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Abstract

Natural language processing (NLP) and requirements engineering (RE) have a long-lasting relation, yet
not well-established in industrial practice. We discuss how NLP technologies are applied in RE, and envision
their upcoming, intertwined evolution according to four dimensions we propose: Discipline, Dynamism, Domain
Knowledge and Datasets (our 4Ds).
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I. INTRODUCTION

Requirements are generally expressed with the most human of the communication codes, which is
natural language. In requirements engineering (RE), natural language processing (NLP) techniques can
be applied to a wide range of tasks [1]. In this paper, we discuss the relevant research applications of
NLP to RE, and we propose a 4-(D)imensions framework to provide the conceptual lenses to understand
the interplay between the two areas. A first D is discipline, with NLP being used for defect detection.
A second D is dynamism, with NLP employed for traceability and categorization. A third one is domain
knowledge, since NLP can help to identify domain experts and surf knowledge sources. A fourth, crucial,
challenging and cross-cutting D, is datasets, since modern NLP techniques are data hungry, and datasets
are still scarce in RE. According to these four dimensions, we shape a vision of the state of the practice
when the research in the 4Ds comes to fruition.

II. DISCIPLINE

Requirements are an abstract conceptualisation of the system needs that is inherently open to different
interpretations. This openness is emphasised by the intrinsically ambiguous means that is commonly used
to express requirements, which is natural language (NL). On the other hand, as the requirements process
progresses, requirements are expected to be unequivocal enough to be interpreted in the same way by the
stakeholders who deal with them. The key for writing unequivocal requirements is Discipline.

Several software development standards, such as CENELEC-50128 for railway software, the DO-178C
for avionic, and also the IEEE Std 830TM-1998(R2009) touch the issue of a writing discipline in the
development of requirements. Looking at different aspects, they ask requirements to be unequivocal, but
none of the standards provides language guidelines to facilitate an agreement in the interpretation of the
requirements.

This lack of guidance allows requirements editors to put their individual vision of writing discipline
into practice. The adherence to a self-defined rigorous style that reflects the mindset of the editor may
lead to a sort of personal jargon, with acrobatic circumlocutions. These apparently enforce precision, but,
given their poor readability, they often encourage freedom of interpretation instead.

In this scenario, how to hope for a common writing standard, or set of standards, for writing require-
ments? A scheme suggested by the RE research community is to employ NLP tools that let editors
be aware of the ambiguity in their requirements. Ambiguities might cause inconsistencies between the
expectation of the customer and the product developed, and possibly lead to undesirable reworks on the
artifacts.
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A large body of literature is available in RE that presents technical solutions to identify ambiguous
expressions (“as possible”, “taking into account”, etc.) [2] and anaphoric constructions [3], where readers
might disagree in the interpretation of pronouns – as in this example requirement: “When the system
sends a message to the receiver, it shall provide an acknowledgement” (it = “system” or “receiver”?).
More recently, solutions for detecting ambiguities have also been proposed that deal with the so called
pragmatic ambiguities [4], which depend on the background knowledge of the reader, and are oriented to
answer questions such as: will a customer and a developer interpret the requirement in the same way? In
the previous example, a customer without a technical background might be oriented to interpret “receiver”
as a human subject, while a developer is likely to consider “receiver” as a software component.

Less explored in RE, but still relevant, is the concept of readability of the requirements. Readability is the
property of a text to be understood with limited effort. It is associated to the complexity of the terminology
used and to the complexity of the syntax. Research in NLP for readability and text simplification is still
ongoing [5], and proper tailoring shall be planned for the RE domain.

We foresee that a more widespread usage of ambiguity checks and readability solutions within leading
companies will let writing standards emerge from the practice. This, in turn, will mitigate common
editing mistakes. We also argue that the usage of these technologies shall be balanced on the degree
of abstraction and on the expected reader of a requirement. Indeed, user-level and high-level technical
requirements might be characterised by a certain level of uncertainty, and too strict ambiguity checks
could not be desirable. Conversely, lower level technical requirements shall be ambiguity free, while one
could tolerate poor readability to favor precision. Therefore, along the software process, NL requirements
evolve into different forms, that might need different treatments. The evolutionary facet of requirements
leads us to discuss another dimension of the problem: Dynamism.

III. DYNAMISM

Requirements are concepts that, as the software process goes on, are justified, re-negotiated, discussed,
refined, and gradually evolve into executable artifacts. The trace that this evolution leaves has to be identi-
fied and controlled, to ensure that each high-level requirement agreed with the customer is implemented in
the product. Traceability is the discipline of cross-linking requirements with other requirements, possibly
at a different level of abstraction, and with other artifacts – models, software components and tests – of
the software process. In a sense, traceability links form the network to control the inherent Dynamism
of requirements and software-related artifacts.

NLP technologies have been experimented to support the definition of the traceability links from
scratch [6], and for updating the links [7], when novel requirements enter into play. Moreover, NLP
has also been used to ensure regulatory compliance [8], by automatically tracing requirements to multiple
NL regulations.

Traceability is not the only means to enforce control within the dynamism of the requirements along
the process. Another prominent task in this sense is requirements categorisation. Categorisation helps to
manage large amounts of requirements, and drives the apportionment of requirements to specific software
components. Moreover, sorting requirements into categories also supports re-using the requirements in
different projects.

Automated tools have been developed to incrementally categorise different types of non-functional
NL requirements [9], and partition them into different non-functional categories (security, availability,
maintainability, usability, etc.). Such technologies can be employed to identify non-functional require-
ments that might be hidden within large amounts of functional ones. Moreover, approaches have been
tested to partition functional NL requirements into functional categories [10] (communication protocol,
user interface, etc.). These techniques are particularly useful during the transition from requirements to
architectural design, when different requirements have to be apportioned to functional components.

The assessment of requirements traces and categories, which implies the verification that an automati-
cally retrieved trace or category is correct, implies a deep understanding of the project context, and a clear
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knowledge of the meaning of the NL content of the requirements. Hence, all the automated mechanisms
discussed necessarily need a domain expert in the loop. This observation opens another dimension that
we wish to discuss: Domain Knowledge.

IV. DOMAIN KNOWLEDGE

Requirements belong to different domains with technical or domain-specific jargons. When requirements
are shown to a requirements/software analyst or developer who is not confident with the domain, s/he will
be likely to stand up and knock at the door of the requirements editor, to ask for explanations. Sometimes
the door might be physical – when the editor is in the same workplace –, sometimes might be virtual –
when s/he is reachable through phone calls or e-mails –, and sometimes such door might be behind far
too many doors to be reachable, and you do not really know who holds the right information. As a result,
analysts and developers have to acquire the Domain Knowledge needed to understand the requirements
by browsing through Internet or by reading internal documentation, when available.

Cleland-Huang [11] suggests applying NLP and data-mining techniques that work by extracting domain
specific terms, clustering them by common topics, and manually labelling the topics, to define a sort of
personalised conceptual map to scope the domain of interest. Advanced techniques are available in NLP,
which allow not only to find topic clusters, but also to reveal fine-grained relationships among relevant
terms. To leave appropriate space to discuss such techniques, we will describe a reference example in
Box I.

Domain knowledge is needed to interpret requirements already written down in NL, but is also paramount
in requirements elicitation, when the requirements for a system are still concealed in their sources, such
as the system stakeholders, other potentially reusable requirements available to the company, or the public
documentation of competing products. NLP can provide help in all these cases. Recommender systems
have been developed that are geared towards exploiting the domain knowledge of the stakeholders, and
associate relevant stakeholders to appropriate requirements discussion forums [12]. Approaches have
also been developed that address the problem of reusing internal NL requirements [13], and hence
leverage internal domain knowledge encoded in the requirements. Finally, also the exploitation of domain
knowledge embedded in marketing material has been explored, with recommender systems that, given a
NL description of a novel product to develop, can suggest additional features based on online descriptions
of competing products [14].

All the NLP approaches that we have briefly discussed along the different dimensions have something
in common. They all need large amounts of NL data to properly work. Therefore, let us go to our fourth
dimension: Datasets.

V. DATASETS

Traditional NLP approaches were relying on the assumption that language was dominated by regularities,
which could be listed in the form of rules that could extract relevant information from a text, categorise
documents, or find relations among sentences. That assumption was wrong. Instead, machine learning
(ML) approaches have emerged, which extract statistical information from large amounts of documents,
and, in a sense, learn the inherent rules of language without explicitly listing them.

ML approaches need Datasets to work. In this context, a dataset is a collection of requirements with
annotations that provide task-dependent semantic information about the requirements. For example, in a
categorisation task, each requirement is annotated with its category; for ambiguity detection, annotations
mark those parts of the text that are ambiguous. The annotation is normally performed by a human operator.
The goal of a ML algorithm is to predict the annotation, either based on a subset of the annotated data –
in case of supervised learning – or without relying on the existing annotations – in case of unsupervised
learning.

ML approaches have been used in NL requirements for a large variety of tasks: from requirements
classification, to the identification of equivalent requirements, to ambiguity detection and to traceability.
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Nevertheless, most of these results are not generalisable, since each study focuses on a limited set of
requirements in a specific domain. Indeed, not so many requirements datasets exist that are publicly
available and that cover multiple domains, and researchers have to work in a context with an evident lack
of resources. Generalisation is a key issue, since a technique might not work well in different domains,
given the different terminologies, processes, and the mentioned absence of a common discipline. To
address this scarcity of datasets, the Center of Excellence for Software Traceability – CoEST (http:
//coest.org/) has recently provided a page where requirements annotated for traceability are available.
We encourage similar initiatives also for the other NL-related requirements tasks. Still, it is worth keeping
in mind the two main reasons why datasets are scarce in requirements:

1) Domain expertise is needed to annotate the requirements: as domain knowledge is a problem within
companies, it is even a harsher problem for researchers who are expert in NLP, but have limited
expertise on application domains. This problem requires researchers to provide annotation tools that
can be directly used by the domain experts in the companies, and that have a positive impact in their
daily work. The example of the categorisation tool employed at Mercedes Benz [15], which suggests
categories to the operator and, at the same time, learns how to better categorise, is a reference case
in this sense.

2) Requirements often belong to companies and are usually confidential. Solutions to this issue shall
be searched within Stand-off markup technologies (http://wiki.tei-c.org/index.php/
Stand-off_markup), which enable annotations to be separated from the text. In practice, the
company can retain the text of the requirements, but can share the annotated features of the text
(structure of sentences, relevant terms, class of the requirement), to be employed by researchers to
perform their experiments.

A third reason why requirements datasets are rare, is that the usage of requirements – especially in a
disciplined, common form that can ease inter-domain comparison of NLP technologies – is not so frequent
in the software development practice. The solution involves a hidden dimension of the problem, which is
Dissemination. As researchers, we are well aware that a proper dissemination of the role of requirements
within companies is paramount to realise the Vision that we foresee in the following section.

VI. VISION

What will be the state of the practice if the research in all dimensions that we have described comes to
fruition? A first answer can be given by placing the different technologies available in an NLP-supported
iterative requirements process, as in Fig. ??. NLP can be applied from requirements elicitation to analysis,
where the impact of the domain knowledge dimension is stronger, and from validation to management,
where discipline and dynamism become more relevant. But how much should we wait to touch that
process, and what are the main driving forces that will shape this vision? Let us look in a ten-year
perspective.

a) Discipline: A rigorous writing standard will gradually surface in specific domains. This will be
driven not only by NLP tools for discipline – automated approaches that combine template conformance
and ambiguity checking have recently been developed [16] –, but also by the current state of the market.
Applications tend to emerge as integration of different services and components, developed by different
companies. To match functionalities of multiple providers and to support requirements communication
among stakeholders that are distributed in a global setting, a common requirements language, possibly
complemented with graphical languages similar to AUTOSAR in the automotive sector (http://www.
autosar.org), will be inevitable. Discipline is also already emerging for specific requirements formats
that are independent from the domain: user stories adopted in agile methods shall conform to well-defined
templates, and promising quality evaluation approaches are under development [17].

b) Dynamism: Requirements management tools will be equipped with NLP capabilities to handle
dynamism. Techniques for traceability and categorisation are mainly based on computing NL similarity
between requirements. They are among the most mature in research, and, as shown, e.g., in [15], are
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Fig. 1. During elicitation, NLP techniques can be applied to identify stakeholders, internal requirements, and existing product features.
In requirements analysis, automated glossary definition and support for domain scoping can also be provided. In the validation phase,
requirements defects can be identified with NLP, as well as compliance with regulations. As the process goes on, also traceability and
classification can be made easier with the support of NLP.

likely to become industry-ready in short term. The driving force here is the recent widespread diffusion
of word embeddings in NLP (Box II). These are semantic-laden word representations that are modelled
by observing the linguistic context of a word, and, in turn, can improve the computation of NL similarity
with the aid of a context-aware boost. Though these techniques are not applied yet in RE, we conjecture
that their introduction in tasks that are already mature, will provide a breakthrough in the dynamism
dimension.

c) Domain Knowledge: More domain knowledge will be accessible via human-centered tools. NL-
intensive and knowledge-rich collaborative tools, such as SLACK, TRELLO, or FACEBOOK AT WORK,
produce vast repositories of NL knowledge. NLP tools will mine these and other internal sources of
diffused knowledge, to identify key expertise, and will provide structured access to such knowledge.
Intelligent question-answering systems will leverage available knowledge to reply to domain-specific
questions. A tangible reference in this sense is IBM WATSON, which, in 2011, won the Jeopardy! quiz
show against human players. Services of IBM WATSON were recently made available to the large public
within the BLUEMIX project (http://www.ibm.com/cloud-computing/bluemix/watson/).
Another key role will be played by the development of domain-specific ontologies, which are formal
representations of concepts and relations in a domain. Such representations are expected to be a formal
basis to support traceability and categorisation, and hence positively impact also the dynamism dimension.

d) Datasets: Providing datasets is the most relevant challenge that the RE community needs to
address. The growth of publicly available datasets is slow and an inter-domain generalisation of current
NLP techniques is hard to envision in a ten-year horizon. Nevertheless, the tight collaboration between
researchers and industries, and the availability of NLP tools that can be trained on-the-job with limited
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costs, will help to tailor current NLP techniques to specific contexts and domains. Naturally, this requires
more dialogue between NLP and RE, and we suggest software companies to include people with NLP
background in their personnel, and to train their personnel in NLP. A first, simple step would be asking
their requirements engineers to download and start playing with GATE (https://gate.ac.uk), an
engineer-friendly tool for text analysis with extensive documentation, or go for software libraries like
PYTHON NLTK (http://www.nltk.org) or OPENNLP (https://opennlp.apache.org), for
those more inclined to coding.

VII. CONCLUSION

Each company has its own requirements process, adapted to the dimension of the company, the safety
integrity level of the products, and to the degree of specialisation of the company in its domain. Therefore,
we foresee that NLP techniques for RE shall be supported by a process-cognisant, component-based
infrastructure, which can be tailored according to dominant needs of the company – e.g., dynamism and
discipline are essential for safety critical-systems, while domain knowledge technologies are crucial for
consumer products. In this sense, the torch passes on to software engineers, who are called to design such
a customisable platform, picking the technologies from those that we have outlined, and enabling their
combination based on the process in Fig. ??.

Of course, NLP will provide support only for those aspects of RE that are dominated by NL. Tacit
knowledge, socio-cultural issues, design decisions, user interface requirements and hybrid control systems
requirements are just a small set of RE problems and artifacts in which NL plays a collateral role. To
account for these aspects, other means are needed that go far beyond NLP capabilities. Nevertheless,
when planning their investments in model-based techniques, or in agile methods, companies should keep
in mind that, within few years, NLP will be able to extract much more information from prescriptive
statements, user stories, textual use cases and all the different forms that NL requirements can take.
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BOX I
TEXT TO KNOWLEDGE

Text-to-Knowledge (T2K - http://t2k.italianlp.it) [1] is a Web application that supports
the extraction of domain-specific information from unstructured text (English or Italian). The tool
renders relevant domain entities in a knowledge graph, an intuitive visual format that eases the
identification of relations among entities. When applied on requirements, the tool supports glossary
definition and domain scoping, and allows browsing of complex requirements documents in a topic-
based, personalised way. In Fig. ??, we show the results of applying the tool on requirements
from the railway domain (EIRENE Functional Requirements Specification v.7.4.0 - http://www.
uic.org/IMG/pdf/p0028d003.4r0.4-7.4.0.pdf). The tool creates a glossary of domain-
specific entities for the document (1), which the user employs as pointers to surf the Web or internal
repositories, to identify associated domain-specific information (2). Then, the user selects the entity
on which s/he wishes to focus, and visualises its relations with other entities in the requirements (3).
From this representation, the user can go back to the original document, to browse the textual context
of the entities. Finally, the user can expand the graph on interesting nodes, to continue surfing the
requirements (4).
[1] F. Dell’Orletta, G.Venturi, A.Cimino, and S.Montemagni, “T2K: a system for automatically extracting and organizing
knowledge from texts,” in LREC, 2014, pp. 2062-2070.
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Fig. 2. Application of the T2K tool to a requirements standard of the railway domain. First, a structured glossary was automatically
generated from the original document (1). The user saw the term “Push-to-Talk”, unknown to her/him, and searched it in Wikipedia (2).
Once gained an overview of the meaning of the concept, s/he went back to T2K, and, by browsing the entities including the “Push-to-Talk”
term, s/he selected one named “push-to-talk button” – which, in his/her view, could have had something to do with the “momentary button”
mentioned in Wikipedia. S/he visualised the relations of such entity with others extracted from the original document, and, considering the
“thick gloves” entity interesting, asked T2K to show the requirement(s) where “push-to-talk button” occurred together with “thick gloves”
(3). Then, the user decided to expand the graph on the “one-handed operation” node, and continued surfing the document following the
additional relations discovered.
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BOX II
DISTRIBUTIONAL SEMANTIC MODELS & WORD EMBEDDINGS

Distributional semantic models (DSM) follow Harris distributional hypothesis [1] that “a word is
characterized by the company it keeps”. DSM focus on acquiring the semantic of words through the
statistical analysis of their use in language. Research on DSM dates back to the nineties, but it has
recently gained renewed interest, especially due to the successful application of neural network models
to the task.

One of the most popular results is Mikolov’s word2vec [2]. Word2vec creates word embeddings,
WEs, that are numeric vectors that capture the semantic and syntactic properties of words. WEs are
the by-product of the training of a neural network that predicts the most probable word given a set of
context words. Training contexts are usually sampled from a large collection of text (e.g. Wikipedia),
not requiring any kind of human annotation.

WE vectors find application in word-relatedness problems, such as finding the words similar
to a given one by picking the words whose vectors are closer to the given one (see a demo at
http://radimrehurek.com/2014/02/word2vec-tutorial/). A paradigmatic example
from Mikolov’s work is that the sum of vectors for words “Germany” and “capital” is a vector close
to the vector of “Berlin”.

WE vectors can also be an effective substitute of the typical “feature engineering” process, in
which many NLP tools enrich the representation of text (performing POS tagging, lemmatization,
disambiguation). When working on specific domains, which is a common situation in RE, NLP tools
may perform poorly, because they are usually trained on non-domain-specific examples. Training an
NLP tool on a new domain requires a human labeled training set, while word2vec only needs plain
text from that domain to capture the domain-specific use of language.

WEs are thus a low-cost tool to model the domain-specific relations between terms, e.g., to spot
potential sources of ambiguities, leveraging on the observed term similarities in order to converge
on a unified lexicon. Similarly, comparing WEs generated on the same domain but from documents
produced by different stakeholders (e.g., developers, end users) can support the identification of terms
whose semantic is different among the stakeholders, thus avoiding misunderstandings between them.
[1] Z. S. Harris, “Distributional structure.” Word, vol. 32, no. 3, 1954, pp. 146-162.
[2] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed representations of words and phrases and
their compositionality,” in NIPS, 2013, pp. 3111-3119.
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