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Abstract. In this work we first discuss a well-known theoretical frame-
work for the analysis and modeling of self-organized structures in com-
plex systems. These self-organized states are metastable and rapid transi-
tion events mark the passages between self-organization and background
or between two different self-organized states. Thus, our approach focuses
on characterizing and modeling the complex system as a intermittent
point process describing the sequence of transition events.

Complexity is usually associated with the emergence of a renewal point
process with power-law distributed inter-event times, hence the term
fractal intermittency. This point process drives the self-organizing be-
havior of the complex system, a condition denoted here as intermittency-
driven complexity.

In order to find the underlying intermittent birth-death process of self-
organization, we introduce and discuss a preliminary version of an algo-
rithm for the detection of transition events in human electroencephalo-
grams. As the sequence of transition events is known, the complexity
of the intermittent point process can be investigated by applying an
algorithm for the scaling analysis of diffusion processes driven by the in-
termittent process itself. The method is briefly illustrated by discussing
some preliminary analyses carried out on real electroencephalograms.
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1. Introduction

The brain is composed of many elementary units, neurons and astrocytes, with
an extremely complicated topology of the links among units (axon, dendrites,
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metabolic network)4 [1]. The links are characterized by strong nonlinear interac-
tions among neurons (e.g., the chemically activated electrical discharges through
the ionic channels) with very complicated feedback mechanisms. The overall pic-
ture is that of a complex network with a huge number of nodes (neurons and
astrocytes) and links with a very complicated topology. The nonlinear dynamics
of single neurons (i.e., the threshold mechanism for the electrical discharges gen-
erating spikes and bursts) are highly enhanced by the complex network topology,
but at the same time some kind of ordering, or self-organizing, principle triggers
the emergence of global cooperativity.

It is then not surprising that brain dynamics display a very rich landscape of
different behaviors and a very efficient plastic behavior, characterized by a rapid
and efficient capability of response to rapid changes in the external environment.
Thus, a great interest is nowadays focused on a better understanding of the brain
information processing, with the challenging goal of describing brain complexity
by means of a relatively low number of parameters. This is not only a very fasci-
nating problem and a very hot topic in brain research, but it also has important
potential applications in several fields (e.g., clinical applications, new diagnostic
indices).

In this general framework, the complexity approach [2, 3] is focused on the study
of emerging self-organized structures in multi-component systems and complex
networks. This general approach is nowadays gaining momentum in the field of
biomedical signal processing. In order to extract useful information from large
clinical datasets, storing many different physiological data and signals, algo-
rithms for the reduction of data complexity are needed to derive reliable diag-
nostic indices. Then, a great interest is focused in defining, developing and testing
statistical indices that can enclose the minimal information required to interpret
the basic features of physiological signals. The availability of large datasets stor-
ing many different physiological data and signals is asking for reliable procedures
of complexity reduction in large datasets. This is needed to extract useful infor-
mation from the data themselves, which is of much relevance in clinical activity,
such as in the diagnosis and treatment of disorders of consciousness (DOC) [4].
However, such indices are useful if they are able to describe the key features of
the signals and if these features can be exploited by physicians in their clinical
activity, e.g., in the evaluation of a medical condition or disease (diagnosis); in
foretelling the course of a disease (prognosis); in the consequent choice of the
proper therapy (decision making).

In this work we introduce and discuss an approach to the processing of Elec-
troEncephaloGrams (EEGs) that is based on the observation that, in many
complex systems, such as the human physiology, the nonlinear dynamics of the

4 Astrocytes are responsible for the regulation of the neural metabolism and, thus, for
the energy delivery and storage that neurons need for their electrical activity. The
role of the substrate network of astrocytes is nowadays recognized to play a crucial
role in brain information processing, as it has been recently found that the metabolic
component of the brain is characterized by an intense cooperativity between astro-
cytes and neurons [1].
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network trigger intermittent events, each one associated with the emergence
or decay of self-organized structures and/or with the transition among differ-
ent self-organized states [5–12]. Our approach to the modeling of such complex
systems and, consequently, to the associated algorithms for data analysis and
signal processing is based on the idea that intermittent events drive the complex
(self-organizing) behavior of multi-component systems.

The paper is organized as follows. In Section 2 we present and discuss the con-
cept of intermittency-driven complexity. After discussing the concept of fractal
intermittency (FI), we give a brief review about the emergence of FI in the
human brain. In Section 3 we sketch our proposal of a preliminary version of
a general-purpose event detection algorithm. Finally, in Section 4, in order to
illustrate the event detection algorithm, we briefly discuss an application to real
EEG data by showing a few preliminary results.

2. Intermittency-driven complexity

Following the paradigm of emerging properties, the complexity approach focuses
on the analysis and modeling of self-organized large-scale structures or states
emerging from the cooperative dynamics of complex networks. The main idea is
that self-organized structures are the essential actors in the global dynamics of
complex systems and play a crucial role in many aspects, such as the transport
properties and the way the system respond to external stimuli. As a consequence,
also the statistical indicators extracted from complex data analysis usually refer
to some global property associated with the dynamical evolution of large-scale,
global, self-organized states.

2.1. Complexity and fractal intermittency

As far as we know, a general agreement on the definition of complexity does not
yet exist. However, we refer here to a class of complex systems displaying the
following properties:

(1) a complex system is multi-component with a large number of degrees of free-
dom, i.e., many functional units or nodes. As said above, these units interact
with each other and their dynamics are strongly nonlinear;

(2) non-linearity and multi-component is not enough to define complexity: the
dynamics are cooperative and trigger the emergence of self-organized struc-
tures, being self-organization not related to the presence of a internal master
or to an external ordering force;

(3) self-organized states display long-range space-time correlations (slow power-
law decay) and self-similarity (mono- or multi-scaling);

(4) self-organized states are metastable, with relatively long life-times τ and fast
transition events between two successive states.

In summary, the cooperative dynamics determine an alternation of strongly cor-
related self-organized structures and a background characterized by short-term
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correlations, or an alternation among different self-organized states. The pas-
sages are marked by fast transitions that can be considered quasi-instantaneous
events. The n-th event occurs at a random time tn. The sequence of transition
events is an emergent property described as a a intermittent birth-death point
process of self-organization: {tn}Nn=0; t0 = 0. Then, in the above list the fea-
ture (4) is a crucial one as it allows for a description of complexity in terms of
intermittent events.
Due to the fast memory drop occurring during the fast transitions, each self-
organized state is often independent from each other, as such as the crucial
transition events and the inter-event times, also named Waiting Times (WTs):
τn = tn−tn−1;n = 1, 2, .... This is denoted as renewal condition. In this case, the
sequence of crucial events is described by a renewal point process. A complex
(cooperative) system is characterized by metastable self-organized states whose
life-times τn are statistically distributed according to a inverse power-law func-
tion. This condition, i.e., the triggering of fast transition events that are renewal
and with inverse power-law WT distribution, is denoted as fractal intermittency
(FI) [9, 13–16]. The term intermittency-driven complexity (IDC) is here used to
indicate both the associated complex behavior and the class of complex systems
displaying FI. In this case the birth-death point process of self-organization is
given by a non-Poisson process (renewal or not). The departure from the Poisson
reference condition is a signature of complexity. In fact, a Poisson (renewal) point
process is typically associated with the lack of cooperation and self-organizing
behavior. A Poisson process does not generate neither long-range correlation
or memory nor fractal intermittency, being the WT distribution given by an
exponential decay [13, 15, 16]. Despite the presence of renewal events, the auto-
correlation function of the intermittent signal can be long-range, i.e., with a slow
power-law decay in the tail: C(t) ∼ 1/tβ [5].
The correlation exponent β is an important example of emergent property that
can be used as a synthetic indicator of the cooperative dynamics in the complex
system. For a complex system in the IDC class, β is related to the power index
µ of the inverse power-law in the WT distribution:

ψ(τ) ∼ 1

τµ
. (1)

Analogously to β, also ψ(τ) and µ are emerging properties and, thus, a signa-
ture of complex behavior. The parameter µ, denoted as complexity index, is an
example of a statistical index that can quantify the presence of IDC in a system,
thus evaluating the ability of the complex system to trigger self-organization.
Other indices, depending on µ, can also be used as IDC indices [9, 13–16]. In
particular, complexity is identified with a condition of very slow decay in ψ(τ),
corresponding to the range 1 < µ < 3 (see Refs. [13, 16] for details). In Fig. 1
we sketch a synthetic scheme qualitatively explaining the connection between
self-organization, cooperation and non-Poisson renewal processes. Poisson re-
newal processes always emerge in the case of independent systems, whatever the
microdynamics of the single nodes. As a consequence, a departure from the Pois-
son statistics reveals some kind of cooperation among the nodes of the network.
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Further, the emergence a fractal renewal process, i.e., a renewal process with
inverse power-law WT distribution (fractal intermittency), means that cooper-
ation is complex, i.e., associated with complex self-organized structures.

Fig. 1. Comparison of Poisson (non-complex) and non-Poisson (complex) renewal pro-
cesses.

2.2. Fractal intermittency in the brain: a brief survey of results

Metastability is a basic feature of the information processing in the brain neu-
ral network. Fingelkurts and Fingelkurts recognized that rapid changes in EEG
records, called Rapid Transition Processes (RTPs), mark passages between two
quasi-stationary periods, each one corresponding to different neural metastable
assemblies, and are the signature of brain self-organization [17, 18]. Neural as-
semblies are associated with transient information flow among different neurons
with the goal of developing a specific brain function and/or the response to exter-
nal stimuli (e.g., Event Related Potentials). RTPs and neural assemblies are then
a prototype of crucial events and meta-stable self-organized states, respectively.

The algorithm for the automatic detection of RTP events in EEG data was devel-
oped in Ref. [18] and exploited by the authors of Refs. [5, 7, 6, 8–11] to character-
ize the complexity of the intermittent events. By exploiting a scaling detection
method, the Event-Driven Diffusion Scaling (EDDiS) algorithm (see [13] and
references therein), these authors found that brain dynamics display fractal in-
termittency. In particular, it was shown that the fractal intermittency approach
is able to reveal the integrated (Rapid Eye Movement, REM) and segregated
(Non-REM) stages during sleep, thus in agreement with the consciousness state
of the subjects [9–11]. This important result proves that the IDC concept and
the associated IDC measures could be good candidates for the characterization
of DOCs.

In the intermittency-based analysis here proposed, a key aspect is the definition
of events, which needs to be further studied in order to extend the above analysis
to different experimental and clinical conditions.
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3. Intermittency-based processing of complex
physiological signals

The results obtained by applying the algorithms cited above, the RTP event de-
tection algorithm [18] and the EDDiS algorithm [5, 16, 15, 13], are very promising
in the perspective of potential applications in the clinical activity of neurological
disorders. However, RTP events are defined only for some experimental condi-
tions.

In this work we investigate the key aspect of the event definition. We propose an
algorithm involving a more general definition of event and being able to detect
and discriminate events with different neuro-physiological origins. The proposed
method essentially extends the technique introduced and applied in Refs. [19–
21], which allows to extract different kind of events marking the sudden increase
of activity in given frequency bands.

We assume that the signals were already pre-processed for the artifact cleaning.
Then, the event detection algorithm works as follows:

(1) Splitting of the single EEG channel into different frequency bands.
The following band ranges are usually considered: (a) δ band (0.5 − 4 Hz);
(b) θ band (4− 8 Hz); (c) α band (8− 12 Hz); (d) σ band (12− 16 Hz); (e)
β band (16− 35 Hz); (f) γ band (35− 64 Hz).

(2) For each frequency band, the component amplitude (the absolute value)
is considered. Then, two moving-window time averages are computed at
different time scales, a short and a long one, being this last one used to
evaluate the signal envelope5.

(3) Calculation of non-dimensional descriptors Ak(t) for each frequency band
k = δ, θ, ...: (short-time average - long-time average)/long-time average.
Then, the global average Ak (or some local average) of Ak(t) is computed
and subtracted to Ak(t) itself: Sk(t) = Ak(t)−Ak.

(4) Identification of high- and low-activity epochs and of transition events be-
tween epochs. This is done for each frequency band by using a thresholding
technique, whose details and parameters can also be changed depending on
the specific events that must be detected. The most simple method, which
be applied in the next section, is given by the zero crossings of the Sk(t)6.

(5) Storing in a database (spatio-temporal event maps).
Extraction of specific kinds of events from the event maps.

5 In the original applications of the method [19–21] typical chosen values of the av-
eraging times were 2 and 64 sec., as these values were the most suitable to detect
macroscopic epochs of high intensity in the given frequency band.

6 The particular definition of event remain the most subtle point of the IDC approach.
As an example, if we are interested in characterizing the epochs with substantially
increased activity in a given band, and the associated transition events from/to
these same epochs, usually two thresholds are used, a low and a high one. This is
the standard approach used to automatically detect the waveforms that could be
investigated also by visual inspection [19–21].
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(6) Feature extraction from the event sequences and maps, such as: number of
events per time unit for each band and/or EEG trace; covariance matrix
based on events; estimation of complexity index, both for single EEG chan-
nels and global events (temporal coincidences among different EEG chan-
nels).

Despite its apparent simplicity, this algorithm is very flexible and powerful. Being
based on the classical Fourier approach and on splitting the EEG signal into
standard frequency bands, this approach allows for a more clear link between
the event detection algorithm and its neuro-physiological interpretation. In this
sense, a particular kind of brain events should be recognized to be a neural
correlate of some increased or decreased neurophysiological activity.

4. An application to EEG data: preliminary results

In this final section we briefly illustrate an application of the event detection
algorithm to real EEG records. The EEG data were collected during a study per-
formed in the Brain Injury Unit, Department of Neuroscience, Cisanello Hospital,
Pisa, Italy [22]. A few unconscious patients were treated with a drug (Zolpidem)7,
with the working hypothesis that Zolpidem might increase the brain activity in
a rapid way (i.e., within 30 minutes). The general objective of this pilot study
was to stimulate a rapid recovery of the patient’s consciousness. Clear clinical
evidence was not obtained and it would be desiderable to get some kind of indi-
cations that the single treatment had some kind of effect on the brain electrical
activity.
Here we show a preliminary analysis on one patient, whose EEG was recorded
according to the international 10 − 20 configuration system. The EEG was
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Fig. 2. Waiting Times τn vs. the occurrence times tn of transition events (zero cross-
ings) for the α band of the O2 electrode. Pre condition in Panel (a) refers to the EEG
baseline before the Zolpidem treatment, while Post condition in Panel (b) refers to the
EEG measured 30 minutes after the Zolpidem treatment.

7 The hospital ethical committee approved the study and Informed written consent
was obtained from the guardians or relatives of the patients.
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Fig. 3. Histograms ψ(τ) of the WTs extracted from the electrode O2 for the bands
α (Panel (a)) and σ (Panel (b)). The bin size is 10. The Pre and Post conditions are
compared in each panel. The inverse power-law functions are reported as a guide-to-
the-eye.
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Fig. 4. DFA function F (l) as a function of the time lag l for the O2 electrode. Panel (a)
α band; Panel (b) σ band. The Pre and Post conditions are compared in each panel.
The estimated index µ is also reported.

recorded before (baseline) and 30 minutes after the Zolpidem treatment. The
sequence of zero crossing events and the associated WTs are derived for each
frequency band. In Fig. 2 we report the sequence of WTs τn extracted from the α
band of the O2 electrode. WTs are plotted as a function of the event occurrence
times tn. Pre and Post conditions are reported in Panels (a) and (b), respectively.
In Fig. 3 we show the histograms of WTs extracted from two different bands, α
(Panel (a)) and σ (Panel (b)), of the same electrode (O2). For each frequency
band the Pre and Post conditions are reported and compared.

As a general observation, we can say that no qualitative and/or quantitative
difference between the Pre and Post conditions is clearly stated and the WT
distributions appear to be almost identical for the two conditions. This situation
is also seen in the other electrodes and frequency bands. However, as said above,
IDC is investigated by estimating the anomalous scaling behavior of diffusion
processes that are built in a proper way using the transition events extracted
from the signals. The EDDiS algorithm is applied to the WT sequences in order
to obtain one or more (event-driven) diffusion scaling indices and/or the com-
plexity index µ (see Ref. [13] for a review of the EDDiS algorithm). Here we
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limit ourselves to derive a single diffusion process, which is defined by allowing
a random walker to make a unitary jump ahead (+1) in correspondence of each
transition event. This walking rule is known as Asymmetric Jump (AJ) and it
has been proven to be an efficient and reliable method for the scaling evaluation
(see Ref. [13] and references therein, in particular Ref. [23]). Applying the AJ
rule we get a diffusing variable X(t). The IDC is estimated through the second
moment scaling H, corresponding to the Hurst exponent, which is defined by
the following power-law behavior:

F (l) ∼ lH ;F 2(l) = 〈
(
X(l)−X(l)

)2

〉 . (2)

Here l is the length of the time window that is moved along the time series
in order to carry out the time average. In fact, the statistical analysis of time
signals can be only carried out by means of time averages. For any l, the signal
is divided into time windows of length l. Each segment is a pseudo-trajectory
of a statistical ensemble of path of total duration l. The second moment F 2(l)
of properly detrended fluctuations is computed by averaging over this statistical
ensemble.
In our specific application, the second moment scaling H is computed by using
the Detrended Fluctuation Analysis (DFA) [24], which is a scaling detection al-
gorighm based on a proper evaluation of the trend X(l). The value H = 0.5,
named normal diffusion scaling, indicates the absence of long-range correlations
and of network connectivity. Then, the neurons whose electrical activity con-
tribute to the electrode signal (O2 in this case) do not cooperate each other.
Values around H = 0.5 indicate low levels of cooperation, so the departure from
the normal diffusion scaling is a measure of network cooperativity. When ap-
plied to single EEG electrodes this feature can be exploited as a signature of the
functional connectivity, i.e., cooperative behavior, of the particular brain region
affecting the electrode potential.
In Fig. 4 we show the results of the DFA applied to the diffusing random walk
X(t) computed applying the AJ rule to the WTs whose distributions are given
in Fig. 3. The diffusion scaling of the σ band (Panel (b)) does not change signif-
icantly before and after the Zolpidem treatment. On the contrary, the α band
(Panel (a)) shows a small, but net difference between the two conditions. In par-
ticular, the IDC index H changes from H = 0.58 to H = 0.64, which correspond
to a small increase in the complexity of the brain dynamics, at least in the region
corresponding to O2. Interestingly, the values of H here estimated for a DOC
patient are, as expected, much smaller that the typical values found in conscious
healthy subjects, that is, H ∼ 0.75 − 0.95 [5, 9–11]. Further, it is worth noting
that the difference Pre-Post cannot be appreciated from the comparison of WT
distributions, as it is clearly seen in Fig. 3.
This preliminary analysis and discussion is far from being conclusive and needs
further investigations. In particular, a global analysis of the brain network will
be carried out. However, in previous papers it has been shown that the IDC
indices can characterize the kind of brain connectivity determining the emergence
of consciousness [9–11]. Thus, we are convinced that the use of event-driven
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diffusion scaling analysis (EDDiS) for the investigation of the brain IDC can
have potential applications in the field of neurological diseases.
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