonte, V. Ciancia, D. Latella, and M. Massink. From collective adaptive systems to human centric
computation and back: Spatial model checking for medical imaging. In M. H. ter Beek and M. Loreti,
editors, Proceedings of the Workshop on FORmal methods for the quantitative Evaluation of Collective
Adaptive SysTems, FORECAST@STAF 2016, Vienna, Austria, 8 July 2016., volume 217 of EPTCS, pages
81-92, 2016.

[7] E. Bertuzzo, S. Azaele, A. Maritan, M. Gatto, I. Rodriguez-Iturbe, and A. Rinaldo. On the space-time
evolution of a cholera epidemic. Water Resources Research, 44(1):W01424, 2008.

[8] M. L. Blinov, J. R. Faeder, B. Goldstein, and W. S. Hlavacek. Bionetgen: software for rule-based modeling
of signal transduction based on the interactions of molecular domains. Bioinformatics, 20(17):3289-3291,
2004.

[9] L. Bortolussi, V. Galpin, and J. Hillston. Hybrid performance modelling of opportunistic networks. In
Proceedings 10th Workshop on Quantitative Aspects of Programming Languages and Systems, QAPL
2012, Tallinn, Estonia, 31 March and 1 April 2012., pages 106-121, 2012.

[10] L. Bortolussi and N. Gast. Mean field approximation of uncertain stochastic models. In 46th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2016, pages 287298,
2016.

[11] L. Bortolussi, J. Hillston, D. Latella, and M. Massink. Continuous approximation of collective system
behaviour: A tutorial. Performance Evaluation, 70(5):317-349, 2013.

[12] L. Cardelli, M. Tribastone, M. Tschaikowski, and A. Vandin. Forward and backward bisimulations for
chemical reaction networks. In CONCUR, 2015.

[13] L. Cardelli, M. Tribastone, M. Tschaikowski, and A. Vandin. Comparing chemical reaction networks: A
categorical and algorithmic perspective. In LICS, 2016.

[14] L. Cardelli, M. Tribastone, M. Tschaikowski, and A. Vandin. Efficient syntax-driven lumping of differen-
tial equations. In TACAS, volume 9636, pages 93-111, 2016.

[15] L. Cardelli, M. Tribastone, M. Tschaikowski, and A. Vandin. Symbolic computation of differential equiv-
alences. In POPL, 2016.

[16] L. Cardelli, M. Tribastone, M. Tschaikowski, and A. Vandin. ERODE: A tool for the evaluation and
reduction of ordinary differential equations. In TACAS. Springer, 2017. To appear.

[17] V. Ciancia, S. Gilmore, G. Grilletti, D. Latella, M. Loreti, and M. Massink. On Spatio-temporal model-
checking of vehicular movement in public transport systems - Preliminary Version. Quanticol Technical
Report TR-QC-02-2016, QUANTICOL, 2016.

[18] V. Ciancia, S. Gilmore, D. Latella, M. Loreti, and M. Massink. Data verification for collective adap-
tive systems: Spatial model-checking of vehicle location data. In SASO Workshops, pages 32-37. IEEE
Computer Society, 2014.

QUANTICOL 34 March 30, 2017

(Revision: 1.0; March 30, 2017) March 30, 2017

[19] V. Ciancia, G. Grilletti, D. Latella, M. Loreti, and M. Massink. An experimental spatio-temporal model
checker. In Software Engineering and Formal Methods - SEFM 2015 Collocated Workshops: ATSE,
HOFM, MoKMaSD, and VERY*SCART, York, UK, September 7-8, 2015, Revised Selected Papers, pages
297-311, 2015.

[20] V. Ciancia, D. Latella, M. Loreti, and M. Massink. Specifying and verifying properties of space. In
Theoretical Computer Science - S8th IFIP TC 1/WG 2.2 International Conference, TCS 2014, Rome, Italy,
September 1-3, 2014. Proceedings, volume 8705 of Lecture Notes in Computer Science, pages 222-235.
Springer, 2014.

[21] V. Ciancia, D. Latella, M. Loreti, and M. Massink. Model Checking Spatial Logics for Closure Spaces.
Logical Methods in Computer Science, Volume 12, Issue 4, Oct. 2016.

[22] V. Ciancia, D. Latella, M. Massink, and R. Pakauskas. Exploring spatio-temporal properties of bike-
sharing systems. In 2015 IEEE International Conference on Self-Adaptive and Self-Organizing Systems
Workshops, SASO Workshops, pages 74-79. IEEE Computer Society, 2015.

[23] V. Ciancia, D. Latella, M. Massink, R. Paskauskas, and A. Vandin. A tool-chain for statistical spatio-
temporal model checking of bike sharing systems. In T. Margaria and B. Steffen, editors, Leveraging
Applications of Formal Methods, Verification and Validation: Foundational Techniques - 7th International
Symposium, ISoLA 2016, Imperial, Corfu, Greece, October 10-14, 2016, Proceedings, Part I, volume
9952 of Lecture Notes in Computer Science, pages 657-673, 2016.

[24] C. F. Daganzo. A headway-based approach to eliminate bus bunching: Systematic analysis and compar-
isons. Transportation Research Part B: Methodological, 43(10):913 — 921, 2009.

[25] C. E. Daganzo and J. Pilachowski. Reducing bunching with bus-to-bus cooperation. Transportation
Research Part B: Methodological, 45(1):267 — 277, 2011.

[26] L. De Moura and N. Bjgrner. Z3: An efficient SMT solver. In TACAS, pages 337-340, 2008.

[27] S. Derisavi, H. Hermanns, and W. H. Sanders. Optimal state-space lumping in Markov chains. [Inf.
Process. Lett., 87(6):309-315, 2003.

[28] A. Donzé and O. Maler. Robust satisfaction of temporal logic over real-valued signals. In Proc. of
FORMATS 2010, the 8th International Conference on Formal Modeling and Analysis of Timed Systems,
Klosterneuburg, Austria, September 8—10, volume 6246, pages 92—-106, 2010.

[29] F. Erhard, C. C. Friedel, and R. Zimmer. FERN - a Java framework for stochastic simulation and evaluation
of reaction networks. BMC Bioinformatics, 9(1):356, 2008.

[30] C. Feng, J. Hillston, and D. Reijsbergen. Moment-based probabilistic prediction of bike availability for
bike-sharing systems. pages 139-155. SPRINGER INT PUBLISHING AG, 2016.

[31] Microsoft GEC, http://research.microsoft.com/en—-us/projects/gec/.

[32] R. A. Hayden and J. T. Bradley. A fluid analysis framework for a Markovian process algebra. Theor.
Comput. Sci., 411(22-24):2260-2297, 2010.

[33] J.J.B.1II, R.J. Clark, D. W. Williamson, D. D. Eisenstein, and L. K. Platzman. Building a self-organizing
urban bus route. In Sixth IEEE International Conference on Self-Adaptive and Self-Organizing Systems
Workshops, SASOW 2012, Lyon, France, September 10-14, 2012, pages 66—70. IEEE Computer Society,
2012.

[34] J. J. B. Ill and D. D. Eisenstein. A self-coordinating bus route to resist bus bunching. Transportation
Research Part B: Methodological, 46(4):481 — 491, 2012.

QUANTICOL 35 March 30, 2017

http://research.microsoft.com/en-us/projects/gec/

(Revision: 1.0; March 30, 2017) March 30, 2017

[35] D. Jovanovic and L. M. de Moura. Solving non-linear arithmetic. In IJCAR, pages 339-354, 2012.

[36] K. G. Larsen and A. Skou. Bisimulation through probabilistic testing. Information and Computation,
94(1):1-28, 1991.

[37] D. Latella, M. Loreti, and M. Massink. On-the-fly fast mean-field model-checking. In M. Abadi and
A. Lluch-Lafuente, editors, Trustworthy Global Computing - 8th International Symposium, TGC 2013,
volume 8358 of LNCS, pages 297-314. Springer, 2013.

[38] D. Latella, M. Loreti, and M. Massink. On-the-fly PCTL fast mean-field approximated model-checking
for self-organising coordination. Sci. Comput. Program., 110:23-50, 2015.

[39] D. Latella, M. Loreti, and M. Massink. FlyFast: A Mean Field Model Checker. In A. Legay and T. Mar-
garia, editors, Tools and Algorithms for the Construction and Analysis of Systems, LNCS. Springer, 2017.
ISSN 0302-9743, (To appear) .

[40] J. Le Boudec, D. D. McDonald, and J. Mundinger. A generic mean field convergence result for systems of
interacting objects. In Fourth International Conference on the Quantitative Evaluaiton of Systems (QEST
2007), 17-19 September 2007, Edinburgh, Scotland, UK, pages 3—18. IEEE Computer Society, 2007.

[41] O. Maler and D. Nickovic. Monitoring temporal properties of continuous signals. In Proc. of Joint Inter-
national Conferences on Formal Modeling and Analysis of Timed Systmes, FORMATS 2004, and Formal
Techniques in Real-Time and Fault -Tolerant Systems, FTRTFT 2004, Grenoble, France, September 22-24,
volume 3253 of Lecture Notes in Computer Science, pages 152—-166, 2004.

[42] L. Mari, E. Bertuzzo, L. Righetto, R. Casagrandi, M. Gatto, . Rodriguez-Iturbe, and A. Rinaldo. Mod-
elling cholera epidemics: the role of waterways, human mobility and sanitation. Journal of The Royal
Society Interface, 9(67):376-388, Feb. 2012.

[43] L. Nenzi and L. Bortolussi. Specifying and monitoring properties of stochastic spatio-temporal systems
in signal temporal logic. In 8th International Conference on Performance Evaluation Methodologies and
Tools, VALUETOOLS 2014, Bratislava, Slovakia, December 9-11, 2014, 2014.

[44] L. Nenzi, L. Bortolussi, V. Ciancia, M. Loreti, and M. Massink. Qualitative and Quantitative Monitoring
of Spatio-Temporal Properties. In E. Bartocci and R. Majumdar, editors, Runtime Verification, number
9333 in Lecture Notes in Computer Science, pages 21-37. Springer International Publishing, 2015.

[45] L. Nenzi, L. Bortolussi, and M. Loreti. jSSTL - a tool to monitor spatio-temporal properties. In VALUE-
TOOLS, 2016.

[46] R. Paige and R. Tarjan. Three partition refinement algorithms. SIAM Journal on Computing, 16(6):973—
989, 1987.

[47] M. Ruan and J. Lin. An investigation of bus headway regularity and service performance in Chicago bus
transit system. In Transport Chicago, Annual Conference, 14., 2009.

[48] S. Tognazzi, M. Tribastone, M. Tschaikowski, and A. Vandin. EGAC: A genetic algorithm to compare
chemical reaction networks. In GECCO, 2017. To appear.

[49] M. Tribastone, S. Gilmore, and J. Hillston. Scalable differential analysis of process algebra models. IEEE
Trans. Software Eng., 38(1):205-219, 2012.

[50] A. Valmari and G. Franceschinis. Simple o(mlogn) time Markov chain lumping. In TACAS, 2010.

[51] E. O. Voit. Biochemical systems theory: A review. ISRN Biomathematics, 2013:53, 2013.

QUANTICOL 36 March 30, 2017

	Introduction
	FlyFast
	Interface Overview
	Available Analysis Techniques

	jSSTL
	Running example
	Interface

	ERODE/UTOPIC
	Architecture
	Illustrating Example
	Language

	topochecker
	Architecture
	Usage

	Applications to Smart Cities
	Bike-sharing Analysis
	Model
	Verification of spatio-temporal logics using jSSTL
	Model reduction using ERODE

	Bus transportation
	Identifying Diverted Bus Positions
	Bus Clumping in Frequent Bus Services

	Conclusion

