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Abstract

This paper presents a novel architecture for data analytics targeting an anticipatory
learning process in the context of the Internet of Mobile Things. The architecture is
geo-distributed and composed by edge, fog, and cloud resources that operate collec-
tively to support such an anticipatory learning process. We designed the architecture
to manage large volumes of data streams coming from the IoMT devices, analyze in
successive phases climbing up in the hierarchy of resources from edge, fog and cloud.
We discuss the characteristics of the analytical tasks at each layer. We notice that the
amount of data being transported in the network decreases going from the edge, to the
fog and finally to the cloud, while the complexity of the computation increases. Such
design allows to support different kind of analytical needs, from real-time to historical
according to the type of resource being utilized. We have implemented the proposed
architecture as a proof-of-concept using the transit data feeds from the area of Greater
Moncton, Canada.

Keywords: Internet of Mobile Things, data streams, edge-fog-cloud platform,
anticipatory learning

1. Introduction

The “Things” in the Internet of Things (IoT) are usually “smart devices” which can
sense the surroundings around their location and interact among themselves without
human intervention [1]. In this paper, we are particularly interested in the Internet
of Moving Things (IoMT) because of its potential to bridge the gap between an IoT
device, its environment and a user. As a matter of fact, “mobile smart devices” are
integrated with everyday life of users, becoming personal, timely and relevant to use.
In most IoMT applications, mobility and the geo-distribution of IoMT devices play an
important role in how much the mobile smart devices are interacting; demanding a rich
scenario of communication among themselves such as V2V (vehicle-to-vehicle), V2I
(vehicle-to-infrastructure), and V2H (vehicle-to-home) [2, 3].
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IoMT presents a scenario in which unbounded streams of data are arriving at the
sensing devices (i.e. sensors installed on a traveling vehicle or a personal device) as a
high rate data stream. These data have to be processed “on the fly” to detect anomalies,
operational exceptions, deliver real-time alerts, and trigger automated actions. The real
time actions to be taken based on the received and analyzed data is referred to an an
Anticipatory Learning System. An anticipatory system is defined by Rosen [4] as “a
system whose current state is determined by a (predicted) future state” while Nadin
[5] has previously defined it as “a system whose current state is determined not only
by a past state, but also by possible future states.” Anticipatory systems are therefore
different from predictive systems as the formed describes an entire process that include
prediction but also a feedback to the user to change their behavior according to the pre-
diction model. In today’s interconnected world, many of the devices that populate the
Internet of Things are equipped with enough sensors and computational power to play
a role in anticipatory systems. In fact, Pejovic and Musolesi [6] acknowledged that the
further proliferation of real-world anticipatory systems will rely on the deployment of
IoT, and in particular IoMT. The unprecedented amount of data streams generated at
the network edge by sensors and devices and the emergence of applications requiring
low latency and real time actions calls for geo-distribution processing environment in
contrast to the centralized environments. Mainly because IoMT devices will be able
to seamlessly interact with the environment and sense feedback which will guide an
anticipatory learning process [6]. But in order to support such an anticipatory learn-
ing process, IoMT requires a vast heterogeneity of resources from cloud-to-things.
ranging from edge, fog and cloud computing resources. In fact, IoMT paired with
Edge-Fog-Cloud resources gives an unprecedented opportunity to collect large amount
of streaming real time data from the mobile devices and perform computations at all
levels.

For example, edge network devices may be located at a moving vehicle and thus
having an active role in communicating and delivering high quality streaming to and
from moving vehicles through APs positioned along in the environment such as high-
ways [7]. Another example is a smart camera in a traffic management system that can
produce a few gigabits per second. On one hand, streaming this data to the centre to
process and get back the response not only requires bandwidth but it also may cause de-
lays to get the actionable knowledge. On the other hand, it is not a realistic assumption
that edge devices (i.e. cameras) have the necessary computation power and amount of
information to process the data in a timely and correct fashion. Therefore, processing,
storing, and analysing videos on the fog node of a network may be a sustainable solu-
tion. A well-designed Edge-Fog-Cloud architecture will allow us to support immediate
feedback to the users based on timely predictions (e.g. traffic), rather than moving the
data to data centers.

The next generation of anticipatory applications based on the integration of Edge,
Fog, and Cloud computing using IoMT devices are expected to support the following
capabilities:

– Scalability: anticipatory applications will not require intensive analytics all the
time; thus collecting, processing, and analyzing the raw data close to the source
IoMT devices can produce momentary relevant content that can be used as a
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basis for intelligent decision making.

– Mobility and Geo-distribution: in most anticipatory applications, mobility and
geo-distribution are essential for supporting real-time analytics.

– Low Latency: for many anticipatory applications, the edge analytics can iden-
tify actions in real time and avoid delays between the sensor-registered event and
the reaction to that event.

Towards addressing these challenges, this paper proposes an IoMT computing ar-
chitecture for supporting an anticipatory learning process which can allow sensing the
context of a surrounding environment of an IoMT device as well as from one loca-
tion to another in real-time. Our research premise is that IoMT data arrives at the
Edge, Fog and/or Cloud and requires processing at various speeds (e.g. stream versus
batch, near-real-time versus real-time). Specifically, the architecture we propose con-
sists of an edge layer, a fog layer and cloud layer which contain computational nodes
that are needed for all phases of an anticipatory learning process and specifically in
data analytics tasks. In our approach, the data analytics tasks are distributed anywhere
through the combination of Edge, Fog, and Cloud resources with the objective of re-
ducing the unpredictable network latency, expensive bandwidth, resource-prohibitive
and location-awareness concerns of the Internet of Mobile Things.

We demonstrate the usefulness of this platform with a case study run on a real
dataset of bus traces collected by the CODIAC Transit agency in the Greater Moncton
area (Canada). In these experiments we focus on the predictive task of an anticipatory
process and how the predictive learning process and show examples of the tasks to be
implemented in the proposed architecture at the different layers. We discuss the ana-
lytic tasks at the Edge, Fog and Cloud according to the anticipatory learning process.

The rest of the paper is organized as follows. Section 2 discusses the related works,
while the proposed anticipatory learning process is described in Section 3 and the plat-
form for anticipatory learning in IoMT in described in Section 4. Section 5 reports the
case study on transit data. Finally, conclusions and future research are given in Section
6.

2. Related Work

A fairly systematic overview of IoT was recently published in [8], therefore in this
section we mainly focuses on IoMT approaches. Overall, IoMT devices are equipped
with many kinds of sensors, ranging from accelerometers and gyroscopes to proximity,
light, and ambient sensors, as well as microphones and cameras. It is indisputable that
IoMT devices produce a large amount of heterogeneous data over time. This poses
a challenge to capture, perception, management and processing within an acceptable
time [9]. The nature of IoMT data is usually multi-model, diverse, and heterogeneous,
often streamed at high speed, and may be uncertain due to biases, noise and irregular-
ities caused by latency, ambiguities, deception, or approximation. Different types of
computing having been proposed for processing and analyzing IoMT data (See Table
1 for an overview).
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Edge Computing, according to Shi et al. [10], refers to “the enabling technologies
allowing computation to be performed at the edge of the network, on downstream data
on behalf of cloud services and upstream data on behalf of IoT services.” The rationale
of edge computing is that data processing and analytics should happen close to IoMT
devices. Very few attempts were found in the literature using edge computing for
allowing data analytics near to the IoMT devices in spite of the recent statistics that
45% of IoT data will be processed and analyzed at the edge of the network by 2019
[10].

Mobile Edge Computing was introduced by Nokia Networks and Intel [11] with
the aim of supporting a base station as an intelligent service hub that can collect real-
time network data such as cell congestion and subscriber locations. The ETSI Industry
Specification Group (ISG) has defined Mobile Edge Computing as “a concept that
provides an IT service environment and cloud-computing capabilities at the edge of
the mobile network, within the Radio Access Network (RAN) and in close proximity to
mobile subscribers.” [12].

Fog computing was first introduced by Cisco as a bridge between the Edge and
the Cloud [13]. Other paradigms having a similar concept were also proposed in the
literature such as Cloudlet [14] and Mobile Cloud Computing [15] as well as Mobile
Edge Computing [11]. Typically, Bonomi et al [16] describe fog computing as a hi-
erarchical distributed architecture on the edge of the network to process IoMT data
with a low latency, location awareness, and mobility support. Several scenarios have
been envisaged to apply fog computing, including Augmented Reality (AR), Real-time
Video Analytics, Mobile Big Data Analytics, Smart Grid, Smart Traffic Lights and
Connected Vehicles, Decentralized Smart Building Control, Wireless Sensors and Ac-
tuators Networks [7, 17, 16]. Unfortunately, none of these scenarios has been actually
implemented so far.

Mobile Cloud Computing was proposed to overcome the shortage in computing
power and storage capacity of mobile devices by leveraging the services of Cloud Com-
puting to offload computation for these end devices [18, 19]. Khan et al. [15] define
Mobile Cloud Computing as “a service that allows resource-constrained mobile users
to adaptively adjust processing and storage capabilities by transparently partitioning
and offloading the computationally intensive and storage demanding jobs on tradi-
tional cloud resources by providing ubiquitous wireless access”. In this paper, Fog
Computing is used to encompass all these three paradigms (Mobile Edge Computing,
Mobile Cloud Computing, Fog Computing).

Cloud Computing has dominated the scalable infrastructures as well as process-
ing engines developed to support SaaS, PaaS and IaaS models during the last decade,
leading to a trend of Everything as a Service (XaaS) [20]. However, as Hong et al.
[21] point out, existing Cloud Computing models have been designed for traditional
web applications rather than future IoMT applications running on various mobile and
sensor devices. Moreover, clouds are far from the flawless utility computing model
because their current network bandwidth and reliability are not adequate to support the
short response time needed for processing the large quality of data generated by IoMT
devices in real-time. Therefore, Edge Computing has emerged as a new computing
platform for geo-spatially distributed, large-scale and latency-sensitive future IoMT
applications.
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Table 1 illustrates the main research efforts towards developing different architec-
tures for supporting IoMT and reveals the variety of IoMT devices currently being used
for different applications. The data is being streamed in real time to the cloud but the
processing is still batch in most of the cases. Our approach is the first one, to the best of
our knowledge, where the streamed data from IoMT sensors are analyzed at the edge
in real time, at the fog in near real time and eventually at the cloud as historical data.

All of the aforementioned research work described in Table 1 has not been devel-
oped based on fog computing as well as multilayer architecture such as Edge-Fog-
Cloud. Very few exceptions are found in the literature which includes the emerging
wave of the Internet of Vehicles [2, 3] where Fog Computing is expected to play an
active role in delivering high speed data streams to moving vehicles through APs posi-
tioned along highways [7]. In [21], Hong et al. propose a mobile fog architecture as a
spatio-temporal event processing system that uses continuous querying for traffic mon-
itoring and distributed complex event processing system using vehicle tracking cam-
eras. Pejovic and Mulosi [6] provides a classification of machine learning techniques
for an anticipatory learning process that have been proved to work in the domains of
speech recognition, place categorization, location awareness and call prediction. The
techniques vary from threshold-based learning, tree based learner to hidden Markov
models, and Bayesian networks. The anticipatory computing architecture is usually
deployed in the Cloud, and it supports batch processing of data gathered from “always-
on” devices. But in our case, real-world anticipatory systems will have to rely on a
multi-layered computing platform for processing and analyzing a vast amount of data
streams generated by IoMT devices in real-time. Mainly because it will not be possible
to transport the data streams to the cloud and provide any anticipatory feedback that is
tightly integrated with personalized patterns and actions of users. Flexible fog nodes in
terms of hardware and software architecture are important to respond to IoMT needs
than a cloud cluster is. Fog nodes will be the catalyst of IoMT and connect the ecosys-
tem which is needed for real-world anticipatory systems. Our proposed anticipatory
behaviour platform is described in more detail in the following section.

3. The Anticipatory Learning Process

An anticipatory system can be broadly defined as a system that changes its state
according to the prediction performed on a model of itself and the surrounding envi-
ronment [4]. Clearly, in anticipatory systems the ability to correctly predict the future
context plays a pivotal role. In the context of IoMT, prediction is an hard challenge due
to the complexity of the environment and the rapidly changing situations. An antici-
patory learning process deals with such dynamicity: not only it is necessary a proper
sensing of the environment to instruct the current prediction models, but also there
is the need to tune the prediction models such that to adapt them to the surrounding
context. From a modeling point of view, the anticipatory learning process for IoMT
consists in five main phases: sensing, data preprocessing, contextualization, prediction
and feedback.
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Type of Com-
puting IoMT devices Processing

and Analytics Applications Ref.

Cloud
RFID tags,
BLE

historical
Anticipatory Ubiquitous
Computing

[22]

Cloud WiFi, BLE historical
Location/Future Movement
Prediction

[23]

Cloud

Spatial-
Temporal
Data, GPS,
Camera, En-
vironmental
Sensors

historical
Moving Object Map Ana-
lytics (MOMA), Contextual
Spatial-Temporal Analytics

[24]

Cloud

GPS, Rain
Gauge Data,
Road Incident
Report, Social
Media

mixed (histori-
cal and stream-
ing)

Urban Trajectory Data Ana-
lytics System

[25]

Edge + Cloud BLE near-time O/D Transportation Planning [26]

Edge + Cloud RFID tags historical
RFID Ecosystem for manage-
ment, IoT applications

[27]

Edge + Cloud
Sensors, traffic
lights

real-time

Virtual Object (VO) model
to enrich context informa-
tion with Cognitive Internet of
Things

[28]

Edge Phone Camera real-time
Pedestrian Safety Detection
(Offline Training/Online De-
tection)

[29]

Edge Sensors, RFID real-time

Proposed the Smart Object
framework to encapsulate
RFID, sensor, Internet-based
data

[1]

Edge

Wearable
sensors, GPS
receivers,
Laptop,
Smartphone

real-time
wearable system which can
learn context-dependent per-
sonal preferences

[30]

Table 1: Overview of approaches for edge, fog and cloud computation for IoMT applications
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3.1. Sensing
In this first phase, the aim is to listen to the environment for gathering a multitude

of physical signals that are descriptive of the environment. In the context of IoMT, this
is made possible by the today’s devices complex hardware and their extreme ubiquity.
It is often the case in which an IoMT device is equipped with hardware that can capture
sound, images, temperature, positions, light and many other features of the surrounding
environment. From an anticipatory system perspective, IoMT devices are capable of
extending human senses and communicate without human intervention.

3.2. Data preprocessing
Data preprocessing usually refers to cleaning, filtering, aggregating, wrangling, or

dealing with missing data. It is important to point out that the right choice of pre-
processing techniques will have a positive impact on the ability to predict and seek
for intelligent actions within an anticipatory learning process. Data preprocessing can
consists of the following tasks:

– Dealing with missing data: there are several ways to tackle this problem. For
large data sets, deleting samples based on missing values is expected not to be a
problem. But for a small data sets, having a large number of missing values may
affect our later computing stages. In this case, missing values can be replaced
based on predictive models [31].

– Filtering: IoMT devices may produce error and noise data; in order to mini-
mize the impact of errors on input data on succeeding analyses, the process of
defining, detecting and correcting errors in given data can be applied. Some new
approaches can be found in [32].

– Aggregating: in some anticipatory applications the summary form of data could
be enough for statistical analysis [33]. Aggregation may be applied to diminish
the bandwidth consumption as well as the burden on system.

– Cleansing: IoMT data sometimes comes with irrelevant or inaccurate parts of
data. Cleansing brings some major advantages such as reducing computational
time and complexity due to fewer data features, improving the performance of
the predictive model [34].

– Wrangling: in some applications, the raw data may need to be converted or
changed into another format in order to make it more convenient for the later
computing stages.

3.3. Data Contextualization
Data contextualization plays an important role in an anticipatory learning process

because it helps to explain a phenomenon, detect and better understand an abnormal
behavior [35]. It can reinforce different perspectives and may have different dimen-
sions such as geographical, physical, social, temporal. Perera et al. [35] categorise
context into two main types: primary and secondary context, meanwhile Van Bunnin-
gen et al. [36] propose two broader categories: operational and conceptual. Others
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have distinguished different contexts based on location, identity, activity, time [37] as
well as based on the categorisation technique – sensed, static, profiled, derived [38].
The proposed learning process is designed to support severals automated tasks for data
contextualization. These tasks will depend on the type application (see Section 5 for an
example of a set of tasks designed for a smart transit application). But in any applica-
tion, context is used to enrich the raw data gathered by IoMT devices with information
that is needed for the anticipatory learning process. Moreover, the automated execu-
tion of all the tasks of the data contextualization phase task is crucial in our platform,
especially because of the IoMT devices where inter-device communication needs to be
established quickly and efficiently and actions must be coordinated together. Finally,
the raw data streams are enriched by tagging semantic attributes (e.g. place, social and
activity attributes) for later analysis.

3.4. Prediction

In anticipatory computing, context prediction and intelligent-driven action play the
major roles to assist a system to change its behavior based on their prediction. A pre-
dictive model that provides information about possible future states of the surrounding
environment is the key component to do this. One point in prediction is the presence
of both labeled data and unlabeled data on which to apply supervised or unsupervised
prediction techniques. Supervised techniques use labeled data with the correct answers
and trained them to learn a model that is then applied to new data to produce predictions
or classifications. Unsupervised techniques, in contrast, use only unlabeled data to find
behavioral patterns and attempt can be done to predict common patterns. In our case,
models are learned from the cleaned and contextualized data to predict the behavior of
the observed IoMT objects in the future. An example is the prediction of the speed of
a vehicle in a future time instant by learning a model on the historical speed data. Pre-
diction is typically performed by machine learning algorithms like Linear Regression,
SVN, Random Forest or Gradient Boost to name a few.

3.5. Feedback

The feedback is a relevant result of the analytical tasks that will guide the actions
to be done by users of an anticipatory learning process. Feedback is sent back from
any analytical layer (i.e. edge, fog, cloud) to IoMT actuators to take immediate actions.
Feedback can be real time, near real time or historical depending on the layer where
it is computed. Examples of real time feedback are the detected anomalies on the
operational behavior of the device at the edge, or abnormal behavior in the movement
of a traveling object detected at the fog or the cloud.

4. The Anticipatory Behavioral Platform

Our proposal is to map our anticipatory learning process in the context of IoMT
using a multilayer architecture, i.e. an edge-fog-cloud architecture. The aim is to ex-
ploit the combination of different computation resources available at the edge nodes,
fog nodes and cloud clusters in order to provide meaningful information in real-time of
a surrounding context of IoMT devices, learn personalized patterns of their behaviour
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Figure 1: The Anticipatory Learning Process for IoMT in a three layer Edge - Fog - Cloud architecture

and change user behavior (or behavioral biases and predispositions) according to the
prediction or expectation. Our Anticipatory Behavioral Process (ABP) is built on sup-
porting the various phases of the anticipatory process as described in the following
sections.

4.1. Three-layer architecture

We map the anticipatory learning process defined above into a concrete platform
composed by a hierarchy of resources: edge, fog and cloud. An overview of the pro-
posed mapping is presented in Figure 1. Edge nodes are exploited to run the prepro-
cessing tasks closer to IoMT sensors, rather than having the raw data transported to
a data center in the cloud. The main advantage of this approach is that edge nodes
allow a faster feedback to be sent back to the IoMT actuators. Fog nodes have the
appropriate computing resources for performing the automated tasks in real-time that
are needed for the contextualization phase. In data contextualization raw data streams
are transformed to become suitable for learning about human mobility behaviour. Fog
nodes can help improving the contextualization accuracy and reduce the computational
complexity of the learning process. As the technology of IoMT sensors and actuators
matures in the near future, the variety of context types will proliferate.

In the platform, IoMT devices sense data from the environment and send them to
the edge nodes. Here a preprocessing task, as described in the anticipatory model, is
executed to extract information in the status of the devices which sensed the data and
perform Edge Analytics such as data cleaning, basic statistics and aggregation. These
analysis may help to discover, in real time, possible anomalies on the device behavior
and therefore provide a fast feedback to the IoMT actuators which can take immediate
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actions. The analysis results with the preprocessed data streams are then transmitted to
a fog node. Each fog node collects data and patterns from a group of edge nodes located
in proximity of the node. Here, the additional computational power at the fog permits
the data contextualization task on the received cleaned data and statistics. Through
the contextualization step and fog analytics, we can learn more about the patterns and
abnormalities that are happening at the edge or in general at the geographical area
covered by the fog node. The fog analytics may provide a relevant near real time
feedback to the IoMT actuators that may take actions to change their behavior. The
analysis results, together with the contextualized data streams, are then transmitted to
the cloud node that collects all the historical network data from fog nodes and may
execute complex predictive global model over the whole IoMT network.

4.2. Anticipatory Analytics

One of the main contributions of the proposed platform is the definition of different
kinds of anticipatory learning analytics tasks specific for each level. Table 2 summa-
rizes the main characteristics of the three architectural layers in terms of anticipatory
analytics tasks. We first observe how the data flow tend to transmit aggregated and
cleaned data from the edge to the fog and the cloud. This tend to reduce the required
bandwidth as we move from the edge to the cloud. The required resources for edge
computation are limited, increasing to fog up to the cloud. The data rate varies from
high rates of data collected at the edge to a low rate of aggregated and cleaned data
arriving at the cloud. The latency is clearly very low at the edge due to the proximity
to the IoMT devices and increases as we move to the cloud. The geographical dis-
tribution is a local one at the edge as the device only sense local data while move to
regional level at the fog up to the global level at the cloud. Scalability remains high
at all levels since we can add as many edge and fog nodes as we need. In the cloud
we can also scale infrastructure. The anticipatory learning feedback task is real time at
the edge level due to the proximity to the device and the simple analytics that we can
perform at this level. Feedback time increased to near real time or periodic at the fog
due to the higher latency and the more complex analysis. At the cloud we can provide
a periodic of historical feedback. We also observe how the analytical complexity varies
from edge to cloud. Due to the limited resource and locality of the data the analytics
at the edge may include simple data preprocessing tasks and statistics. These analysis,
nevertheless, may provide a first real time feedback to the devices, like, for example
detect anomalies in the device operations. The analytical complexity increases at the
fog due to the increased computational resources available and the larger data available
covering the fog geographical area. Some mining algorithms can be run at this level.
Analytics at the cloud include, besides the statistics and the mining on the global net-
work level, also the prediction task ad the consequent feedback to the IoMT actuators.

5. Transit Case study

A real case study in the domain of public transit was selected to demonstrate the
application of our architecture. Our case study involves the streaming of transit data
of CODIAC Transit from the area of Greater Moncton, Canada. The transit network
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Main Char-
acteristics Edge Analytics Fog Analytics Cloud Analytics

Data Flow

Input: Raw data
Output: Aggre-
gated data, Cleaned
data

Input: Aggregated
Data, Cleaned Data
Output: Contextu-
alized Data, Aggre-
gated data

Input: Contextual-
ized Data, Aggre-
gated data
Output: Predicted
Values

Resources Limited Medium High Performance
(on demand)

Data Rate High Medium Low

Latency Low Medium High

Geographical
Distribu-
tion

Local Region Global

Scalability High High High

Analytical
Complexity Statistical Inference Statistical Inference

Data mining

Statistical Inference
Data Mining Ma-
chine Learning

Feedback Real-time Near-real time Peri-
odic Periodic Historical

Table 2: The characteristics of analytics at edge, fog and cloud
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currently operates 30 bus routes from Monday to Saturday, some of which have addi-
tional evening and Sunday services. The objective of the anticipatory learning process
is to early detect anomalies in the mobility patterns and predict the punctuality of the
bus services. The information related to the anomalies and the punctuality of the bus
services are then used as a feedback to bus drivers, transit managers and passengers.

The 5 phases of our anticipatory learning process are implemented using the pro-
posed three layer architecture since each layer can support real-time, near-real time
and historical feedbacks respectively. At the edge layer, the node receives the raw data
stream using a 5 second time window and the WiFi access point which is available in
the bus. The resulting cleaned and aggregated data from each time window are then
sent to a fog node located at the Transit Operation Centre using the 3G network. The
aim is to avoid storing large volumes of data at the edge node and transport the data as
soon as possible from the edge node to the fog node. At the fog node, data is contextu-
alized using additional information and the contextualized data sets are further sent to
the cloud node which is located at our West Cloud infrastructure from Compute Canada
using Ethernet connection. It is important to point out that some feedback communi-
cations have not been fully implemented yet. In this case, we provide examples when
necessary to illustrate the implementation.

5.1. CODIAC Transit Feeds

Each bus is equipped with an edge node that receives streaming transit feeds every
5 seconds that contain the GPS position and telemetry data from the sensors installed in
the bus. In this experiment, the bus route 51 was selected for evaluating our anticipatory
learning process because it has the highest trip density during a day. This transit data
feeds consist of a sequence T1, ...Tn of out-of-order tuples containing attributes in the
format:

Ti = (Si, xi, yi, ti)

where
Si: is a set of attributes containing telemetry data such as the bus route identifier,

the bus route number, the vehicle identifier, the trip identifier, the start time of a trip,
and the end time of a trip. The 17 attributes belonging to a tuple are listed in Table 3;

xi, yi, ti: are the geographical coordinates xi,yi of the device at the sampling time
ti.

For the purpose of describing the outcomes from our Anticipatory Behaviour Plat-
form, we have used 168,970 data tuples retrieved during a period of one week from
02/14/2017 to 02/20/2017. According to the transit schedule, there were 66 bus trips
operated each day from Monday to Saturday and 23 bus trips on Sunday. As scheduled,
each trip has taken 45 minutes.

5.2. Computation at the Edge Node

The Cisco IR829 Industrial Integrated Services Router was used to install the edge
node inside the bus. It has an Intel Atom Processor C2308 (1M Cache, 1.25 GHz)
Dual Core X86 64bit, 2GB DDR3 memory and Wi-Fi connection. Our edge node
h handles all routing, switching and networking traffic and a guest operating system
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ID Attribute Name Description

1. vlr id
The ID of the data point in the vehicle
location reports table.

2. route id vlr
The route ID in the vehicle location
reports table.

3. route name The route name.

4. route id rta
The route ID in the route transit au-
thority table.

5. route nickname The abbreviation of the route.

6. trip id br The trip ID in the bid route table.

7. transit authority service time id Transit authority service time ID.

8. trip id tta Transit authority trip ID.

9. trip start Start time of the trip.

10. trip finish Finish time of the trip.

11. vehicle id vab Vehicle ID.

12. vehicle id vlr
Vehicle ID in the vehicle locations re-
ports table.

13. vehicle id vlr ta Descriptive name of the bus.

14. bdescription Bus description.

15. lat Latitude.

16. lng Longitude.

17. timestamp Timestamp of the data point.

Table 3: The 17 attributes of the feed
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named as runs with the IOx operating system running on a virtual machine that uses
Linux Yocto. Further details are reported in [39]. A sliding time window is generated
every 5 seconds and the high volume of tuples belonging to each time window is kept
in-memory until it is transported to the fog node. The tuples from the first time window
are cleaned and pre-processed to remove errors and inconsistencies, and the same tasks
are performed for the next time windows in a sequential manner.

5.2.1. Data cleaning
We implemented a Python script at the edge node which supports five automated

steps to perform data cleaning. They can be described as one of the following:

1. Duplicated tuples: When a time window arrived at the edge node, the data tuples
are sometimes transmitted twice or more. In this case, any duplicated tuple is
automatically found using its timestamp and then removed.

2. Missing tuples: Any bus trip that has at least 100 missing tuples is deleted since
they may have an impact on the edge analytics results.

3. Missing attribute values: A tuple may be corrupted and contain less than the
expected number of attributes. Therefore, we fill up the missing field with “N/A”
or we deleted the whole tuple depending on the kind and number of missing
values.

4. Redundant Attributes: This case happens when a new attribute is introduced to a
tuple. In this case, the extra attribute is automatically deleted.

5. Wrong attribute values: Any attribute might also contain a wrong value due to
misspelling, illegal values, and uniqueness violation. In this case, the algorithm
first tries to deal with the incorrect information, when not possible the value is
deleted.

In the case of our case study, 20% of 168,970 data tuples have been deleted at the
edge node, thus making available only 137,667 tuples for data preprocessing.

5.2.2. Data preprocessing
For implementing the data preprocessing phase, we have developed three steps as

further described below.
Step 1 – Stop/Move Computation: The aim of this step is to determine whether

a bus is moving or not. The GPS coordinates of a bus position which are sent to
the edge node every 5 seconds were used for this computation. In this case, a fixed
distance value between two consecutive GPS positions was used for determining stops
and moves (Fig. 2) . This value was empirically determined for the CODIAC transit
network as being 15 meters. When the distance between the previous point and the
current point is more than 15m, the bus is moving therefore the current point is tagged
as a move. In contrast, when the distance is less than 15m, the current point is tagged
as a stop.

Step 2 – Temporal Aggregation:This step is performed at the end of each trip and
it is used to compute (i) the actual time duration of a trip using the timestamps of the
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Figure 2: Moves and Stops computation

origin and destination points of each trip, (ii) the total number of stops during a trip
, and (iii) the total number of moves during a trip. In summary, five data fields (Trip
Id, Date, Start Time, Total Move, Total Stop, Total Time Length) were used for the
temporal computations.

Step 3 – Summary Function: In this step we computed the average trip time in the
morning (5h-12h), afternoon (13h-18h), and evening (19h-24h). Besides, the average
of the total number of moves and stops was computed for the different times of the day
(i.e. morning, afternoon, evening). In the case of our case study, 137,667 tuples have
been used in the data preprocessing phase and as a result, they became ready to be used
for edge analytics and be later transported to the fog node.

5.2.3. Anticipatory Edge Analytics
The aim of implementing the anticipatory analytics was to demonstrate how it is

possible to learn about real-time abnormalities in the transit network, for example,
learning about the interruption of services. Fig. 3 illustrates the existence of several
missing trips that have been detected in real-time. The buses did not run on February
14th at 6h to 7h; and there were no trips at 22h on the 15th, 16th, 18th. Moreover,
missing trips have also occurred on the 17th after 12h and on the 19th early in the
morning (6h and 7h) and in the evening (18h to 22h). This is relevant information
for the real-time feedback because it can generate warnings to the transit managers as
well as passengers about the current state of the network at the bus line level. Moreover,
computing the total trip time in real-time can provide relevant information to the transit
manager about the abnormalities occurring with the bus services. For example, Figure
3 shows the total trip times from February 14th to February 20th. On February 14th,
the shortest trip has lasted for 897 seconds (at 22h of the start time), meanwhile the
longest trip has taken 13,468 seconds (at 12h of the start time). The weather conditions
were fair on that day, making such an information relevant as a feedback to the transit
manager in order to identify the actual cause of these disruptions on the bus service. In
contrast, on February 16th due to a snowstorm the bus service was erratic as shown by
the different values of the total trips. This information is relevant as a feedback to be
provided to the passengers in such a way that they would be able to make a decision of
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taking a bus or search for another mode of transportation.

Figure 3: Overview of the hourly trip times for each day of the week

5.3. Computation at the Fog

The fog node was implemented using the Cisco UCS 240 modular with two rack-
unit (2RU) server and 2 Intel Xeon processor E5-2600 CPUs, 24 double-data-rate 4
(DDR4) dual in-line memory (DIMMs) of up to 2400 MHz speeds, 6 PCI Express
(PCIe) Generation 3 slots, 12 large-form factor hard drives. The dataflow is managed
using Cisco Kinetics functionalities such as Broker, Protocol and DSL links, and Data
Control management. Every 6 hours, all tuples were scheduled to be sent to the fog
node located at the Transit Operation Centre. This is implemented using the Message
Broker available at the fog node. On February 20th, 137,667 tuples and summaries
were transmitted from the edge to the fog node. At the fog node we have the capa-
bility to handle the regional geo-distribution of data and we have enough computing
resources to perform the data contextualization phase and fog analytics. All necessary
information including the GTFS (General Transit Feed Specification) data [], GIS lay-
ers, the geographical location of all the bus stations and the PostgreSQL database are
available at the fog node. It is worth noticing that a single fog node can handle data
being pushed from more than one edge node, therefore, several trips from different bus
routes can be contextualized and analyzed at the same time.

5.3.1. Data Contextualization
The implementation of the data contextualization phase is illustrated using 6 steps

and illustrated in Figure 4. We would like to emphasize the fact that all these steps are
fully automated and do not require any human intervention.

Step 1: Categorizing Stop/Move. The aim of this step is to classify the moves
and stops obtained from the edge node to improve our understanding about their con-
text. Any stop may occur due to a traffic jam, accident, by collecting large number
of passengers at a bus station, or waiting at a traffic light. In contrast, moves might
happen when a bus is moving on a street or intersection, and passing in front of a bus
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Figure 4: Example of the stops/moves contextualization

Stop/Move Label Description

Move Running When a bus is moving on a street

Move Passing
When a bus passes in front of a bus station without
stopping, for example when there are no passen-
gers to drop off or get on

Stop Suspension
It may occur due to an intersection, stop sign, ac-
cident, or traffic jam.

Stop Stopover
When a bus stops at a bus station for dropping off
or picking up passengers

Table 4: Stop and move classification

station. Therefore, the classification of stops and moves is carried out by adding one
new attribute (label) as specified in Table 4.

The classification algorithm works by creating a circular buffer with a radius of
30m (estimated empirically) for each bus station, and geographically matching it with
a stop or move (i.e. stopover and passing) location of a bus. The stops which are
located inside the buffer were classified as “stopovers”, otherwise they were classified
as “suspension of movement”. Moreover, the moves which were located inside the
buffer are classified as “passing”, otherwise they were classified as “running” on a
street.

Step 2: Street Name Annotation. The objective of this step is to annotate the
moves and stops according to the streets nomenclature of a transit network. For this
step, a query on PostgreSQL database is run to retrieve the names of the street where a
move or stop is located. This is a non-trivial step because the geographical coordinates
of the stops and moves are obtained from GPS signals which normally have 10m of
accuracy in urban areas [40].

Step 3: Bus Station Identification. The objective of this contextualization step
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is to associate a bus station identifier to each bus movement tuple labeled as stopover
and passing. This is a crucial step to provide a link between the movement data to
the bus station information available from the GTFS data. It is important to point out
that the algorithm also needs to verify the direction of a moving bus (e.g. eastbound
and westbound) in order to identify the bus station that a stopover/passing is actually
located. To do so, we select the tuple located at the middle of a bus route for using it
as a reference point for identifying the direction of a moving bus. Each stop is then
annotated as “outbound” and “return” values.

Step 4: Street Intersection Identification. Here we tag street intersections to
each tuple. The algorithm creates a circular zone with a radius of 30m (determined
empirically) for each street intersection. The tuples containing stops and moves that
are located inside the circular zone are tagged with the intersection identifier.

Step 5: Arrival/Departure Times Identification. The aim of this step is to de-
termine the actual arrival and departure time of a bus at a stopover for dropping off or
picking up passengers. Our algorithm computes the timestamp of the first stop point
in a stopover within the circular zone of 30m radius (determined empirically) around
each bus station, and considers it as the actual arrival time. Similarly, the timestamp
of the last point of a stopover point within a circular buffer from the same station is
considered the departure time.

Step 6: Origin/Destination Trip Identification. During this step we identify ori-
gin and destination of a trip. We tag each first tuple of a bus trip as origin, and each
last tuple of a bus trip as destination. The remaining tuples are then sequentially in-
dexed. After finishing the contextualization steps, 6 new data fields were generated
and attached to the cleaned data tuples which were received from the edge node. The
preprocessed data streams are now transformed to contextualized data streams every 6
hours and ready for the fog analytics.

5.3.2. Fog Analytics
The DBSCAN algorithm citeEster1996dbscan was selected to detect spatial clus-

ters, considering as parameters a spatial radius of 15 meters and the minimum number
of points in a cluster of 8. We used the Skitlearn DBSCAN algorithm and applied it to
all the stops every 6 hours with the purpose of discovering spatial clusters which might
indicate traffic congestions. The spatial clusters contain in average up to 201 stops. In
Figure 5, we show an example on February 14th when 24 spatial clusters were found,
and many of them were located along the streets and the Transit Operational Centre
in Moncton. This information is relevant to be provided as a feedback to the transit
managers as soon as it was obtained because they represent disruptions on the bus ser-
vice due to traffic congestions such as cluster A (2766 stops) that is located at the Plaza
Blvd bus station (Bus Stop ID 6810785) and cluster C (1894 stops) that is located at the
Main St bus station (Bus Stop ID 6810785). It is also important to point out that cluster
B (2327 stops) that is located at the Transit Operation Centre reinforce the information
obtained from the edge node that the bus service was interrupted due to the snowstorm
on this day.

Once the spatial clusters were computed, all tuples were stored permanently in
the PostgreSQL database. Only the tuples found in the spatial clusters were finally
transmitted to our cloud environment.
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Figure 5: Overview of the spatial clusters that were computed at the fog node.

5.4. Computation at the Cloud
At the cloud cluster, our Anticipatory Behaviour Platform is implemented with the

support of Compute Canada which provides an IaaS where we have created and allo-
cated cloud resources such as VMs, Servers, Storages, Load Balancers, IP addresses.
Our cloud capabilities include maximum 5 Instances, 40 VCPUs, 150GB RAM, 2
Floating IPs, 5TB Volume Storage.

Once all tuples belonging to all spatial clusters have arrived at the cloud (i.e.
30,746), a HDFS file is generated and used for predicting the punctuality of the bus
services from a network perspective. In order to achieve that, a random forest algo-
rithm was used to build a predictive model. Our purpose here is to illustrate the po-
tential of using our predictive model for classifying the new spatial clusters. We have
not analyzed the deterioration of our predictive model. It is also important to point
out that the prediction here is only to illustrate the role of our three layer architecture
in supporting an anticipatory learning process, rather than finding the best punctuality
prediction model. In summary, we have assigned the target label for each data tuple in
the training dataset based on 3 categories described as one of the following:

– On time: this label indicates whether the bus is expected to arrive on time at a
specific bus station;

– Early: this label indicates whether the bus is expected to arrive earlier at the bus
station;

– Late: this label indicates whether the bus is expected to arrive later at the bus
station.
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Attribute Description

trip id this is the identifier of the trip

lat the latitude

lng the longitude

gps timestamp the timestamp

street name the name of the street

direction the direction of the bus movement

stop id the identifier of the stop

movement sequence the movement sequence of the bus

arrival time the arrival at the stop

target class early/on time/late

Table 5: List of the most influential attributes in the prediction model

For the implementation, we have used the range of 1.3 minutes (80s) for the early
label and 5.3 minutes (320s) for the late label as suggested by [41]. The time compu-
tation was based on the timestamps of the tuples and the timestamps of the scheduled
arrival times obtained from the GTFS data.

Figure 6 ddepicts the predictive model showing a number of decision trees that
were created during the training phase. Each decision tree contains a random subset of
the 9 most relevant attributes. When a new data tuple comes to the prediction model,
it is predicted through each decision tree and returns the target class label. A majority-
voting function was utilized to vote the majority target class label and predict the label.

Figure 6: Random Forest model with majority voting

We evaluated our predictive model applying 10-fold cross validation by partitioning
the data into a training set to train the model, and a test set to evaluate it. We then
computed the average accuracy of the model. To evaluate how does the accuracy of
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the prediction model changes as a function of the training-set size, we have plot the
accuracy curve as shown in Figure 7 . This plot indicates that, not surprisingly, when
training data samples increase, the accuracy of our predictive model increases. Other
machine learning algorithms should be tested (e.g. gradient boost) and compared with
state of the art to find the best prediction performance.
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Figure 7: Accuracy of the prediction based on number of training items

At the end of the computation at the cloud, the predicted values become the histor-
ical feedback that can go back to the transit manager in order to understand the how
efficient the bus service is at the transit network level during a long period of time.
In this experiment we have only used the data generated by one bus, however, the the
platform can be applied to the whole transit network.
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6. Conclusions and Future Work

This paper presents the conceptual design and overall description of a multi-layered
edge-fog-cloud architecture targeting an anticipatory learning process in an IoMT do-
main. The Anticipatory Behavioral Platform meets a concept that is gaining more and
more momentum in the way analytics of data is performed: whenever possible push
the computation toward the edge while trying to keep the data as close as possible
from where they originated. This presents immediate general advantages that would
be favourable to almost any IoMT application: it guarantees data privacy (at least to
a certain extent), reduces the cost to transfer large amount of data toward datacenters,
and makes possible to receive fast feedback by the analysis of the data. In particu-
lar this last point is of fundamental importance for the real-time anticipatory learning
processes we target in the paper.

Beside its description, we also have experimented the proposed architecture on
an actual real-world case study for the management of public transit in the Moncton
area in Canada. The case study illustrates the usefulness and the effectiveness of the
proposed architecture.

In fact, our lesson learned is that each layer of the architecture considered in isola-
tion would not be able to manage the anticipatory learning process. As a matter of fact,
realising a complete anticipatory learning process using only edge devices would be not
feasible due to the lack of computing power and storage on such devices, and would
have required an extreme simplification of the prediction and analytics processes. Still,
using a combination of fog and edge resources would not scale when increasing the
number of monitored buses and lines. Finally, using only the cloud would have made
the latency of the feedback unacceptable, still it is a useful resources that provides (the
illusion of) infinite scalability for batch processing and complex data analysis, while
having the convenience of using the resources (and pay for them, in case of public
clouds) only when needed.

For future research work, we plan to extend the architecture into those scenarios in
which the direct communication between nodes belonging to the same layers is needed.
This would open new challenges and opportunities, since that would be possible to
use other peers information to improve the knowledge on the whole system locally
at each node, improving the overall precision of the prediction mechanisms and, as
consequence, the effectiveness of the anticipatory learning process.
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