
SoBigData	–	654024	 	 www.sobigdata.eu	
	

SoBigData	 receives	 funding	 from	 the	 European	Union’s	Horizon	 2020	 research	 and	 innovation	 programme	under	
grant	agreement	No.	654024	

	

	

	
	

	 	 	 	 	

	

Project	Acronym	 SoBigData	

Project	Title	 SoBigData	Research	Infrastructure	
Social	Mining	&	Big	Data	Ecosystem	

Project	Number	 654024	

Deliverable	Title	 Resource	adaptation	to	register	to	the	e-infrastructure	1	

Deliverable	No.	 D10.8	

Delivery	Date	 28	February	2017	

Authors	 Paolo	 Manghi	 (CNR),	 Leonardo	 Candela	 (CNR),	 Pasquale	
Pagano	(CNR)	

	

	

	

	

	

	

	

Ref. Ares(2017)1645735 - 28/03/2017

SoBigData	–	654024	 	 www.sobigdata.eu	
	 	
	 	

D10.8	Resource	adaptation	to	register	to	the	e-infrastructure	1	 Page	2	of	24	

DOCUMENT	INFORMATION	
PROJECT	

Project	Acronym	 SoBigData	
Project	Title	 SoBigData	Research	Infrastructure	

Social	Mining	&	Big	Data	Ecosystem	
Project	Start	 1st	September	2015	
Project	Duration	 48	months	
Funding	 H2020-INFRAIA-2014-2015	
Grant	Agreement	No.	 654024	

DOCUMENT	
Deliverable	No.	 D10.8	
Deliverable	Title	 Resource	adaptation	to	register	to	the	e-infrastructure	1	
Contractual	Delivery	Date		 28	February	2017	
Actual	Delivery	Date	 28	March	2017	
Author(s)	 Paolo	Manghi	(CNR),	Leonardo	Candela	(CNR),	Pasquale	Pagano	(CNR)	
Editor(s)	 Paolo	Manghi	(CNR)	
Reviewer(s)	 Leonardo	Candela	(CNR),	Pasquale	Pagano	(CNR),	Valerio	Grossi	(CNR)	
Contributor(s)	 Kalina	 Bontcheva	 (USFD),	 Marco	 Cornolti	 (UNIPI),	 Stefano	 Cresci	 (CNR),		

Thorsten	May	(FRH),	Cristina	Muntean	(CNR),	Daniele	Regoli	(SNS),	Roberto	
Trasarti	(CNR)	

Work	Package	No.	 WP10	
Work	Package	Title	 WP10	-	JRA3_SoBigData	e-Infrastructure	
Work	Package	Leader	 CNR	
Work	Package	Participants	 CNR,	USFD,	UNIPI,	FRH,	UT,	IMT,	LUH,	KCL,	SNS,	AALTO,	ETHZ	
Dissemination	 Public		
Nature	 Report	
Version	/	Revision	 V1.0	
Draft	/	Final	 Final	
Total	No.	Pages		
(including	cover)	 24	

Keywords	 e-infrastructure,	services,	resources,	integration	
	

	

SoBigData	–	654024	 	 www.sobigdata.eu	
	 	
	 	

D10.8	Resource	adaptation	to	register	to	the	e-infrastructure	1	 Page	3	of	24	

	

SoBigData	–	654024	 	 www.sobigdata.eu	
	 	
	 	

D10.8	Resource	adaptation	to	register	to	the	e-infrastructure	1	 Page	4	of	24	

DISCLAIMER	
SoBigData	(654024)	 is	a	Research	and	Innovation	Action	(RIA)	funded	by	the	European	Commission	under	
the	Horizon	2020	research	and	innovation	programme.	

SoBigData	 proposes	 to	 create	 the	 Social	 Mining	 &	 Big	 Data	 Ecosystem:	 a	 research	 infrastructure	 (RI)	
providing	 an	 integrated	 ecosystem	 for	 ethic-sensitive	 scientific	 discoveries	 and	 advanced	 applications	 of	
social	data	mining	on	 the	various	dimensions	of	 social	 life,	as	 recorded	by	“big	data”.	Building	on	several	
established	 national	 infrastructures,	 SoBigData	 will	 open	 up	 new	 research	 avenues	 in	 multiple	 research	
fields,	including	mathematics,	ICT,	and	human,	social	and	economic	sciences,	by	enabling	easy	comparison,	
re-use	and	integration	of	state-of-the-art	big	social	data,	methods,	and	services,	into	new	research.	

This	 document	 contains	 information	on	 SoBigData	 core	 activities,	 findings	 and	outcomes	 and	 it	may	 also	
contain	 contributions	 from	 distinguished	 experts	 who	 contribute	 as	 SoBigData	 Board	 members.	 Any	
reference	 to	 content	 in	 this	 document	 should	 clearly	 indicate	 the	 authors,	 source,	 organisation	 and	
publication	date.	

The	 document	 has	 been	 produced	 with	 the	 funding	 of	 the	 European	 Commission.	 The	 content	 of	 this	
publication	 is	 the	 sole	 responsibility	 of	 the	 SoBigData	 Consortium	 and	 its	 experts,	 and	 it	 cannot	 be	
considered	to	reflect	the	views	of	the	European	Commission.	The	authors	of	this	document	have	taken	any	
available	 measure	 in	 order	 for	 its	 content	 to	 be	 accurate,	 consistent	 and	 lawful.	 However,	 neither	 the	
project	 consortium	 as	 a	 whole	 nor	 the	 individual	 partners	 that	 implicitly	 or	 explicitly	 participated	 the	
creation	 and	 publication	 of	 this	 document	 hold	 any	 sort	 of	 responsibility	 that	might	 occur	 as	 a	 result	 of	
using	its	content.	

The	 European	 Union	 (EU)	 was	 established	 in	 accordance	 with	 the	 Treaty	 on	 the	 European	 Union	
(Maastricht).	 There	 are	 currently	 27	member	 states	 of	 the	 European	Union.	 It	 is	 based	on	 the	 European	
Communities	and	the	member	states’	cooperation	in	the	fields	of	Common	Foreign	and	Security	Policy	and	
Justice	and	Home	Affairs.	The	 five	main	 institutions	of	 the	European	Union	are	 the	European	Parliament,	
the	 Council	 of	 Ministers,	 the	 European	 Commission,	 the	 Court	 of	 Justice,	 and	 the	 Court	 of	 Auditors	
(http://europa.eu.int/).	

Copyright	©	The	SoBigData	Consortium	2015.	See	http://project.sobigdata.eu/	for	details	on	the	copyright	holders.	

For	more	 information	on	 the	project,	 its	 partners	 and	 contributors	please	 see	http://project.sobigdata.eu/.	 You	are	
permitted	to	copy	and	distribute	verbatim	copies	of	this	document	containing	this	copyright	notice,	but	modifying	this	
document	 is	not	allowed.	You	are	permitted	to	copy	this	document	 in	whole	or	 in	part	 into	other	documents	 if	you	
attach	the	following	reference	to	the	copied	elements:	“Copyright	©	The	SoBigData	Consortium	2015.”	

The	information	contained	in	this	document	represents	the	views	of	the	SoBigData	Consortium	as	of	the	date	they	are	
published.	The	SoBigData	Consortium	does	not	guarantee	that	any	information	contained	herein	is	error-free,	or	up	to	
date.	THE	SoBigData	CONSORTIUM	MAKES	NO	WARRANTIES,	EXPRESS,	IMPLIED,	OR	STATUTORY,	BY	PUBLISHING	THIS	
DOCUMENT.	

	

SoBigData	–	654024	 	 www.sobigdata.eu	
	 	
	 	

D10.8	Resource	adaptation	to	register	to	the	e-infrastructure	1	 Page	5	of	24	

GLOSSARY	
ABBREVIATION	 DEFINITION	

VA	 Virtual	Access	

VRE	 Virtual	Research	Environment	

	

	

SoBigData	–	654024	 	 www.sobigdata.eu	
	 	
	 	

D10.8	Resource	adaptation	to	register	to	the	e-infrastructure	1	 Page	6	of	24	

TABLE	OF	CONTENT	
	

DOCUMENT	INFORMATION	...	2	

DISCLAIMER	..	4	

GLOSSARY	...	5	

TABLE	OF	CONTENT	...	6	

DELIVERABLE	SUMMARY	...	7	

EXECUTIVE	SUMMARY	..	8	

1	 Relevance	to	SoBigData	...	9	

2	 Introduction	..	10	

3	 Integration	patterns	..	11	
3.1	 Applications	...	11	
3.2	 Methods	...	12	

4	 Resource	integration	use-cases	..	13	
4.1	 Applications	integration	experiences	..	13	

4.1.1	 TagMe	(Marco	Cornolti,	Department	of	Computer	Science,	University	of	Pisa)	13	
4.1.2	 SMAPH	(Marco	Cornolti,	Department	of	Computer	Science,	University	of	Pisa)	14	
4.1.3	 Twitter	Monitor	(Stefano	Cresci	and	Salvatore	Minutoli,	IIT-CNR)	...	14	
4.1.4	 Visualization	Apps	(Thorsten	May,	IGD-Fraunhofer)	..	17	

4.2	 Methods	integration	experiences	...	19	
4.2.1	 TrajectoryBuilder	(Roberto	Trasarti,	ISTI-CNR)	...	19	
4.2.2	 QuickRank	(Cristina	Muntean,	ISTI-CNR)	..	20	
4.2.3	 GateCloud	(Kalina	Bontcheva,	University	of	Sheffield)	...	23	
4.2.4	 StatVal	(Daniele	Regoli,	SNS)	...	24	

SoBigData	–	654024	 	 www.sobigdata.eu	
	 	
	 	

D10.8	Resource	adaptation	to	register	to	the	e-infrastructure	1	 Page	7	of	24	

DELIVERABLE	SUMMARY	
This	 deliverable	 reports	 the	 experiences	 of	 partners	 from	 different	 infrastructures	 at	 integrating	 their	
services,	 methods,	 and	 applications	 as	 SoBigData	 resources.	 The	 first	 section	 describes	 the	 general	
integration	 patterns,	 while	 the	 section	 section	 reports	 the	 experiences	 from	 the	 individual	 partners,	
revealing	the	effort	required,	in	terms	of	time	and	technical	complexity,	and	earned	benefits.	

SoBigData	–	654024	 	 www.sobigdata.eu	
	 	
	 	

D10.8	Resource	adaptation	to	register	to	the	e-infrastructure	1	 Page	8	of	24	

EXECUTIVE	SUMMARY	
In	 order	 to	 achieve	 Virtual	 Access	 SoBigData	 partners	 must	 undertake	 a	 process	 of	 integration	 of	 their	
method	 resources	 in	 the	 e-infrastructure.	 This	 deliverable	 reports	 the	 experiences	 of	 partners	 from	
different	 infrastructures	 at	 integrating	 their	 services,	 methods,	 and	 applications	 as	 SoBigData	 resources.	
The	 first	 section	 describes	 the	 general	 integration	 patterns,	 while	 the	 section	 section	 reports	 the	
experiences	 from	 the	 individual	 partners,	 revealing	 the	 effort	 required,	 in	 terms	 of	 time	 and	 technical	
complexity,	and	earned	benefits.	 This	 feedback	will	be	used	 to	 further	 simplify	 the	process	of	 integration	
and	mitigate	complexity	when	this	can	be	done.	

	

	

SoBigData	–	654024	 	 www.sobigdata.eu	
	 	
	 	

D10.8	Resource	adaptation	to	register	to	the	e-infrastructure	1	 Page	9	of	24	

1 RELEVANCE	TO	SOBIGDATA	

In	 order	 to	 achieve	 Virtual	 Access	 SoBigData	 partners	 must	 undertake	 a	 process	 of	 integration	 of	 their	
method	 resources	 in	 the	 e-infrastructure.	 This	 document	 reports	 on	 the	 actual	 experience	 of	 scientists	
involved	in	this	process,	with	the	aim	of	highlighting	the	challenges	and	the	benefits.	This	feedback	will	be	
used	to	further	simplify	the	process	of	integration	and	mitigate	complexity	when	this	can	be	done.	

SoBigData	–	654024	 	 www.sobigdata.eu	
	 	
	 	

D10.8	Resource	adaptation	to	register	to	the	e-infrastructure	1	 Page	10	of	24	

2 INTRODUCTION	

This	 deliverable	 reports	 the	 experiences	 of	 partners	 from	 different	 infrastructures	 at	 integrating	 their	
services,	 methods,	 and	 applications	 as	 SoBigData	 resources.	 The	 first	 section	 describes	 the	 general	
integration	 patterns,	 while	 the	 section	 section	 reports	 the	 experiences	 from	 the	 individual	 partners,	
revealing	the	effort	required,	in	terms	of	time	and	technical	complexity,	and	earned	benefits.	

SoBigData	–	654024	 	 www.sobigdata.eu	
	 	
	 	

D10.8	Resource	adaptation	to	register	to	the	e-infrastructure	1	 Page	11	of	24	

3 INTEGRATION	PATTERNS	

3.1 APPLICATIONS	

An	 application	 in	 the	 SoBigData	 infrastructure	 is	 a	 stand-alone	 system	 running	 on	 a	 remote	 server	 and	
offering	 one	 or	 more	 social	 mining	 methods	 via	WebUIs;	 in	 some	 cases	 it	 may	 also	 offer	 social	 mining	
datasets.		

A	 lightweight	 integration	 is	 achieved	 by	 explicitly	 registering/publishing	 application	 information	 on	 the	
SoBigData	catalogue.	Each	application	is	described	in	the	catalogue	by	a	record	enabling	its	discovery	and	
including	a	URL	to	the	web	application.		

A	 mild	 integration	 consists	 in	 integrating	 the	 WebUIs	 as	 a	 portlet	 in	 the	 SoBigData	 VREs,	 leaving	 the	
application	running	on	the	remote	server,	equipped	with	SmartGears	(see	Wiki	page)	to	account	access	to	
methods	from	SoBigData	users.	To	achieve	a	deeper	 integration,	the	action	can	 include	the	 integration	of	
the	application	with	the	VRE	workspace,	allowing	scientists	to	provide	input	to	the	application	directly	from	
the	local	workspace	and	expect	the	results	of	the	application	to	be	stored	in	the	local	workspace.	

A	full	integration	consists	instead	in:	

• Reconsidering	application’s	architecture	in	order	to	extrapolate	the	methods	and	the	datasets;	
• Make	methods	compliant	with	the	guidelines	of	the	hosting	platform	according	to	the	methodology	

described	 in	a	dedicated	Wiki	page.	This	activity	might	 require	some	modification	/	adaptation	of	
the	method	 implementation,	 e.g.	 for	 input	 parameters	 specification.	 The	 cost	 of	 this	 adaptation	
depends	on	the	complexity	of	the	method;	

• A	 SoBigData:	 step-by-step	 procedure	 for	 algorithm	 integration	 (including	 a	 couple	 of	 Java	 simple	
classes)	resulting	from	a	concrete	integration	exercise	is	available;	

• Publish	the	algorithm	through	the	platform.	In	case	the	method	is	implemented	with	a	R	script,	the	
platform	is	provided	with	a	facility	supporting	this	publishing	phase;	

• Transform	the	datasets	in	publishable	assets	and	publish	them	as	previously	described;	

Once	“fully	 integrated”,	 the	application	actually	becomes	a	set	of	SoBigData	social	mining	assets	 that	will	
benefit	from:	

• Scalability	Will	benefit	from	a	distributed	and	scalable	computing	platform;	
• Repurposing	 Can	 be	 exploited	 in	 the	 context	 of	 many	 virtual	 research	 environments	 and	 it	 is	

suitable	for	being	repurposed	/	applied	to	datasets;	
• Standard	 accessibility	Will	 be	 automatically	made	 available	 via	 a	web-based	GUI	 as	well	 as	with	

web-based	protocols	(SOAP	and	Rest);	
• Accounting	Are	monitored	 and	 assessed	 by	 SoBigData	 tools,	 e.g.	 detailed	 statistics	 on	 usage	 are	

transparently	collected.	

If	“mildly	integrated”	the	application	will	only	benefit	from	repurposing	and	accounting	benefits.		

	

	

SoBigData	–	654024	 	 www.sobigdata.eu	
	 	
	 	

D10.8	Resource	adaptation	to	register	to	the	e-infrastructure	1	 Page	12	of	24	

3.2 METHODS	

A	method	in	the	SoBigData	infrastructure	is	a	piece	of	code	in	Java,	Python	or	R	that		implements	a	social	
mining	algorithm	/	procedure.		

A	lightweight	integration	can	be	achieved	by	explicitly	registering/publishing	method	software	information	
via	the	SoBigData	infrastructure	resource	catalogue.	Each	method	software	is	described	in	the	catalogue	by	
a	record	enabling	its	discovery	and	usage	(documentation,	download,	examples)	and	including	a	URL	to	the	
software.		

A	 full	 integration	 can	 be	 achieved	 by	 “wrapping”	 (implement	 the	 relative	 APIs)	 the	 method	 as	 a	 WPS	
method,	compatible	for	execution	by	the	general-purpose	gCube-based	data	analytics	engine.	To	this	aim,	
scientists	should:	

• Make	 their	 method	 compliant	 with	 the	 guidelines	 of	 the	 hosting	 platform	 according	 to	 the	
methodology	described	 in	a	dedicated	Wiki	page.	This	activity	might	 require	 some	modification	 /	
adaptation	of	the	method	implementation,	e.g.	for	input	parameters	specification.	The	cost	of	this	
adaptation	depends	on	the	complexity	of	the	method;	

• A	 SoBigData:	 step-by-step	 procedure	 for	 algorithm	 integration	 (including	 a	 couple	 of	 Java	 simple	
classes)	resulting	from	a	concrete	integration	exercise	is	available;	

• Publish	the	algorithm	through	the	platform.	In	case	the	method	is	implemented	with	a	R	script,	the	
platform	is	provided	with	a	facility	supporting	this	publishing	phase;	

Once	 fully	 integrated,	 the	 application	 actually	 becomes	 a	 set	 of	 SoBigData	 social	mining	 assets	 that	 will	
benefit	from:	

• Scalability	Will	benefit	from	a	distributed	and	scalable	computing	platform;	
• Repurposing	 Can	 be	 exploited	 in	 the	 context	 of	 many	 virtual	 research	 environments	 and	 it	 is	

suitable	for	being	repurposed	/	applied	to	datasets;	
• Standard	 accessibility	Will	 be	 automatically	made	 available	 via	 a	web-based	GUI	 as	well	 as	with	

web-based	protocols	(SOAP	and	Rest);	
• Accounting	Are	monitored	 and	 assessed	 by	 SoBigData	 tools,	 e.g.	 detailed	 statistics	 on	 usage	 are	

transparently	collected.	

SoBigData	–	654024	 	 www.sobigdata.eu	
	 	
	 	

D10.8	Resource	adaptation	to	register	to	the	e-infrastructure	1	 Page	13	of	24	

4 RESOURCE	INTEGRATION	USE-CASES												

This	 section	 reports	 on	 the	 experiences	 of	 scientists,	 as	 described	 by	 the	 scientists	 themselves,	 in	
integrating	their	applications,	methods,	and	services	in	the	infrastructure,	including	those	cases	where	the	
integration	 is	 ongoing.	 Experiences	 are	 organized	 by	 typology	 of	 resources	 to	 be	 integrated	 and	 each	 of	
them	 reports	 on	 the	 effort	 required/envisaged,	 in	 terms	 of	 time	 and	 technical	 skills	 required	 for	 the	
integration,	 describing	 the	 high-level	 procedure	 that	 was	 followed	 and	 the	 highlighting	 the	 gaps	 for	
feedback	and	further	improvement.		

4.1 APPLICATIONS	INTEGRATION	EXPERIENCES	

4.1.1 TAGME	 (MARCO	 CORNOLTI,	 DEPARTMENT	 OF	 COMPUTER	 SCIENCE,	 UNIVERSITY	 OF	
PISA)	

TagMe	is	an	entity	linking	annotator,	namely	a	software	that,	given	a	textual	document,	 links	mentions	of	
entities	found	in	the	document	towards	a	catalogue	of	entities	drawn	from	a	knowledge	base.	This	has	the	
important	 effect	 of	 building,	 on	 top	 of	 the	 document,	 a	 non-ambiguous	 representation	 of	 the	 topics	
mentioned	 by	 it,	 with	 impact	 on	 NLP	 applications	 such	 as	 information	 extraction,	 question	 answering,	
document	topical	clustering	and	categorization.	

TagMe	is	implemented	in	Java	(hence	its	execution	requires	a	Java	Virtual	Machine)	and	its	functionalities	
are	offered	as	a	web	service	for	easy	interoperability.	

The	 integration	 in	 the	 D4Science	 infrastructure	 required	 the	 deployment	 of	 an	 ad-hoc	 virtual	 machine,	
running	 a	 SmartGears	distribution.	 SmartGears	 came	with	 range	of	 additional	 services,	 including	 account	
registration,	 authentication	 and	 usage	 accounting	 with	 minimal	 effort.	 As	 a	 middleware	 to	 deploy	 the	
Tagme	webapp,	we	employed	the	Tomcat	web	server,	that	had	to	be	configured	for	the	specific	application	
in	order	to	not	let	requests	overload	the	server	thereby	rendering	service	unavailable.	We	also	had	to	build	
a	specific	Tomcat	Valve	in	order	to	have	the	TagMe	webapp	accept	UTF8-encoded	text	as	input,	since	the	
default	charset	did	not	cover	 the	whole	unicode	space.	We	setup	a	web	page	presenting	the	service,	 the	
documentation,	 and	 an	 online	 demo	 of	 the	 service	 available	 to	 unauthenticated	 users.	 We	 took	 the	
occasion	of	the	deployment	of	TagMe	to	rebuild	 its	 indexes	according	to	the	 latest	versions	of	Wikipedia,	
and	fix	a	few	minor	bugs.		

TagMe	 was	 previously	 available	 in	 a	 different	 deployment,	 and	 users	 had	 to	 be	 migrated	 to	 the	 new	
endpoint	and	authentication	mechanism.	We	decided	to	migrate	users	in	"waves",	in	order	to	progressively	
solve	potential	problems.	The	migration	was	concluded	in	September	2016,	when	the	former	deployment	
was	shut	down.	

Deploying	 the	 service	 on	 a	 specific	 D4Science	 VRE	 had	 an	 important,	 unexpected	 advantage:	 the	 VRE	
message	 board	 became	 a	 forum	 for	 TagMe	 users	 and	 a	mean	 of	 cooperation	 for	 research	 and	 problem	
solving,	and	an	important	channel	of	communication	between	users	and	TagMe	administrators/developers.	
The	deployment	of	a	prototype	of	Tagme,	with	the	only	aim	of	testing,	took	two	weeks	and	was	ready	for	
mid-May	2016.	Until	June,	we	fixed	issues	(often	reported	by	users)	with	the	web	interface	and	the	server	
configuration.	 The	 service	 was	 launched	 on	 mid-July,	 when	 the	 first	 wave	 of	 1%	 of	 active	 users	 was	
migrated	to	the	new	platform,	and	the	registration	to	the	platform	opened	to	the	public.	The	service	launch	

SoBigData	–	654024	 	 www.sobigdata.eu	
	 	
	 	

D10.8	Resource	adaptation	to	register	to	the	e-infrastructure	1	 Page	14	of	24	

was	 finalized	 at	 the	 end	 of	 August,	 when	 all	 users	 were	migrated	 to	 the	 new	 platform	 and	 the	 former	
service	shut	down.	In	total,	the	deployment	of	Tagme	roughly	took	four	months.	

The	TagMe	VRE	is	accessible	here.	

4.1.2 SMAPH	 (MARCO	 CORNOLTI,	 DEPARTMENT	 OF	 COMPUTER	 SCIENCE,	 UNIVERSITY	 OF	
PISA)	

SMAPH	 (paper)	 is	 an	entity	 linking	 annotator	built	 specifically	 for	 queries,	 a	 very	peculiar	 type	of	 textual	
documents,	since	they	usually	provide	limited	context,	no	grammaticality,	and	feature	typos.	SMAPH	is	the	
state	of	the	art	for	entity	linking	in	queries,	and	obtained	the	highest	score	in	the	ERD	Challenge	2014.	It	is	
built	on	top	of	search	engines	(currently	Google	Search),	and	uses	their	output	to	annotate	a	query.	It	also	
makes	use	of	statistical	machine	learning	to	make	its	decisions.	 Its	 impact	on	queries	 is	similar	to	the	one	
TagMe	has	 on	 longer	 text,	 in	 that	 the	 semantic	 layer	 it	 builds	 on	 top	 of	 queries	makes	 it	 possible	 to	 go	
deeper	(with	respect	to	syntactic	text	analysis)	into	the	user	need	behind	a	query.	

From	 the	 architectural	 point	 of	 view,	 Smaph	 is	 similar	 to	 TagMe	 in	 certain	 aspects:	 it	 is	 a	 Java	 software	
available	 through	 a	web	 service.	 Similarly	 to	 TagMe,	 it	 has	 been	 deployed	 on	 an	 ad-hoc	 virtual	machine	
running	a	SmartGears	distribution.	The	main	difference	with	respect	to	TagMe	is	that	it	needs	access	to	the	
Google	 Custom	Search	API,	 hence	users	 have	 to	 provide	 a	Google	 authentication	 token	 to	 SMAPH	when	
issuing	a	disambiguation	request.	

The	deployment	 of	 the	 SMAPH	web	 service	was	 easier	 than	 that	 of	 TagMe,	 because	 no	users	 had	 to	 be	
migrated,	since	this	was	the	first	time	is	was	deployed.	The	deployment	process	started	in	mid-November	
and	the	service	was	released	in	mid-December,	hence	it	took	one	month.	

The	SMAPH	VRE	is	accessible	here.	

4.1.3 TWITTER	MONITOR	(STEFANO	CRESCI	AND	SALVATORE	MINUTOLI,	IIT-CNR)	

The	 Twitter	 Monitor	 is	 an	 interactive	Web	 application	 designed	 to	 access	 and	 to	 collect	 data	 from	 the	
Twitter	 stream,	 by	 exploiting	 the	 public	 Twitter	 Streaming	 APIs.	 The	 application	 is	 able	 to	 manage	
concurrent	monitors:	it	is	possible	to	launch	parallel	listening	sessions	(i.e.,	more	than	one	Twitter	crawler	
at	the	same	time)	using	different	parameters	and	collecting	different	sets	of	data.	In	addition	to	offering	an	
interactive	 Web	 interface	 in	 order	 to	 ease	 all	 the	 operations	 related	 to	 Twitter	 crawling,	 the	 Twitter	
Monitor	 also	 offers	 a	 set	 of	 functionalities	 aimed	 at	minimizing	 the	 loss	 of	 data	 due	 to	 network	 or	 local	
machine	problems.	The	Twitter	Monitor	 is	automatically	capable	of	detecting	and	recovering	from	simple	
error	 situations,	 such	 as	 a	 closed	 or	 disconnected	 Twitter	 stream.	 It	 is	 also	 capable	 of	 detecting	 more	
serious	 issues,	 such	 as	 Twitter	 refusing	 to	 open	 new	 streaming	 connections,	 and	 automatically	 sends	
targeted	alerts	to	system	administrators.	

The	integration	activities	related	to	the	Twitter	Monitor	have	been	twofold.	On	the	one	hand,	we	decided	
to	take	a	course	of	action	so	as	to	provide	a	first,	loosely-integrated,	version	of	the	Twitter	Monitor	as	fast	
as	possible.	On	the	other	hand,	we	also	immediately	started	a	deeper,	yet	longer,	integration	procedure.	

SoBigData	–	654024	 	 www.sobigdata.eu	
	 	
	 	

D10.8	Resource	adaptation	to	register	to	the	e-infrastructure	1	 Page	15	of	24	

The	 fast	 lightweight	 integration	 allowed	 us	 to	 register	 the	 Twitter	 Monitor	 service	 in	 the	 SoBigData	
catalogue1	and	to	include	a	navigation	tab	inside	the	SoBigData	VRE	pointing	to	an	iframe	that	contains	the	
first	version	of	the	SoBigData	Twitter	Monitor2.	The	SoBigData	Twitter	Monitor	rendered	inside	the	iframe	is	
a	slightly	modified	instance	of	the	standalone	monolithic	Twitter	Monitor	that	has	been	developed	by	IIT-
CNR.	 It	 is	 a	 single	 PHP	 application	 that	 runs	 on	 an	 IIT-CNR	 virtual	 machine.	 Given	 this	 lightweight	
integration,	the	Twitter	monitor	is	able	to	provide	its	services	to	the	SoBigData	users,	but	it	cannot	scale	to	
serve	 a	 large	 amount	 of	 requests.	 The	 implementation	 effort	 required	 to	 modify	 the	 original	 Twitter	
Monitor	so	that	it	could	be	used	from	inside	the	SoBigData	VRE	was	about	2	weeks	of	work.	The	result	of	
this	 integration	 is	 visible	 in	 Figure	1	and	Figure	2	and	has	been	extensively	described	 in	Deliverable	D8.2	
Crowdsensing	Platform.	

	

	

Figure	1:	Twitter	Monitor	application	rendered	inside	a	dedicated	navigation	tab	from	the	SoBigData	VRE.	

	

																																																													

1	https://sobigdata.d4science.org/group/resourcecatalogue/data-catalogue	
2	https://sobigdata.d4science.org/group/sobigdata.eu/twitter-monitor	

SoBigData	–	654024	 	 www.sobigdata.eu	
	 	
	 	

D10.8	Resource	adaptation	to	register	to	the	e-infrastructure	1	 Page	16	of	24	

	

Figure	2:	Twitter	Monitor	dialog	window	to	allow	parameter	configuration	of	a	new	crawler.	

While	 completing	 the	 lightweight	 integration,	we	 also	 started	 the	 design	 and	 implementation	 of	 the	 full	
integration.	At	first,	we	had	to	reengineer	and	refactor	the	original	monolithic	Twitter	Monitor	application.	
Specifically,	we	 split	 the	whole	 application	 into	 3	 distinct	 logical	modules,	 so	 as	 to	 allow	 a	 dynamic	 and	
scalable	 deployment	 of	 needed	 modules	 to	 the	 SoBigData	 eInfrastructure	 nodes.	 Then,	 we	 had	 to	
reimplement	in	Java	the	functionalities	of	the	original	PHP	modules.	

The	new,	fully-integrated,	TwitterMonitor	is	composed	of	three	modules:	the	Scheduler,	the	Cron	and	the	
Crawler.	 These	 modules	 were	 originally	 implemented	 in	 PHP.	 In	 order	 to	 integrate	 their	 functionalities	
inside	 the	 SoBigData	 infrastructure	 the	 Scheduler	 and	 the	 Cron	 have	 been	 replaced	 by	 equivalent	 Java	
modules.	For	the	Crawler,	due	to	 its	higher	complexity,	we	decided	to	 implement	a	SmartExecutor	plugin	
that	wraps	the	original	PHP	module	by	running	it	as	a	process.	The	Scheduler	provides	a	GUI	to	let	the	user	
specify	some	input	parameters	needed	to	filter	the	Twitter	events	to	gather.	It	has	been	implemented	as	a	
StandardLocalExternalAlgorithm	subclass.	The	Cron	runs	at	fixed	intervals	without	user	interaction	and	has	
been	 implemented	 as	 a	 SmartExecutor	 plugin.	 The	 Crawler	 is	 run/stopped	 by	 the	 Cron	 and	 has	 been	
implemented	as	a	SmartExecutor	plugin.	The	modules	interact	with	each	other	by	means	of	a	database	that	
contains	the	list	of	tasks	to	run	and	their	status.	As	a	first	step,	we	decided	to	setup	a	SmartGears	node	to	
host	the	SmartExecutor	plugins:	this	helped	managing	the	plugin	deploying	more	easily,	without	 involving	
other	 system	administrators.	 In	 the	 same	virtual	machine	hosting	 the	SmartGears	 node	we	deployed	 the	
postgres	 database,	 needed	 by	 the	 plugins,	 and	 registered	 it	 within	 the	 SoBigData	 infrastructure.	 The	
SmartGears	 installation	 simply	 required	 running	 a	 setup	 script.	 Then	after	 few	 configuration	 steps	 it	was	
ready	 to	 run.	 We	 also	 installed	 the	 SmartExecutor	 service	 to	 make	 the	 plugins	 accessible	 within	 the	
eInfrastructure.	We	 implemented	 the	modules	 by	 using	 some	 templates	 available	 in	 the	 documentation.	
Some	support	from	developers	helped	us	in	speeding	up	the	implementation.	

SoBigData	–	654024	 	 www.sobigdata.eu	
	 	
	 	

D10.8	Resource	adaptation	to	register	to	the	e-infrastructure	1	 Page	17	of	24	

The	 implementation	 of	 modules	 required	 a	 review	 of	 the	 functionalities	 of	 the	 infrastructure	 and,	 in	
particular,	its	interaction	with	the	modules	(i.e.	the	plugins).	The	main	concerns	were	about	discovering	the	
reference	 for	 the	 database,	 interacting	 with	 the	 user,	 storing	 data	 in	 the	 user	 workspace,	 finding	 and	
running	other	plugins.	During	this	activity,	 the	D4Science	developer	team	supported	us	by	providing	code	
snippets	and	quick	links	to	the	proper	documentation.	

4.1.4 VISUALIZATION	APPS	(THORSTEN	MAY,	IGD-FRAUNHOFER)	

The	application	to	be	integrated	in	SoBigData	is	providing	methods	for	registration	and	on-demand	delivery	
of	visualization	code	for	the	purpose	of	embedding	user	created	content	into	external	HTML5	applications.	
The	 idea	 is	 to	 integrate	 it	 in	 the	SoBigData	 infrastructure	a	visualization	test	bed,	which	allows	registered	
users	 to	apply	 their	own	data	 to	provided	visualizations	with	 the	 intended	purpose	 to	 share	 their	 results	
with	the	public.	See	Figure	3	for	an	example.	

The	starting	point	is	a	web	application	composed	by	a	Java	based	portal	service	and	two	backend	services	
implemented	in	JavaScript.	These	services	are	part	of	the	visualization	service	platform	with	the	goal	to	aid	
users	to	select	and	build	interactive	web	visualizations	

• with	their	own	data	
• without	the	need	of	actual	programming	
• with	the	ability	to	use	these	visualizations	in	their	own	visualizations.	

With	 the	 SoBigData	WP10	 Integration,	 the	 visualization	 service	platform	becomes	part	 of	 the	 SoBigData-
Infrastructure.	 With	 the	 CNR-team	 we	 discussed	 three	 different	 levels	 of	 integration,	 distinguishing,	 for	
example,	where	the	services	are	hosted,	or	how	the	user	authentication	is	served.	

We	 opted	 for	 a	 mild	 integration	 level,	 where	 we	 deploy	 a	 SmartGears	 hosting	 node	 containing	 an	
application	 that	 functions	 as	 a	 proxy	 to	 our	 internal	 services.	 This	 way,	 we	 intend	 to	 wrap	 calls	 to	 our	
internal	 SmartGears-unaware	 service	 APIs	 with	 authentication	 and	 accounting	methods	 provided	 by	 the	
SoBigData	research	infrastructure.	

SoBigData	–	654024	 	 www.sobigdata.eu	
	 	
	 	

D10.8	Resource	adaptation	to	register	to	the	e-infrastructure	1	 Page	18	of	24	

	

Figure	3:	the	current	testbed	contains	a	visualization	demo,	which	is	attached	to	an	input	data	set.	A	user	may	
interact	with	both	the	visualization	and	its	input,	to	get	an	impression	of	what	the	visualization	does	and	how	it	is	

used.	

Our	integration	efforts	so	far	were	as	follows:	

• Setup	 of	 a	 SmartGears	 hosting	 node	 on	 our	 premises	 using	 the	 provided	 security	 tokens.	 By	
following	 the	 manual	 in	 the	 gCube-Wiki	 this	 process	 was	 straightforward	 and	 involved	 mostly	
scripting	for	our	internal	deployment	platform.	

• Evaluation	of	the	SmartGears	framework	on	how	to	implement	our	service.	The	documentation	in	
the	 gCube-Wiki	 lacks	 some	 details	 on	 the	 admittedly	 special	 case,	 of	 integrating	 an	 interactive	
visualization	service.	This	initial	hurdle	was	resolved	by	a	short	face-to-face	inquiry,	after	we	were	
provided	 with	 a	 sample	 Java	 web-application,	 that	 implements	 a	 simple	 JAX-RS	 based	 REST	
endpoint	using	the	functionality	from	the	Smartgears	framework.		

Our	current	work	are	the	integration	basis	by	implementing	a	proxy	service	that	routes	requests	with	valid	
D4Science	credentials	to	our	services	(and	 ignoring/returning	all	others).	The	main	effort	as	of	now	is	the	
mapping	of	our	internal	technology	stack	to	the	Jersey	based	Smartgears	framework.	

	

	

SoBigData	–	654024	 	 www.sobigdata.eu	
	 	
	 	

D10.8	Resource	adaptation	to	register	to	the	e-infrastructure	1	 Page	19	of	24	

From	there,	we	plan	to	evaluate	and	implement	the	following:	

• Incorporating	 D4Science	 user	 profiles	 as	 users	 into	 our	 system.	 We	 especially	 look	 forward	 for	
OAuth2	support	in	gCube,	since	our	application	already	uses	this	authentication	standard.	

• Actually	show	a	Visualization	as	a	UI-element	in	the	D4Service	portal.	
• Extending	our	service	with	the	function	to	load/receive	data	from	the	VRE	in	order	to	visualize	the	

results	of	an	analysis	conducted	with	methods	provided	by	the	VRE.	
	

4.2 METHODS	INTEGRATION	EXPERIENCES	

4.2.1 TRAJECTORYBUILDER	(ROBERTO	TRASARTI,	ISTI-CNR)		

Trajectory	Builder	(https://ckan-sobigdata.d4science.org/dataset/trajectory_builder)	is	a	basic	algorithm	of	
the	M-Atlas	package	(http://m-atlas.eu/).	 It	 is	 implemented	 in	 Java	and	 interact	with	a	Postgres	database	
(with	 Postgis	 extension	 for	 spatial	 primitives)	 in	 order	 to	 build	 a	 trajectory	 from	 raw	 spatio-temporal	
observations,	i.e.	points	in	space	and	time	represented	by	a	triple	<latitude,	longitude,	timestamp>.		Hence	
the	 dependencies	 of	 this	 algorithm	 are:	 the	 M-Atlas	 cose	 (matlas.jar)	 and	 the	 connector	 drivers	 for	
postgresql	(postgresql-8.4-701.jdbc4.jar).	

In	order	to	be	integrated	a	launcher	class	is	implemented	as	a	subclass	of	StandardLocalExternalAlgorithm	
(https://sobigdata.d4science.org/group/sobigdatalab/importer-documentation)	.	The	Main	problem	during	
the	integration	was	the	configuration	of	the	project	into	Maven	for	a	deploy	inside	the	SoBigData	platform	
due	 the	dependencies	 listed	above.	Thanks	 to	 the	platform	administrator	help	 the	problems	were	solved	
and	 the	deploy	was	done.	 The	 time	passed	 from	 the	beginning	of	 the	 integration	and	 the	publish	of	 the	
algorithm	in	the	VRE	Lab	is	1	month,	but	the	actual	work	in	implementing	the	tool	was	only	few	hours,	the	
rest	 of	 the	 time	 was	 spent	 interacting	 (1-2	 times	 each	 week)	 with	 the	 platform	 administrators	 and	
developers	in	order	to	find	the	right	solution	for	the	integration	and	how	to	put	the	dependencies	in	it.	The	
difficulties	of	the	process	of	integration	with	the	SoBigData	platform	engine	are:	

• The	documentation	is	so	wide	that	is	difficult	to	understand	what	to	do	and	why.	
• It	is	required	know	tools	such	as	Maven	and	how	to	configure	it	to	be	compliant	with	the	platform.	
• The	interaction	with	the	platform	developer	sometimes	was	difficult	trought	the	ticketing	system,	

face	to	face	meeting	were	fundamental	to	solve	the	problems.	

Anyway	several	of	the	problems	solved	during	this	first	integration	will	help	to	be	more	independent	in	the	
integration	of	next	algorithm.	

	

	

	

	

	

SoBigData	–	654024	 	 www.sobigdata.eu	
	 	
	 	

D10.8	Resource	adaptation	to	register	to	the	e-infrastructure	1	 Page	20	of	24	

4.2.2 QUICKRANK	(CRISTINA	MUNTEAN,	ISTI-CNR)	

QuickRank3	is	an	efficient	Learning-to-Rank	toolkit	providing	several	C++	implementation	of	LtR	algorithms.	
The	 LtR	 algorithms	 currently	 implemented	 are:	 GBRT,	 LamdaMART,	 Oblivious	 GBRT	 /	 LamdaMART,	
CoordinateAscent,	LineSearch,	RankBoost.	

We	made	QuickRank	available	 to	SoBigData	by	 integrating	 it	 in	 the	SoBigData	Lab	VRE	as	a	WPS	method	
executable	 from	 VRE	 Method	 Engine4.	 The	 information	 about	 the	 integrated	 tool	 can	 be	 found	 in	 the	
SoBigData	Catalogue	at	the	following	link:	https://ckan-sobigdata.d4science.org/dataset/quickrank	.	

QuickRank	 users	 can	 train	 and	 test	models	with	 the	 help	 of	 a	 Command	 Line	 Interface	 (CLI).	 In	 order	 to	
integrate	our	 tool	 in	 the	SoBigData	VRE	we	had	 to	create	a	WPS	wrapper	around	 it,	allowing	 the	user	 to	
interact	with	it	in	a	more	user-friendly	way,	through	the	help	of	an	User	Interface	(UI).	He/she	can	insert	the	
files	and	options	as	he	invokes	the	training	or	testing	capabilities	on	the	existing	LtR	algorithms	as	he	would	
do	with	a	CLI.	Figure	4	and	Figure	5	show	the	interface	for	the	training	and	test	tools/interfaces	created.		

	

	

	

	

	

	

																																																													

3	http://quickrank.isti.cnr.it/		

4	https://services.d4science.org/group/sobigdatalab/method-engine		

SoBigData	–	654024	 	 www.sobigdata.eu	
	 	
	 	

D10.8	Resource	adaptation	to	register	to	the	e-infrastructure	1	 Page	21	of	24	

	

	

Figure	4:	QuickTest	training	user	interface.	

	

SoBigData	–	654024	 	 www.sobigdata.eu	
	 	
	 	

D10.8	Resource	adaptation	to	register	to	the	e-infrastructure	1	 Page	22	of	24	

	

Figure	5:	QuickRank	test	user	interface.	

The	 QuickRank	 WPS	 interfaces	 were	 implemented	 in	 Java,	 by	 extending	 the	
StandardLocalExternalAlgorithm5	class,	put	at	our	disposal	by	the	team	responsible	with	the	integration.	In	
order	 for	 the	 QuickRank	 wrapper	 to	 work,	 several	 libraries	 needed	 to	 be	 installed	 on	 the	 VRE	 servers.	
QuickRank	needs	gcc	4.9	(or	above),	CMake	2.8	(or	above)	and	git.	The	implementation	effort	required	to	
create	a	wrapper	around	a	C++	executable,	with	the	help	of	the	Process	Builder	class	 ,	which	allows	us	to	
run	 the	 QuickRank	 executable	 from	 the	 Java	 class,	 while	 also	 passing	 all	 the	 necessary	 parameters	 as	
provided	in	input	by	the	user	in	the	UI.		

The	whole	integration	effort	lasted	several	months.	The	task	was	started	on	the	15th	of	February	2016,	and	
was	 the	 first	 tool	 to	 be	 integrated	 in	 the	 SoBigData	 VRE.	 Initially,	 we	 developed	 a	 test	 wrapper	 on	 the	
development	 servers,	 this	phase	ending	on	 the	22nd	of	March.	 Later,	on	 the	16th	of	August,	 the	 second	
phase	started,	when	the	actual	wrappers	were	inserted	and	deployed	into	the	production	environment	in	
the	SoBigData	VRE.	The	integration	effort	ended	onl	the	30th	of	September.		

We	integrated	the	two	main	modes	(3	wrappers	in	total)	in	which	QuickRank	can	be	used:	

• Training	with	validation	set	
• Training	without	validation	set	
• Test	

The	results/outputs	of	the	QR	computation	can	be	seen	in	the	Output	Datasets	section	(Figure	6)	

																																																													

5	As	described	in:	https://wiki.gcube-system.org/gcube/How-to_Implement_Algorithms_for_the_Statistical_Manager	

	

SoBigData	–	654024	 	 www.sobigdata.eu	
	 	
	 	

D10.8	Resource	adaptation	to	register	to	the	e-infrastructure	1	 Page	23	of	24	

	

Figure	6:	QuickRank	Output	file.	

The	 easiest	 part	was	writing	 the	wrapper	 in	 Java,	 namely	 extending	 the	 StandardLocalExternalAlgorithm	
class.	With	the	help	of	the	integration	team	we	were	able	to	overcome	some	of	the	issues	(e.g.	identify	the	
proper	data	types	in	the	gCube	wiki)	create	the	proper	interfaces,	fix	all	the	problematic	issues	and	deploy	
the	project	locally.	In	order	to	be	put	in	production	QuickRank	need	to	have	the	dependencies	installed	and	
the	source	compiled.	For	 this	we	opened	a	 ticket,	which	 took	around	2	weeks	 to	be	 resolved.	Soon	after	
that	we	succeeded	in	finalizing	the	integration	and	test	the	algorithms	also	on	the	production	server.	

	

4.2.3 GATECLOUD	(KALINA	BONTCHEVA,	UNIVERSITY	OF	SHEFFIELD)	

SoBigData	users	will	access	the	GATE	Cloud	service	indirectly	through	the	D4Science	platform.	GATE	Cloud	
is	 today	 deployed	 at	 Sheffield	 and	 exposes	 calls	 to	 methods	 as	 REST	 services.	 Such	 methods	 will	 be		
integrated	as	WPS	method	calls	 from	the	e-infrastructure	environments.	More	specifically,	SoBigData	will	
mediate	end-user	 requests	 (invocations	of	a	service)	 to	GATE	Cloud	by	using	a	special	API	key,	which	will	
bypass	the	accounting	inherent	in	GATE	Cloud	and	use	that	provided	by	the	VRE	uniformly	instead.		

Around	23	methods	available	as	GateCloud	REST	services	will	be	exposed	through	the	SoBigData	VRE,	each	
with	 their	own	endpoint.	 The	API	 for	each	will	 be	 identical,	 accepting	as	 input	documents	 in	XML,	 JSON,	
plain	text	or	HTML	format,	producing	output	as	JSON,	HTML,	XML.	

These	methods	will	 be	 listed	 in	 VRE	 catalogue	 and	be	made	 accessible	 via	 a	Method	 Engine	 application.	
Eventually,	 the	VRE	catalogue	and	 the	GATE	Cloud	catalogue	will	be	 synchronised,	 so	 that	VRE	users	 can	
discover	methods	 from	GATE	Cloud	directly.	This	will	be	supported	by	 the	HTTP	API	currently	part	of	 the	
GATE	Cloud	service.	These	services	may	be	grouped	into	a	single	Data	Miner	instance	for	ease	of	discovery.	

In	 the	 long	 term,	 GATE	 Cloud	 will	 be	 adapted	 for	 deployment	 on	 the	 SoBigData	 hardware	 premises,	
allowing	cost-free	access	to	GATE	Cloud	services	by	researchers	within	the	scope	of	VREs.		

SoBigData	–	654024	 	 www.sobigdata.eu	
	 	
	 	

D10.8	Resource	adaptation	to	register	to	the	e-infrastructure	1	 Page	24	of	24	

4.2.4 STATVAL	(DANIELE	REGOLI,	SNS)	

StatVal	is	an	algorithm	performing	a	statistical	validation	filter	for	complex	networks.	

The	purpose	of	StatVal	is	taking	a	(possibly	large	and	dense)	complex	network	and	find	the	links	that	are	not	
explainable	by	simple	random	wiring	of	the	nodes	given	the	degree/strength	of	nodes	(namely,	given	how	
many	 links	each	node	has	attached).	The	result	 is	a	new	network	with	only	the	 links	that	are	unexpected	
with	respect	to	the	said	random	model.	Thus,	you	come	up	with	an	output	network	much	sparser	than	the	
original,	that	can	be	considered	a	statistically	sound	representation	of	the	network	backbone	structure.	

StatVal	 is	 essentialy	 a	 collection	 of	 R	 scripts.	 The	 integration	 has	 been	performed	 through	 the	Statistical	
Algorithm	Importer	(SAI)	available	in	the	D4Science	platform,	which	supports		tools	for	the	easy	integration	
of	R	script	methods	 inside	a	VRE.	StatVal	 is	now	available	 for	use	 in	 the	SoBigDataLab	environment	via	a	
Method	Engine	application	(see	Figure	7).	You	can	find	it	on	the	resource	catalogue.			

	

Figure	7:	web	interface	of	the	StatVal	method.	

The	user	has	simply	to	load	a	network	in	the	form	of	a	csv	edgelist	and	tune	some	parameters	either	related	
to	 the	 input	 network	 or	 to	 the	 confidence	 level	 of	 the	 statistical	 tests	 and	 run	 the	method.	 Output	 is	 a	
compressed	archive	containing	edgelists	of	(different)	filtered	networks.	

Usage	of	SAI	 for	R	 scripts	 integration	 is	quite	 straightforward.	First	we	needed	 to	create	a	project	 folder,	
then	we	simply	had	to	load	in	the	folder	the	necessary	R	scripts.	A	main	R	script,	which	is	going	to	manage	
the	workflow	of	the	algorithm,	is	to	be	given	to	the	SAI.	Finally,	we	declared	the	inputs	and	outputs	of	the	
algorithm	and	what	R	packages	the	algorithm	requires.	

Some	more	effort	was	needed	in	the	testing	part,	namely	when	checking	whether	the	method	was	working	
properly,	and	in	the	maintenance,	namely	in	doing	changes	and	modifications	to	the	algorithms,	mainly	due	
to	 some	misunderstandings	 and	 some	 problems	 in	 using	 test	 data	 stored	 inside	 the	 same	 folder	 of	 the	
software	project.	But	with	the	help	of	D4Science	administrators	all	problems	were	solved.	

Total	effort,	 counting	both	 the	 first	 integration	and	successive	modifications,	was	 roughly	around	a	week	
full	time.	

