
Dependable Dynamic Routing for Urban Transport
Systems Through Integer Linear Programming

Davide Basile2 1, Felicita Di Giandomenico1, and Stefania Gnesi1

1 I.S.T.I “A.Faedo” 2 Dept. of Information Engineering
CNR Pisa, Italy University of Florence, Italy

Abstract. Highly automated transport systems play an important role in the
transformation towards a digital society, and planning the optimal routes for a
set of fleet vehicles has been proved useful for improving the delivered services.
Traditionally, routes are planned beforehand. However, with the advent of au-
tonomous urban transport systems (e.g. autonomous cars), possible obstructions
of tracks due to traffic congestion or bad weather conditions need to be handled
on the fly. In this paper we tackle the problem of dynamically computing routes
of vehicles in urban lines in the presence of potential obstructions. The problem
is formulated as an integer linear optimization problem. The proposed algorithm
will assign routes to vehicles dynamically, considering the track segments that
are no longer available and the positions of the vehicles in the urban area. The
recomputed routes guarantee the minimal waiting time for passengers. Safety of
the computed routes is also guaranteed.

1 Introduction

Nowadays, most of the research in the transport sector is devoted to build smart solu-
tions for moving people within the cities, to reduce costs and improving sustainability
while ensuring reliability and safety of the transport services. Highly automated trans-
port systems play an important role in the transformation towards a digital society and
technologies as driver-less transports are already adopted in metropolitan cities [17] .
In particular, planning the optimal routes for a set of fleet vehicles has been proved
useful for reducing costs and energy consumption of vehicles while improving user
satisfiability in terms of waiting time.

This problem has been widely studied in the literature [16, 15]. Traditionally, two-
step approaches based on planning fixed routes and execute them have been studied
and are adopted in the railway industry. These approaches rely on the availability of
tracks, which is in general guaranteed for railway tracks but it is no longer possible in
urban area, where events such as obstructions of tracks must be handled. More recently,
newly dynamic routing applications are emerging, thanks to a number of technologi-
cal advances. For example, the increasing hardware performances for data processing,
together with accurate positioning systems as Global Positioning Systems (GPS) and
Geographic Information Systems (GIS) led to the development of Intelligent Transport
Systems (ITS). These systems combine the above technologies and made possible to
track fleet vehicles and to manage them in real time.

2 D.Basile et al.

In particular, the possibility of dynamically computing new routes for vehicles
opens new opportunities for reducing operational costs and environmental impact while
improving customer services dependability. Indeed, especially in urban area it is often
the case that itineraries may be temporarily unavailable due to obstructions. In this case,
a mechanism can be adopted to recompute dynamically new routes for the affected ve-
hicles, such that they are able to complete their missions. This aspect is of crucial im-
portance for improving the overall dependability of these urban transport services and
improving the user satisfiability.

In this paper we propose a routing algorithm for handling possible detected obstruc-
tions of tracks in urban area, by assigning new routes dynamically and by considering
a set of tracks temporarily unavailable. The proposed algorithm takes in input a graph
abstracting an urban map, where edges correspond to itineraries and nodes to points,
the locations and destinations of vehicles in the urban area and the set of detected ob-
structed tracks. The output of the algorithm is the set of optimal routes for each vehicle,
to be communicated to the vehicles until the obstructed tracks are restored to their nor-
mal operation. The optimal routes computed are safe by construction. In particular, it is
guaranteed that no collisions among vehicles will ever occur both on itineraries and on
points. Moreover, the computed routes guarantee progress of the overall network of ve-
hicles: no deadlocks will ever occur, i.e. each vehicle eventually reaches its destination.
Note that, although there are specific subsystems strongly tailored to assure safety (e.g.,
interlocking), also at the level of route planning safety can be considered by developing
solutions that avoid potential train collisions, as we pursue in our study.

We modelled the dynamic vehicle routing as an optimization combinatorial prob-
lem, through a set of linear equations. In particular, the vehicle routes are modelled as
flows in a graph such that the objective function minimises the arrival time of each ve-
hicle to its destination. This in turns guarantees an improvement in user satisfiability by
minimising the waiting time. Safety aspects are enforced by a set of constraints allow-
ing only one vehicle in each itinerary and only one vehicle to traverse a point in a given
time step.

The proposed model has been implemented in A Mathematical Programming Lan-
guage [8](AMPL). Preliminary experiments were performed showing the feasibility
of the proposed approach. The implementation of the dynamic vehicle routing algo-
rithm is open source. It can be downloaded at https://github.com/davidebasile/
routingproblem, together with data and set-ups of experiments.

Structure of the paper The paper starts with a description of the problem in Sec-
tion 2. The proposed architecture of a dependable dynamic vehicle routing system is
introduced in Section 3. Section 4 contains some background on Integer Linear Pro-
gramming (ILP) and flow problems; and the proposed model for solving the routing
problem is described in Section 5. The implementation of the algorithm and some ex-
periments are, respectively, in Section 6 and Section 7. Finally, related work is in Sec-
tion 8 while conclusion and future work are in Section 9.

RSSRAIL 3

2 Description of the Problem

Planning the time schedule and routing of vehicles (known as Dynamic Vehicle Routing
Problem) is a problem that has been widely researched and nowadays several transport
systems adopt automatic solutions for planning the routes of vehicles and for supervis-
ing their movements [9, 16, 15].

Recently, these systems have been extended from subway and train lines to compre-
hend other urban systems, as tramway lines. Tramway lines are generally less expensive
than subway lines and automatic systems can be applied to optimize the time scheduling
and energy consumption. Solutions as signals, priority management and traffic lights are
adopted to regulate the circulation and ensure safety. While metropolitan lines widely
adopt automated guidance systems, in tramway systems the driver is in charge of en-
forcing speed, braking and safety distances. Generally, signal entities are used to allow
trams to occupy the specified route.

An important problem in urban scenarios is the presence of possible obstructions
in the assigned routes. This can be due, for example, to other vehicles or to accidents.
Generally technologies as, for example, radars and gps are used to detect these haz-
ardous situations. Hence, implementing innovative dependable routing solutions while
enforcing rail safety represents a challenge for the research community.

In particular when a specific route is no longer available due to obstructions of the
path or other possible failures, the preassigned routes are no longer valid. It is important
to recompute efficiently a new route from the location of each vehicle to its destination,
to avoid obstructed tracks and potential deadlocks. Signalling systems are in charge
of communicating to the drivers the newly assigned routes, set up the traffic lights,
commute points, and set up the other devices composing the signalling system.

3 Dynamic Vehicle Routing

In Figure 1 our proposed dynamic vehicle routing system is depicted. In particu-
lar, through the on-board equipment each vehicle can communicate its precise loca-
tion thanks to GPS coordinates or similar systems. Moreover, communications with the
control station are also handled. In case of possible obstructions in one of the assigned
tracks (detected by sight or by automatic devices as, e.g. radar) the preassigned stan-
dard routes are no longer valid; and the blocked vehicle will communicate to the central
control station its coordinates and will identify such obstructed track. In this scenario it
is necessary to adopt alternative routes until the unavailable tracks are restored to their
normal operation conditions. We assume that the unavailable tracks notified to the con-
trol station will remain so for an amount of time worthy of recomputing new routes.
On the contrary, vehicles will wait until the obstructed tracks are restored to normal
operation conditions.

Once the communication has been received by the control unit, the coordinates
(also called locations) and the destinations of all vehicles in the urban area will be
collected by the control unit. These data will be used by the control system to compute
new routes for each vehicle dynamically, given its current location and its destination,

4 D.Basile et al.

Fig. 1: The Dependable Dynamic Vehicle Routing System for Urban Lines

and communicate them to the signalling system. In our framework destinations are, for
example, next stops, i.e. we divide a round trip of a vehicle into a sequence of stops that
are computed dynamically. Our proposed model will compute the optimal solution by
minimising the overall time needed by all vehicles to arrive at their destination, that is
optimising the user satisfiability in terms of minimal waiting time. Moreover, the model
will ensure route safety, i.e. no collisions on tracks or points will ever occur.

The newly computed routes are communicated to the drivers and to the signalling
system. Indeed, the problem of setting traffic lights, commutating points and other op-
erations on the tracks useful to implementing the selected routes are managed by other
systems. It is assumed that other systems are in charge of communicating to the drivers
the assigned route and to implement the signalling system to allow each vehicle to move
according to its selected route (see Section 2).

In the following sections the algorithm for computing new routes (right block in
Figure 1) is specified, implemented and tested. Note that the proposed algorithm is not
tailored to a specific urban transport system, but can be reused in different scenarios
such as, among the others, autonomous cars and tramway lines.

4 Network Flow Problem

In this section we introduce network flow problems and their formalisations. The
dynamic vehicle routing problem will be formalised and solved as a network flow prob-
lem in the following section.

A flow network [6] (also known as a transportation network) is a directed graph
where each edge has a capacity and each edge receives a flow. Let G = (Q,T) be a
graph with set of nodes Q and edges T , that are pair of nodes. Generally there are two
types of special nodes: source nodes, that are generating flow, and sink nodes, that are
consuming the flow. Given a node q∈V , the forward star FS(q) is the set of outcoming
edges of q, while the backward star BS(q) is the set of incoming edges in the node q.

RSSRAIL 5

For each edge t ∈ T , the flow variable xt represents the flow that is passing through
the edge t. Generally, a maximum capacity at is assigned to each edge t, representing
the maximum amount of flow allowed, and a cost ct representing the cost of utilising
the edge t. A network flow problem is a type of network optimization problem where
the objective function requires to optimize a flow such that the solution respects the
following constraints:

– the amount of flow on an edge cannot exceed the capacity of the edge (capacity
constraints), written ∀t ∈ T.xt ≤ at ;

– the amount of flow incoming into a node equals the amount of flow leaving it,
unless it is a source, with only an outgoing flow d, or a sink, with only an incoming
flow d (flow conservation),written:

∀q ∈ Q.∑t∈BS(q) xt −∑t∈FS(q) xt =

−d if q = qs
0 if q 6= qs,q f
d if q = q f

– depending on the studied problem, it can be required that the computed flow must
be an integer value (integrity constraints), written: ∀t ∈ T.xt ∈N.

Examples of network flow problems are the Maximum flow problem [7] or the
Minimum-cost flow problem [11]. The first problem consists in maximizing the amount
of flow that can be sent from the source nodes to the sink nodes. The objective function
is then max d. In the second problem a cost is associated with each edge of the network,
and the objective function is minimised in order to find the optimal cost for sending a
given amount of flow from the source nodes to the sink nodes, that is min ∑t∈T xtct .

These problems are solved by using Integer Linear Programming (ILP) [10, 19]. In-
deed, all constraints are represented by linear inequalities, and the objective function is
linear. Several solvers are available for solving linear optimization problems automati-
cally and efficiently, by using for example the simplex algorithm [8].

In the next section we will formalise the automatic route scheduling as a flow prob-
lem. The flow variables will be split into time steps 1, . . .K, where K will be the up-
perbound to the maximum number of edges that a route can traverse. The maximum
capacity for each edge will be of one unit, that is only one vehicle can be on a specific
track in a specific moment. Similarly, the flow d will be of one unit, that is each flow
will be in correspondence with a single route. We will not consider costs for edges,
which are left as future work (e.g. energy, performance). Finally, the flow variables will
be split into a set of binary variables xu,k,t where u identifies the vehicle, k identifies the
discrete step considered in our analysis and t will identify the itinerary (i.e. edge). In
particular, xu,k,t = 1 if and only if vehicle u at moment k is in itinerary t. These flow
variables will describe the optimal routes computed by our ILP model. The goal will be
to minimise the overall routing time.

5 Description of the Model for the Vehicle Routing Problem

In this section we formalise the dynamic vehicle routing problem as a network flow
problem. Similarly to [20, 14, 3], we abstract a generic urban tramway layout as a graph.

6 D.Basile et al.

Fig. 2: The grid used for the experiments with the routes computed in Experiment 1
(thick edges) and obstructed itineraries (dotted edges)

At our level of abstraction, we are only interested in modelling the path that each ve-
hicle must traverse in order to arrive at its destination. A destination could be the next
stop that the vehicle needs to reach. Each edge of the graph will possibly represent a
sequence of segments where a single vehicle is allowed (i.e. an itinerary), that must be
traversed in order to move from one point to another. Nodes in the graph are in cor-
respondence with points in the track. We assume that vehicles may only get stuck in
points, and not while traversing itineraries. Indeed, unavailability of itineraries is ascer-
tained in the nearest points.

We firstly introduce the notation used in this section. We assume a finite set of ve-
hicles U , where each vehicle has one route, a finite set of itineraries (i.e. edges) T ,
a finite set of nodes Q. Trivially, no segment has the same point as source and des-
tination. Indeed, we assume that no inner cycles are present in the graph, i.e. ∀q ∈
Q.FS(q)∩BS(q) = /0. This requirement can be imposed as a constraint in the model
(see Equation 13).

Moreover, let |S| be the cardinality of a set S. Then K = |U | ∗ |T | is the upper bound
to the maximum amount of time needed by each vehicle to reach its destination pro-
vided that at each discrete step k ∈ 1 . . .K at least one vehicle in U moves into an
itinerary in T . In particular in the worst case |U | ∗ |T | only one vehicle moves at each
step, all vehicles need to traverse all itineraries in the graph and each route traverses
each itinerary at most one time (i.e. no loops). Moreover, given a vehicle u ∈ U , let
location(u),destination(u)∈Q be the location and destination of vehicle u. Finally, we
assume the presence of a subset of itineraries F ⊂ T that are temporarily unavailable
and cannot be traversed. The output of the ILP model will be the new routes assigned
to each vehicle.

Example 1. Before providing the details of the model we explain the formalisation with
the help of an intuitive example. In Figure 2 a graph representing a sub-portion of an
urban area is depicted. Adjacent nodes are connected in both directions, to improve
readability for each pair of connected nodes only one edge is reported in Figure 2. In
Section 7 this graph will be used for testing the proposed model. Assuming that the
obstructed tracks are itineraries in F = {(1,2),(1,6),(2,1),(2,7),(6,1),(7,2),(10,2)}

RSSRAIL 7

and that two vehicles u1 and u2 are present such that location(u1) = 15, location(u2) =
9, destination(u1) = 12, destination(u2) = 11. The optimal route for u1 is represented
by the variables xu1,1,(15,14) = 1,xu1,2,(14,13) = 1,xu1,i,(13,12) = 1 where i = 3, . . . ,K (all
other variables xu1,k,t having value zero). The optimal route for u2 is represented by the
variables xu2,1,(9,8) = 1,xu2,2,(8,7) = 1,xu2,3,(7,6) = 1,xu2, j,(6,11) = 1, where j = 4, . . . ,K
(all other variables xu2,k,t having value zero). In particular, at step k = 1 we have that
vehicle u1 is on itinerary (15,14) and vehicle u2 on (9,8); at step k = 2 vehicle u1 has
moved to the adjacent itinerary (14,3) and u2 to (8,7), at step k = 3 vehicle u1 has
moved to (13,12) (so reaching its destination) and u2 to (7,6). Finally at step k = 4
vehicle u1 remains idle while u2 reaches its destination (6,11).

These xu,k,t variables are computed automatically by the ILP model described below,
and are such that each vehicle reaches its destination in the shortest number of steps
possible.

5.1 Integer Linear Programming model

The ILP model is defined below.

Objective function We start by defining the objective function:

max γ (1)
γ≥ 0 (2)

The objective function maximises a threshold γ, which is constrained to be a positive
integer. The parameter γ will represent the overall amount of time spent by vehicles in
their destinations in terms of number of discrete steps (see Equation 4), i.e. the earliest
a vehicle reaches its destination the higher γ will be.

Flow Constraints We now discuss the flow constraints used to model the routes of
vehicles. As mentioned before, we will split the time window under analysis into dis-
crete steps 1 . . .K such that K is the upper bound to the number of steps needed by each
vehicle to reach its destination. In particular, at each discrete step k ∈ 1 . . .K, for each
itinerary t ∈ T and vehicle u ∈U a binary variable xu,k,t identifies if vehicle u at step
k is in itinerary t. The set of variables xu,1,t1 , . . . ,xu,K,tn set to one will identify the se-
quence of itineraries (i.e. route) t1, . . . , tn that must be traversed be vehicle u to reach its
destination tn starting from its location t1, and the discrete steps k that the vehicle must
spent in these itineraries.

∀k ∈ 1 . . .K,∀u ∈U,∀t ∈ T. xu,k,t ∈ {0,1} (3)

The following equation ensures that each vehicle u reaches its destination in the mini-
mum possible amount of time. In particular, for all vehicles u ∈U , steps k ∈ K, and for
all itineraries t ∈ T incoming into each vehicle destination (t ∈ BS(destination(u)), the
sum of all variables xu,k,t must be greater or equal to γ.

Indeed, the objective function (1) maximises the threshold γ, and as a result the
sum (left hand side term of Equation 4) will be maximised: the earliest each vehicle u

8 D.Basile et al.

reaches its destination, the higher this sum will be (i.e. vehicles u ∈U will spend more
time in itineraries t ∈ BS(destination(u)).

∑
u∈U,k∈K,t∈BS(destination(u))

xu,k,t ≥ γ (4)

Note that constraint 4 also guarantees the problem to be bounded: in particular by
constraint 4 it holds that γ≤ |K| ∗ |U |.

The constraints ensuring that a set of variables xu,1,t , . . . ,xu,K,t correctly identify one
route are now discussed. The following equation constraints a vehicle u to be in only
one itinerary t at each step k.

∀u ∈U,∀k ∈ 1 . . .K. ∑
t∈T

xu,k,t = 1 (5)

The following equations ensure that each vehicle starts its trip from its current location
and arrives at its destination (in the worst case it arrives at step K).

∀u ∈U. ∑
t∈FS(location(u))

xu,1,t = 1 (6)

∀u ∈U. ∑
t∈BS(destination(u))

xu,K,t = 1 (7)

The constraints below are necessary for ensuring that each vehicle only moves into a
connected path or stays idle at each step k. In particular, fixing a vehicle u, for each
node q, and step k such that vehicle u is incoming in q at step k− 1 we require that
the difference between the incoming itineraries in q at step k− 1 and the sum of the
incoming and outgoing itineraries at step k (for the same point q and vehicle u) must be
equal to zero.

∀q ∈ Q,∀u ∈U,∀k ∈ 2 . . .K, ∑
t∈BS(q)

xu,k−1,t > 0.

∑
t∈BS(q)

xu,k−1,t − (∑
t∈FS(q)

xu,k,t + ∑
t∈BS(q)

xu,k,t) = 0 (8)

We further detail Equation 8; recall that by Equation 5 and the conditions on con-
straints 8 (∑t∈BS(q) xu,k−1,t > 0, i.e. vehicle u at step k− 1 is incoming into node q), it
must be that at step k either u is still incoming (i.e. ∑t∈BS(q) xu,k,t = 1 and ∑t∈FS(q) xu,k,t =
0); or vice-versa (i.e. ∑t∈BS(q) xu,k,t = 0 and ∑t∈FS(q) xu,k,t = 1), that is u is outgoing
from q. However, Equation 8 does not prevent scenarios in which a vehicle moves from
one incoming itinerary t in q at step k− 1 to another incoming itinerary t ′ 6= t in q at
step k. The following constraints are used to avoid this scenario:

∀q ∈ Q,∀u ∈U,∀k ∈ 2 . . .K,∀t1, t2 ∈ BS(q), t1 6= t2.xu,k−1,t1 + xu,k,t2 ≤ 1 (9)

Safety The following constraints are those entailing safety of the computed routes. In
particular, the proposed model will compute optimal routes such that no collisions will

RSSRAIL 9

ever occur. Moreover, it is ensured that an obstructed itinerary will never be traversed
by any vehicle. Note that the absence of deadlocks is entailed by constraints 7.

The constraints below are used to avoid possible collisions among vehicles. Firstly,
only one vehicle is allowed in each itinerary t and step k:

∀k ∈ 1 . . .K,∀t ∈ T. ∑
u∈U

xu,k,t ≤ 1 (10)

Moreover, in the presence of more vehicles approaching a point q ∈ Q, they cannot
be served at the same step k. The constraints below guarantee that at most one vehicle
can be served by a point q for each step k.

∀q∈Q,∀k ∈ 2 . . .K. ∑
u∈U

∑
t∈BS(q)

xu,k−1,t−1≤ ∑
u∈U

∑
t∈BS(q)

xu,k−1,txu,k,t ≤ ∑
u∈U

∑
t∈BS(q)

xu,k−1,t

(11)
Note that Equation 11 contains a product of two binary variables. Recall that given two
binary variables v1 and v2, their product z= v1∗v2 can be linearised through constraints:
z≤ v1; z≤ v2; z≥ v1 + v2−1. For brevity, here we prefer to use this compact version
than the linearised one.

In Equation 11, the term ∑u∈U ∑t∈BS(q) xu,k−1,txu,k,t represents the number of vehi-
cles approaching point q that have not moved between consecutive steps k− 1 and k.
Indeed, vehicles that have approached q at step k but were not present at step k−1 are
ruled out (their product is zero), as well as those that were approaching q at step k−1
and left at step k. This product is used for avoiding vehicles approaching u at step k but
not present at step k−1. Since at most one vehicle must be served by q between steps
k−1 and k, ∑u∈U ∑t∈BS(q) xu,k−1,txu,k,t must be equal to either:

– ∑u∈U ∑t∈BS(q) xu,k−1,t , that is no vehicle has moved between steps k−1 and k from
q, or

– ∑u∈U ∑t∈BS(q) xu,k−1,t −1, in this case only one vehicle has been served by point q
between steps k−1 and k.

Finally, the last constraint ensures that no failed itinerary is ever traversed by any
route computed by the ILP model.

∀t ∈ F. ∑
u∈U

∑
k∈1...K

xu,k,t = 0 (12)

Graph Structure The constraints below are used to verify that the graph does not
contain inner cycles. Note that these constraints are not necessary for solving the routing
problem. They are used for preprocessing the user input and can be avoided provided
that the input is verified. The equation below could sum up to 2 only if there exists an
itinerary t ∈ T such that t ∈ FS(q)∩BS(q), i.e. an inner cycle.

∀q ∈ Q,∀u ∈U,∀k ∈ 1 . . .K,∀t ∈ T. ∑
t∈FS(q)

xu,k,t + ∑
t∈BS(q)

xu,k,t ≤ 1 (13)

Cyclic routes are also ruled out in our model. Indeed, a round trip of a vehicle will be
split into two separate routes, the first into one direction and the other in the opposite
one (note that this assumption is crucial for ensuring K = |U | ∗ |T |).

10 D.Basile et al.

Output Recall that the output of the ILP model will be the set of routes U computed by
our procedure. These routes will be communicated to the signalling system. Moreover,
the routes of each vehicle u are described in terms of steps k and locations t, such
that for each vehicle in correspondence with a variable u ∈ U its route will be ∀u ∈
U.Route(u) = {xu,k,t |xu,k,t = 1,k ∈ 1 . . .K, t ∈ T}, that is, we identify for each step the
position of vehicle u.

6 Implementation

In Figure 3 the implementation of the ILP model described in the previous section
is displayed. This implementation is open source and can be downloaded at https://
github.com/davidebasile/routingproblem. The ILP model has been implemented
in A Mathematical Programming Language (AMPL) [8], a widely used language for de-
scribing and solving optimization problems. The model can be loaded and executed in
AMPL through command line. In particular, script routeplanning.run, to be launched
with the command ampl, is described below:

routeplanning.run
option solver cplex; // use the simplex algorithm in C 1

model routeplanning.mod; // select the route planning model 2

data routeplanning.dat; // load the input data 3

solve; //apply the simplex algorithm 4

display {i in U,j in K, s in Q, d in Q: x[i,j,s,d]>0} x[i,j,s,d]; 5

//display the computed routes 6

Firstly the solver cplex is selected, that is the simplex method implemented in C. How-
ever it is possible to select other available solvers. The script loads the automaton from
the file routeplanning.dat, displayed in Figure 3. The input file provides the number
of vehicles u and nodes n, and two binary matrix Q×Q called t and F . In this imple-
mentation edges are represented as pairs of nodes, i.e. source and target nodes of the
corresponding edge. The first matrix is used for identifying the graph structure, in par-
ticular t[n1,n2] = 1 if there is an edge connecting node n1 with node n2, t[n1,n2] = 0
otherwise. Similarly, the second matrix F identifies the unavailable itineraries. Finally,
two arrays location and destination are such that, for example, location[u] = n if the
location of vehicle u is n.

The implementation file routeplanning.mod in Figure 3 follows the model de-
scribed in Section 5, with few differences detailed in the following. The additional
graph constraints ∀i ∈ U, j ∈ K,s ∈ Q,d ∈ Q : x[i, j,s,d] <= t[s,d] (lines 12-13) are
used to ensure that the flow variables x only use edges of the graph. Indeed, if t[s,d] = 0
then the flow x[i, j,s,d] on edge (s,d) is forced to be zero.

Moreover constraints linearise 1 ... 6 (lines 27-33) are used to linearise the
products of Equation 8 and Equation 11. In particular, for Equation 8 it is not possible
to specify the condition ∑t∈BS(q) xu,k−1,t > 0 directly in AMPL, hence the following
constraints (lines 43-47) have been used in the implementation:

∀q ∈ Q,∀u ∈U,∀k ∈ 2 . . .K.

∑
t∈BS(q)

xu,k−1,t − (∑
t ′∈FS(q),t∈BS(q)

xu,k,t ′xu,k−1,t + ∑
t∈BS(q)

xu,k,txu,k−1,t) = 0

RSSRAIL 11

If ∑t∈BS(q) xu,k−1,t = 0 then the above term will sum up to zero. The binary variable
uxu[u,k,s,d] (line 6) identifies product x[u,k,s,d]x[u,k− 1,s,d] (also used in Equa-
tion 11, lines 56-60), while variable uxu2[u,k,s,q,d] (line 6) identifies product
x[u,k,q,d]x[u,k−1,s,q].

7 Experiments

In this section we report on preliminary experiments that have been performed for eval-
uating and validating the proposed model. Similarly to [20] we will use a grid 5x5 as
graph to test the ILP model, displayed in Figure 2, which may represent a sub-portion
of an urban area. We will assume the presence of four vehicles in the grid. The script
routeplanning.run has been enriched with the automatic generation of obstructed
tracks, locations and destinations of vehicles. These data are randomly generated ac-
cording to a uniform distribution. Three experiments have been carried on, where in
each of them a round of the ILP model has been executed. In Section 9 we discuss
future extensions to simulate a whole day, with several obstructions and computations.

The ILP model successfully computed the routes of each experiment. The results
are displayed in Table 1. For each experiment the failed tracks are reported, together
with location, destination and computed routes of each vehicle. When a vehicle reaches
its destination, it is assumed that in the remaining steps the vehicle stays idle. In par-
ticular, concerning Experiment 1, locations and destinations of vehicles are the furthest
possible and have been inserted manually; the routes of the four vehicles are displayed
in Figure 2 with different colours.

In Table 2 for each experiment we report the time, memory consumption and itera-
tions of the simplex algorithm. In particular, the memory consumption is displayed as
the cumulative sum of the memory allocated in the different phases of the execution (i.e.
compile, genmod, collect, presolve, solve). The performances are similar in all experi-
ments, and are mainly due to the size of the input graph (in terms of number of nodes)
and the number of vehicles. It has been used a machine with CPU Intel Core i5-4570
at 3.20 GHZ with 8 GB of RAM, running 64-bit Windows 10 and the CPLEX solver
version 12.7.1.0.

8 Related work

The dynamic vehicle routing problem (i.e. finding optimal routes for vehicles with
minimum travel time) was firstly introduced by Dantzig and Ramser [4] as a general-
ization of the Traveling Salesman Problem introduced by Flood [5], and it has been
surveyed in [16, 15]. Different solutions have been proposed in the literature, for exam-
ple by using neural networks [13], dynamic programming [1], mixed integer non-linear
programming [2] and random search strategy [12].

Standard vehicle routing problems solutions are not suitable when the conditions of
the traffic layout can change dynamically, due for example to traffic congestions, acci-
dents or bad weather conditions. More recently, with the advent of automatic driving
systems, as for example autonomous vehicles, the dynamic routing problem has been

12 D.Basile et al.

routeplanning.mod
param n; #points param k; #discrete steps param u; #vehicles 1

set Q := {1..n}; set K := {1..k}; set U := {1..u}; 2

param t{Q,Q}; #itineraries param location{U}; param destination{U}; 3

param F{Q,Q} binary; #constraint 2 var gamma >= 0 integer; 4

#constraints 3 var x{U,K,Q,Q} binary; 5

var uxu{U,K,Q,Q} binary; var uxu2{U,K,Q,Q,Q} binary; 6

7

#objective function, equation 1 8

maximize time: gamma; 9

10

FLOW CONSTRAINTS 11

#graph constraints: only itineraries can be traversed by vehicles 12

subject to graph{i in U, j in K, s in Q, d in Q}: x[i,j,s,d] <= t[s,d]; 13

14

#minimise waiting time 15

subject to c4: (sum{i in U, s in Q, j in K, d in Q: d == destination[i]} x[i,j,s,d]) >= gamma; 16

17

#only one itinerary per time 18

subject to c5{i in U, j in K}: sum{s in Q, d in Q} x[i,j,s,d] = 1; 19

20

#each vehicle starts from its location 21

subject to c6{i in U}: sum{s in Q, d in Q: s==location[i]} x[i,1,s,d] = 1; 22

23

#all vehicles reach their destination eventually 24

subject to c7{i in U}: sum{s in Q,d in Q: d==destination[i]} x[i,k,s,d] = 1; 25

26

#constraints linearise 1,2,3 used to linearise uxu[i,j,s,d] = x[i,j-1,s,d]*x[i,j,s,d] 27

subject to linearise1{i in U, j in {2..k}, s in Q, d in Q}: 28

uxu[i,j,s,d]<= x[i,j-1,s,d]; 29

subject to linearise2{i in U, j in {2..k}, s in Q, d in Q}: 30

uxu[i,j,s,d]<= x[i,j,s,d]; 31

subject to linearise3{i in U, j in {2..k}, s in Q, d in Q}: 32

uxu[i,j,s,d]>= x[i,j-1,s,d] + x[i,j,s,d] - 1; 33

34

#constraints linearise 4,5,6 used to linearise uxu2[i,j,s,q,d] = x[i,j-1,s,q]*x[i,j,q,d] 35

subject to linearise4{i in U, j in {2..k}, s in Q, q in Q, d in Q}: 36

uxu2[i,j,s,q,d]<= x[i,j-1,s,q]; 37

subject to linearise5{i in U, j in {2..k}, s in Q, q in Q, d in Q}: 38

uxu2[i,j,s,q,d]<= x[i,j,q,d]; 39

subject to linearise6{i in U, j in {2..k}, s in Q,q in Q, d in Q}: 40

uxu2[i,j,s,q,d]>= x[i,j-1,s,q] + x[i,j,q,d] - 1; 41

42

#flow constraints, for each k each vehicle i stays idle or move into an adjacent itinerary 43

subject to c8{i in U, q in Q, j in {2..k}}: 44

(sum{s in Q:s!=q} x[i,j-1,s,q]) - 45

(sum{s in Q, d in Q:d!=q && s!=q} uxu2[i,j,s,q,d] + sum{s in Q:s!=q} uxu[i,j,s,q]) = 0; 46

47

#complement previous constraints: vehicles do not "jump" itineraries 48

subject to c9{i in U, q in Q, j in {2..k}, s1 in Q, s2 in Q: s1!=s2}: 49

x[i,j-1,s1,q]+x[i,j,s2,q] <= 1; 50

51

SAFETY 52

#no collisions on itineraries 53

subject to c10{j in K, s in Q, d in Q}: sum{i in U} x[i,j,s,d] <= 1; 54

55

#no collisions on points 56

subject to c11_1{q in Q, j in {2..k}}: 57

sum{i in U, s in Q} x[i,j-1,s,q] - 1 <= sum{i in U, s in Q} uxu[i,j,s,q]; 58

subject to c11_2{q in Q, j in {2..k}}: 59

sum{i in U, s in Q} uxu[i,j,s,q] <= sum{i in U, s in Q} x[i,j-1,s,q]; 60

61

#routes must not pass through damaged itineraries 62

subject to c12{s in Q, d in Q: F[s,d]==1}: sum{i in U,j in K} x[i,j,s,d]=0; 63

Fig. 3: The implementation in AMPL of the dynamic routing optimization problem.

RSSRAIL 13

Experiment 1
Obstructed tracks (2,7) (6,7) (9,8) (11,6) (13,14) (17,12) (19,18) (22,23) (23,24)
Vehicle 1 location=1, destination=24

route=(1,2)(2,3)(3,8)(8,9)(9,14)(14,15)(15,20)(20,25)
Vehicle 2 location=25, destination=1

route=(25,20)(20,15)(15,10)(10,5)(5,4)(4,3)(3,2)(2,1)
Vehicle 3 location=5, destination= 21

route=(5,10)(10,9)(9,14)(14,13)(13,12)(12,17)(17,16)(16,21)
Vehicle 4 location=21, destination=5

route=(21,16)(16,11)(11,12)(12,7)(7,8)(8,9)(9,4)(4,5)

Experiment 2
Obstructed tracks (1,6) (2,1) (2,7) (6,1) (6,7) (7,2) (9,8) (10,2) (10,15) (23,22)
Vehicle 1 location=14, destination=11, route=(14,13)(13,12)(12,11)
Vehicle 2 location=8, destination=10, route=(8,9)(9,10)
Vehicle 3 location=13, destination=18, route=(13,18)
Vehicle 4 location=21, destination=12, route=(21,16)(16,11)(11,12)

Experiment 3
Obstructed tracks (1,2) (1,6) (2,1) (2,7) (6,1) (7,2) (10,2)
Vehicle 1 location=15, destination=12, route=(15,14)(14,13)(13,12)
Vehicle 2 location=9, destination=11, route=(9,8)(8,7)(7,6)(6,11)
Vehicle 3 location=14, destination=19, route=(14,19)
Vehicle 4 location=22, destination=13, route=(22,17)(17,12)(12,13)

Table 1: For each experiment the computed routes are displayed, together with ob-
structed tracks, location and destination of each vehicle.

revived. Modern technology, for example global positioning system and geographic in-
formation systems, can be used to collect dynamically the traffic situation to allow the
dynamic assignment of routes to vehicle, as proposed by our methodology.

The problem of vehicle routing in urban traffic network is discussed in [20]. A no-
tion of critical node is used to identify the current position of vehicles in the network,
and each vehicle has associated a set of customers that must be visited in minimal time.
The route of each vehicle is computed locally. An approximate initial starting solution
is computed through a genetic algorithm. By dividing the flow variables into discrete
steps we are able to identify the current location of each vehicle in the urban network,
instead of using special nodes that would augment the state space of the problem. More-
over, our approach does not need to generate an initial solution. Indeed, once a vehicle
reaches a destination, its new destination will be updated and the new routes will be
recomputed. This is mainly due to the presence of possible faulty events in the tracks
(e.g. obstructions), a condition not addressed in [20]. The routing solution is generated
globally by considering routes of each vehicle in the network.

The problem of computing the train scheduling and routing in combination is ad-
dressed in [18]. A multi-objective function constituted by the minimum average travel
time of all trains, the minimum energy consumption and the minimum delayed times is

14 D.Basile et al.

Experiment Time (seconds) Cumulative Allocated Memory (byte) MIP Simplex Iterations
1 49.5 13315294784 5532
2 48.9531 13315330472 5438
3 44.9531 13315215272 6127

Table 2: Performances of experiments.

used. The train scheduling problem is solved through a simulation algorithm according
to the train control strategies, and a genetic algorithm is used in case of large scale net-
works for the train routing problem. Compared to our work, in [18] faulty events are not
considered, whilst we only focus on the vehicle routing problem and we abstract away
from details of time schedule. Indeed, our ILP model should be executed to restore the
system to a working state when obstructions in the tracks are detected, until normal
operation conditions are established.

The routing problem for freight trains is studied in [3]. Similarly to our approach, the
minimum time in terms of vehicles reaching their destination is computed globally, by
taking into account all routes of vehicles. Moreover, the layout structure of the rail road
track is abstracted as a graph, and the day partitioned into time steps. A fixed number
of vehicles is allowed to enter a particular track segment throughout the whole day. An
important difference with respect to our approach is that routes are statically assigned
to vehicles and are not adapted dynamically, i.e. faults in tracks are not considered. We
also enforce safety properties for avoiding possible collisions among vehicles.

In [14] an Automatic Train Supervision for preventing the occurrence of deadlocks
in train routes is studied. Similarly to our solution, the track layout is abstracted as a
graph. However, the proposed solution does not account for possible failures in tracks
(i.e. dynamic vehicle routes). Indeed, each route of a train is fixed and it is an input
parameter. Trains decide whether to move at a given discrete steps autonomously and
according to their routes, whilst we dictate when vehicles move (i.e. steps). The algo-
rithm takes in input also the graph layout and a set of areas (i.e. nodes in the graph)
where only a given number of trains are allowed to enter. The absence of possible dead-
locks is verified through model checking given the aforementioned data.

We conjecture that our model can be extended with minor changes to solve the
deadlock problem. Indeed, it suffices to add to our model additional constraints to only
allow a fixed number of vehicles to enter a predetermined area (modelled as set of tran-
sitions), and to fix a specific route to each vehicle as an input parameter. Moreover by
using a bi-level objective function min max it is possible to determine if a configuration
of routes into discrete steps exists such that vehicles are deadlocked.

9 Conclusion and Future Work

We presented a dependable dynamic vehicle routing system, focussing on the ILP
model for computing new routes of vehicles given their actual location, destination
and detected obstructed tracks. Similarly to [20, 14, 3], we abstracted the urban map as
a graph such that edges and nodes are in correspondence, respectively, with itineraries

RSSRAIL 15

and points of the urban area. The algorithm has been modelled as a flow problem, where
each flow corresponds to a vehicle route. The newly computed routes are equipped with
safety guarantees on the absence of deadlocks and possible collisions among vehicles,
both in points and itineraries. The proposed solution has been implemented in A Math-
ematical Programming Language [8](AMPL) and preliminary experiments have been
carried, on showing the effectiveness of the proposed solution; the implementation and
all data are available at https://github.com/davidebasile/routingproblem.

Some possible future extensions of the proposed approach are discussed below.
Whilst preliminary experiments showed the feasibility of our approach, we would like
to apply the proposed solution to a real world urban scenario. Moreover, it would be
valuable to extend the proposed model to include also aspects related to performances of
vehicles (i.e. acceleration, speed, braking) and energy consumption (fuel, other energy
dissipation). Indeed, it is possible to associate to each edge of the graph (i.e. itinerary)
also a pair of cost and time for traversing the itinerary, which are inversely proportional.
Different strategies could be adopted for synthesising the routes of vehicles, for exam-
ple by minimising either the cost or time, or a linear combination of both. Concerning
the experiments, we would like to include the proposed ILP model into a framework
for simulating possible failures of tracks, to evaluate the ILP model in the presence of
different conditions randomly generated and throughout a whole day. It would be then
possible to measure the energy consumption and user satisfiability adopting different
strategies for computing the routes, to select the best one.

Acknowledgements This work has been partially supported by the Tuscany Region
project POR FESR 2014-2020 SISTER and H2020 2017-2019 S2R-OC-IP2-01-2017
ASTRail.

References

1. Assad, A.: Analysis of rail classification policies. INFOR: Information Systems and Opera-
tional Research 21(4), 293–314 (1983), http://dx.doi.org/10.1080/03155986.1983.
11731905

2. Bodin, L.D., Golden, B.L., Schuster, A.D., Romig, W.: A model for the blocking of trains.
Transportation Research Part B: Methodological 14(1), 115 – 120 (1980), http://www.
sciencedirect.com/science/article/pii/0191261580900375

3. Borndörfer, R., Klug, T., Schlechte, T., Fügenschuh, A., Schang, T., Schülldorf, H.: The
freight train routing problem for congested railway networks with mixed traffic. Transporta-
tion Science 50(2), 408–423 (2016)

4. Dantzig, G.B., Ramser, J.H.: The truck dispatching problem. Management Science 6, 80–91
(10 1959)

5. Flood, M.M.: The traveling-salesman problem. Operations Research 4(1), 61–75 (1956)
6. Ford, D.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Princeton, NJ,

USA (2010)
7. Ford, L.R., Fulkerson, D.R.: A simple algorithm for finding maximal network flows and an

application to the hitchcock problem. Canadian Journal Of Mathematics pp. 210–218 (1957)
8. Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A mathematical programming language.

AT&T Bell Laboratories Murray Hill, NJ 07974 (1987)

16 D.Basile et al.

9. Ghiani, G., Guerriero, F., Laporte, G., Musmanno, R.: Real-time vehicle routing: Solution
concepts, algorithms and parallel computing strategies. European Journal of Operational Re-
search 151(1), 1–11 (2003)

10. Hemmecke, R., Koppe, M., Lee, J., Weismantel, R.: Nonlinear integer programming. In:
Junger, M., Liebling, T.M., Naddef, D., Nemhauser, G.L., Pulleyblank, W.R., Reinelt, G.,
Rinaldi, G., Wolsey, L.A. (eds.) 50 Years of Integer Programming 1958-2008, pp. 561–618.
Springer Berlin Heidelberg (2010)

11. Klein, M.: A primal method for minimal cost flows, with applications to the assignment and
transportation problems (1967)

12. Li, F., Gao, Z., Li, K., Yang, L.: Efficient scheduling of railway traffic based on global infor-
mation of train. Transportation Research Part B: Methodological 42(10), 1008 – 1030 (2008),
http://www.sciencedirect.com/science/article/pii/S0191261508000337

13. Martinelli, D.R., Teng, H.: Optimization of railway operations using neural networks. Trans-
portation Research Part C: Emerging Technologies 4(1), 33 – 49 (1996), http://www.
sciencedirect.com/science/article/pii/0968090X9500019F

14. Mazzanti, F., Ferrari, A., Spagnolo, G.O.: Experiments in formal modelling of a deadlock
avoidance algorithm for a CBTC system. In: Leveraging Applications of Formal Meth-
ods, Verification and Validation: Discussion, Dissemination, Applications - 7th International
Symposium, ISoLA 2016, Proceedings, Part II. pp. 297–314 (2016)

15. Pillac, V., Gendreau, M., Guéret, C., Medaglia, A.L.: A review of dynamic vehicle routing
problems. European Journal of Operational Research 225(1), 1–11 (2013)

16. Psaraftis, H.N., Wen, M., Kontovas, C.A.: Dynamic vehicle routing problems: Three decades
and counting. Netw. 67(1), 3–31 (Jan 2016)

17. Schoitsch, E.: Introduction to the special theme - autonomous vehicles. ERCIM News
2017(109) (2017)

18. Sun, Y., Cao, C., Wu, C.: Multi-objective optimization of train routing problem combined
with train scheduling on a high-speed railway network. Transportation Research Part C:
Emerging Technologies 44, 1 – 20 (2014), http://www.sciencedirect.com/science/
article/pii/S0968090X14000655

19. Wallace, S.W. (ed.): Algorithms and Model Formulations in Mathematical Programming.
Springer-Verlag New York, Inc., New York, NY, USA (1989)

20. Yanfeng, L., Ziyou, G., Jun, L.: Vehicle routing problem in dynamic urban traffic network.
In: ICSSSM11. pp. 1–6 (June 2011)

