
Specifying Variability in Service Contracts

Davide Basile
Istituto di Scienza e

Tecnologia dell’Informazione
“A. Faedo”

Consiglio Nazionale delle
Ricerche, Pisa, Italy

d.basile@isti.cnr.it

Felicita Di Giandomenico
Istituto di Scienza e

Tecnologia dell’Informazione
“A. Faedo”

Consiglio Nazionale delle
Ricerche, Pisa, Italy

f.digiandomenico@isti.cnr.it

Stefania Gnesi
Istituto di Scienza e

Tecnologia dell’Informazione
“A. Faedo”

Consiglio Nazionale delle
Ricerche, Pisa, Italy
s.gnesi@isti.cnr.it

Pierpaolo Degano
Dipartimento di Informatica

Università di Pisa, Italy
degano@unipi.it

Gian-Luigi Ferrari
Dipartimento di Informatica

Università di Pisa, Italy
giangi@unipi.it

ABSTRACT
In Service Oriented Computing (SOC) contracts characterise the
behavioural conformance of a composition of services and guaran-
tee that the composition does not lead to spurious results. Variabil-
ity features can enable services to adapt to customer requirements
and to changes in the context in which they execute.

We extend a recently introduced formal model of service con-
tracts to specify variability mechanisms in a composition of ser-
vices. Necessary and permitted service requests can be defined and
triggered to increase adaptability. The compositional rules of the
original formalism are enriched to fulfil all necessary requirements
and the maximal number of permitted ones.

CCS Concepts
•Software and its engineering → Software product lines; For-
mal software verification; •Information systems → Service dis-
covery and interfaces; •Computing methodologies → Compu-
tational control theory; •Applied computing → Electronic com-
merce;

Keywords
Services, Variability, Control Theory

1. INTRODUCTION
Nowadays software applications are formed by a heterogeneity

of interacting entities connected through the Internet that can be
updated to deliver new functionalities and adapt to changes in their
operating environment. Service-oriented computing (SOC) [13] is
a paradigm for building distributed interoperable applications by
assembling fine-grained computational units, called services. Ser-
vices are loosely coupled, reusable and platform-independent, that
are built with little or no knowledge about clients and other services

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Vamos ’17, February 01 - 03, Eindhoven, Netherlands
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4811-9/17/02. . . $15.00

DOI: http://dx.doi.org/10.1145/3023956.3023965

involved in their operating environment. Services can be composed
to create largely distributed applications that can be delivered to ei-
ther end-user applications or other services.

Service contracts [3] have been introduced in SOC to provide a
behavioural description of services in terms of their obligations (or
offers) and requirements (or requests). They are used to formally
characterise a notion of agreement among the parties, that is a com-
position of services satisfying all service requirements through ser-
vice obligations. Flexibility is fundamental to guarantee the adap-
tation of services to updates in the composed application. Adaptive
mechanisms are used for the activation and deactivation of func-
tionalities that are triggered by updates in the contract agreement.
An agreement among contracts should guarantee the fulfilment of
all necessary requirements and negotiate the maximum numbers
of permitted requirements that can be fulfilled without spoiling the
composition of services. Contracts adapt to the overall agreement
by renouncing to those permitted requirements not satisfiable.

Service coordination dictates how services interact to realise the
composite application. In particular, in an orchestration of services
a distinguished component, called the orchestrator, drives their in-
teractions to enforce only the behaviours in agreement. In a chore-
ographed approach, services realise autonomously (i.e. without a
central coordinator) the negotiated agreement.

Contract automata have been introduced in [7] as a formal model
for service contracts; they represent either single services (called
principals) or compositions of several services and are based both
on orchestrated and choreographed coordination [4].

In this paper we introduce an adaptive formal model of contracts,
within the orchestration approach. We extend contract automata
with variability mechanisms for modelling adaptivity in contract
composition, and we call them modal service contract automata
(MSCA). Through MSCA a service exposes its offers and both
necessary and permitted requirements. We describe different op-
erators for composing MSCA resembling a static and a dynamic
orchestration policy, and a notion of modal refinement of contracts
useful for modelling adaptivity of services. A novel property of
modal agreement modelling the fulfilment of all requests is de-
scribed in language-theoretic terms, and a technique for synthe-
sising an orchestration of services enjoying modal agreement is in-
troduced. In particular, necessary requirements are naturally inter-
preted as uncontrollable actions in Control Theory [11], and the
orchestrator is indeed the most permissive controller. The orches-
tration guarantees to negotiate an agreement among the parties such
that all necessary requirements and the maximal number of per-

mitted requirements can be eventually fulfilled. All the theory de-
veloped in this paper has been implemented in a prototypical tool
available at https://github.com/davidebasile/CAT.

Structure of the paper. We start by illustrating our approach
through a motivating example in Section 2. The formalisation of
modal service contracts is described in Section 3, and a technique
for synthesising a well-behaving orchestration of services is intro-
duced in Section 4. In Section 5 we briefly discuss a prototypical
tool developed for mechanising the theory presented in this paper,
and Section 6 and Section 7 discuss related work, conclusion and
future work, respectively.

2. MOTIVATING EXAMPLE
To illustrate our approach and help intuition, we consider a sim-

ple hotel reservation system. The system is composed of different
hotel services and client services, that are displayed in Figure 1.
Each service performs offer and request actions, that are depicted
respectively as overlined and non-overlined labels on arcs; more-
over the requests are divided into permitted (dotted arcs) and nec-
essary. The goal of each service is to reach an accepting (final) state
where its requests are matched by corresponding offers of other ser-
vices. In particular, in order to reach an agreement among services,
we require that all necessary requests that can eventually be fired
and all the permitted requests that have been fired are matched. We
are interested in generating an orchestration of services in agree-
ment, that we recall to be a composition of services that interact
with each other through a distinguished service, the orchestrator,
which at run-time enforces the services agreement by regulating
the evolution of the computation.

In Figure 1a the contract of Client1 is displayed; it starts by
requiring to book a room, this request is modelled as necessary.
When the room is selected, the client can decide to pay either by
cash (cashr) or credit card (card). Assuming that the client is trav-
elling for work, it may require a receipt from the hotel in order to
be refunded from its organization. In particular, in case it will pay
by credit card this request is permitted; indeed it can certify the
payment through its bank service. Otherwise, if the client pays by
cash then the receipt request is necessary, because this is the only
way to prove that the payment has been made. Finally, in case the
selected room is not single, the client may require a locker for se-
curing its personal properties. In this case, the payment can only
be performed by cash (cashl, where l stands for locker), and hence
a receipt must be provided before proceeding to the room payment.

The contract of Client2 is depicted in Figure 1b. This contract is
similar to the one of Client1, except that Client2 will only pay by
credit card and will not require a locker. The contract of Client3 is
almost equal to Client1 and hence is not displayed: the only excep-
tion is in the locker request which is necessary, because Client3 is
transporting high-value items.

In Figure 1c the contract of Hotel Service is depicted. This ser-
vice starts by offering a room (room) with a special offer of free
breakfast (f reebrk) only for the first client. The hotel accepts pay-
ment either by credit card or cash and can offer a locker service
(locker). However, the hotel will not provide receipts in case of
payment by cash. When a transaction is completed (i.e. a final
state is reached), the hotel can start a new interaction with a differ-
ent client: this time the free breakfast offer will not be available.
Note that both requests of payment (card or cash) are permitted,
but at least one of them must be satisfied in order to successfully
terminate (that is the hotel service reaches an accepting state).

We will also consider a second hotel service Hotel Service 2 very
similar to the first one (this service contract is not depicted), with
the only exception that the payments by cash (cashr,cashl, here r

stands for room) are necessary. Indeed, this second hotel service is
experiencing issues with the credit card payment, and requires the
clients to be always available to pay by cash, if necessary.

The composition of Client1 and Hotel Service in agreement (i.e.
their orchestration) is displayed in Figure 1d. In the proposed agree-
ment only the card payment is allowed, because if Client1 proceeds
to pay through cash, its necessary request of receipt will not be ful-
filled by Hotel Service. Similarly, the permitted locker request of
Client1 is not admitted for the same reason. Note that we are only
interested in ensuring that all requests are matched: even if Client1
does not require a breakfast, the presence of a free breakfast un-
matched offer does not spoil the agreement property.

The orchestration of Client1,Hotel Service and Client2 is dis-
played in Figure 1e. In this example Client2 joins the composition
after Client1, accordingly its request will be served after the one of
Client1. A successful state can be reached only if all requests are
matched: this requires one unfolding of the loop of Hotel Service.

If we add Client3 to the composition, then it must always be able
to require a locker and the corresponding receipt. The Hotel Ser-
vice may provide a locker but not the receipt. In this case the or-
chestrator cannot prevent Client3 from requiring a locker, and no
intermediate accepting states are possible. Indeed, no agreement
is possible and the orchestration will be empty. Similarly, if we
swap Hotel Service with Hotel Service2, its necessary request of
cash payment will not be fulfilled because no receipts are provided,
and the resulting orchestration will be empty.

In the next sections we will present a novel formal model of ser-
vice contracts capable of expressing the variability requirements
discussed in this example, and an algorithm for composing services
and synthesising, if possible, their orchestration in agreement.

3. FORMAL MODEL
We start by introducing some useful notation borrowed from [4,

7]. Let Σ=R∪O∪{?} be the alphabet of basic actions, made of re-
quests R= {a,b,c, . . .} and offers O= {a,b,c, . . .} where R∩O=
/0, and ? 6∈ R∪O is a distinguished element representing the idle
move. We define the involution co(•) : Σ 7→ Σ such that co(R) =
O, co(O) = R, co(?) = ?.

Let~v = (a1, ...,an) be a vector of rank n≥ 1, in symbols rv, and
let~v(i) denote the i-th element with 1≤ i≤ rv. We write~v1~v2 . . .~vm
for the concatenation of m vectors ~vi, while |~v| = n is the rank
(length) of~v and~vn is the vector obtained by n concatenations of~v.

The alphabet of a contract automaton consists of vectors, each
element of which intuitively records the activity, i.e. the occurrence
of a basic action of a single principal in the contract. In a vector
~v there is either a single offer or a single request, or a single pair
of request-offer that matches, i.e. there exists exactly i, j such that
~v(i) is an offer and~v(j) is the complementary request or vice-versa;
all the other elements of the vector contain the symbol ?, meaning
that the corresponding principals stay idle. In the following let ?

m

denote a vector of rank m, all elements of which are ?. Formally:

DEFINITION 1 (ACTIONS). Given a vector~a ∈ Σn, if

• ~a = ?
n1 α?

n2 ,n1,n2 ≥ 0, then ~a is a request (action) on α if
α ∈ R, and is an offer (action) on α if α ∈O

• ~a = ?
n1 α?

n2 co(α)?n3 ,n1,n2,n3 ≥ 0, then~a is a match (action)
on α, where α ∈ R∪O.

Two actions ~a and ~b are complementary, in symbols ~a ./~b if
and only if the following conditions hold: (i) ∃α ∈ R ∪O : ~a
is either a request or an offer on α; (ii) ~a is an offer on α =⇒
~b is a request on co(α) and (iii)~a is a request on α =⇒ ~b is an of-
fer on co(α).

qC10 qC11 qC16

qC12

qC13

qC14

qC15

qC17 qC18
room

cashr

card

receipt

receipt

locker cashl receipt

cashr

card

(a) Client1

qC20 qC21 qC22 qC23
room card receipt

(b) Client2
Mr.White

qH 0 qH 1 qH 2

qH 5

qH 6

qH 3qH 4

room f reebrk

cashr
card

receipt

locker

cashl

room

room

(c) Hotel Service

~q0,0 ~q1,1 ~q1,2

~q3,4~q5,5

(room,room) (?, f reebrk)

(card,card)

(receipt,receipt)

(d) K Client1 ⊗ Hotel Service

~q0,0,0 ~q1,1,0 ~q1,2,0 ~q3,4,0

~q5,5,0~q5,2,1~q5,4,2~q5,5,3

(room,room, ?) (?, f reebrk, ?) (card,card, ?)

(receipt,receipt, ?)

(?,room,room)(?,card,card)(?,receipt,receipt)

(e) K (Client1 ⊗ Hotel Service) ⊗ Client2

Figure 1: The hotel reservation service

The actions and the states of contract automata are vectors of ba-
sic actions and of states of principals, respectively. In the following
we will define modal service contract automata (MSCA) and their
operators of composition, by extending those of [7].

DEFINITION 2 (MODAL SERVICE CONTRACT AUTOMATA).
Assume as given a finite set of states Q = {q1,q2, . . .}. Then a
modal service contract automaton A , MSCA for short, of rank n is
a tuple 〈Q, ~q0,Ar,Ao,T �,T2,F〉, where

• Q = Q1× . . .×Qn ⊆Qn;

• ~q0 ∈ Q is the initial state;

• Ar ⊆R,Ao ⊆O are finite sets (of requests and offers, respec-
tively);

• F ⊆ Q is the set of final states;

• T �,⊆Q×A×Q and T2 ⊆Q×A×Q are sets of respectively
may (permitted) and must (necessary) transitions, where A=
(Ar ∪Ao∪{?})n;

• if t = (~q,~a,~q′)∈ T where T = T �∪T2 (abusing the notation
T � ∪ 2), then both the following conditions hold:

– ~a is either a request or an offer or a match;

– if~a is an offer then t 6∈ T2;

– ∀i ∈ 1 . . .n. if~a(i) = ? then it must be~q(i) = ~q′(i).

A principal MSCA (or simply principal) has rank 1 and it is such
that Ar ∩ co(Ao) = /0.

To avoid cumbersome repetitions, from now onwards when not
stated differently we assume a fixed modal service contract automa-
ton A = 〈Q, ~q0,Ar,Ao,T �,T2,F〉 of rank n, possibly indexed by a
finite set I. Note that only requests and matches can be marked as

necessary: we assume that a service contract can always withdraw
its offers, because they are not necessary for reaching an agreement
(see Section 4). The example in Section 2 can explain the intuition
behind this design choice. If free breakfast is a necessary offer in
Hotel Service, then we have the unrealistic scenario where the
hotel contract rejects all clients’ contracts. Indeed, no agreement is
reached because no client is requiring free breakfast to match the
offer, although they all are willing to pay for a room.

Modal service contract automata recognise traces of actions and
modalities, through the language defined below.

DEFINITION 3. Let A be an MSCA. A step (w,~q) ~a◦−→(w′,~q′)
with ◦ ∈ {�,2} occurs if and only if w =~a◦w′,w′ ∈ (A∪{�,2})∗

and (~q,~a,~q′)∈ T ◦. Let→∗ be the reflexive, transitive closure of the
transition relation →. The language of A is denoted as L (A) =
{w | (w, ~q0)

w−→∗(ε,~q),~q ∈ F}. A step is denoted as ~q ~a◦−→ when w,w′

and ~q′ are immaterial and (w,~q)→ (w′,~q′) when~a◦ is immaterial.

We now introduce our first (non-associative) operation of com-
position; recall that we implicitly assume the set of labels of an
MSCA of rank m to be A⊆ (Ar ∪Ao∪{?})m.

DEFINITION 4 (PRODUCT COMPOSITION). Let Ai be MSCA
of rank ri. The product composition

⊗
i∈1...n Ai is the MSCA A of

rank m = ∑i∈1...n ri, where:

• Q = Q1× ...×Qn, where ~q0 = ~q01 . . . ~q0n

• Ar =
⋃

i∈1···n Ar
i , Ao =

⋃
i∈1···n Ao

i

• F = {~q1 . . .~qn |~q1 . . .~qn ∈ Q,~qi ∈ Fi, i ∈ 1 . . .n}

• let ◦∈ {�,2}, T ◦ is the least subset of Q×A×Q s.t. (~q,~c,~q′)∈
T ◦ iff, when~q =~q1 . . .~qn ∈ Q,

– either there are 1 ≤ i < j ≤ n s.t. (~qi,~ai,~q′i) ∈ T ◦i ,
(~q j,~a j,~q′j) ∈ T ◦ ∪ �j ,~ai ./~a j and

~c = ?
u~ai?

v~a j?
z with u = r1 + . . .+ ri−1,

v = ri+1 + . . .+ r j−1, |~c|= m
and
~q′ =~q1 . . .~qi−1 ~q′i ~qi+1 . . . ~q j−1 ~q′j ~q j+1 . . .~qn

– or there is 1≤ i≤ n s.t. (~qi,~ai,~q′i) ∈ T ◦i and
~c = ?

u~ai?
v with u = r1 + . . .+ ri−1,

v = ri+1 + . . .+ rn, |~c|= m,
~q′ =~q1 . . .~qi−1 ~q′i ~qi+1 . . .~qn
and ∀ j 6= i,1≤ j ≤ n,(~q j,~a j,~q′j) ∈ T ◦ ∪ �j
it does not hold that~ai ./~a j

Note that the first case of the definition of transitions is for the
matching of actions of two principals automata, while the other
considers the action of a single component.

We use ◦ as a placeholder for both necessary (2) and permitted
(�) actions. In the product composition, permitted transitions (◦ =
�) are only generated from permitted transitions of their operands,
while necessary transitions (◦= 2) are generated from both neces-
sary and permitted transitions; i.e. when a necessary request matches
a permitted offer the resulting match transition will be marked as
necessary. Intuitively, the product composition interleaves the ac-
tions of all principals, with the only restriction that if two principals
are ready to fire two complementary actions then only the match of
them will be allowed and not their interleaving.

Example 1. In Figure1a, Figure 1b and Figure 1c three princi-
pals introduced in Section 2 are displayed. Two sub-portions of two
different compositions are depicted in Figure 1d and Figure 1e. In
Figure 1e the outgoing transition ~q0,0,0

(room,room, ?)2−−−−−−−−−→ is an exam-
ple of a necessary match between the necessary request of the first
principal and the permitted offer of the second principal. Moreover,
considering the product composition (Client1 ⊗ Hotel Service) ⊗
Client2, the transitions~q0,0,0

(room, ?, ?)2−−−−−−−→ or~q0,0,0
(?,room, ?)�−−−−−−−→ are not

allowed.

The next operator retrieves the principals involved in an MSCA
obtained through the product introduced above, and identifies their
original may and must transitions.

DEFINITION 5 (PROJECTION). Let A be an MSCA, then the
projection on the i-th principal is
∏

i(A) = 〈∏i(Q), ~q0(i),∏
i(Ar),∏i(Ao),∏i(T �),∏i(T2),∏i(F)〉

where i ∈ 1 . . .n and:

∏
i(Q) = {~q(i) |~q ∈ Q} ∏

i(F) = {~q(i) |~q ∈ F}
∏

i(T �) = {(~q(i),~a(i),~q′(i)) | ((~q,~a,~q′) ∈ T �∧~a(i) 6∈ ?)

. ∨ ((~q,~a,~q′) ∈ T2∧~a(i) ∈O)}
∏

i(T2) = {(~q(i),~a(i),~q′(i)) | ((~q,~a,~q′) ∈ T2∧~a(i) ∈ R)}
∏

i(Ar) = {a | a ∈ R,(q,a,q′) ∈∏
i(T)}

∏
i(Ao) = {a | a ∈O,(q,a,q′) ∈∏

i(T)}

We now relate the two operators of product composition and pro-
jection by proving that principals are preserved by them.

PROPERTY 1. Let Ai, i ∈ I be principal MSCAs, then

j

∏(
⊗
i∈I

Ai) = A j, j ∈ I

Example 2. Consider the MSCAs K (Client1 ⊗ Hotel Service) ⊗ Client2
in Figure 1e, Client1 in Figure 1a and Client2 in Figure 1b. We

have that ∏
3(K (Client1 ⊗ Hotel Service) ⊗ Client2) = Client2. Moreover,

∏
1(K (Client1 ⊗ Hotel Service) ⊗ Client2) 6= Client1, while in general

∏
1((Client1 ⊗ Hotel Service) ⊗ Client2) = Client1 holds.

Our second (associative) composition operation first extracts from
its operands the principals they are composed of through projection,
and then reassembles them through product composition.

DEFINITION 6 (A-PRODUCT COMPOSITION). Let A1,A2 be
two MSCA of rank n and m, respectively, and let I = {∏i(A1) | 0 <
i≤ n}∪{∏ j(A2) | 0 < j ≤m}. Then the a-product composition of
A1 and A2 is A1 �A2 =

⊗
Ai∈I Ai.

The (non-associative ⊗ and associative �) operators of compo-
sition model two different coordination policies among services.
Through⊗ a static composition is obtained: matched offers are not
rearranged when new contracts join the composition. On the con-
verse, a dynamic composition is obtained through �: new services
joining composite services can intercept already matched actions,
as explained in the example below. Moreover, the dynamic compo-
sition is related to the static composition through projection.

Example 3. Let (Client1 ⊗ Hotel Service) � Client2 be a possi-
ble composition of the principals in Figure 1. In this composition
the transition ~q0,0,0

(?,room,room)2−−−−−−−−−→ is allowed, while it is not in the
composition (Client1 ⊗ Hotel Service) ⊗ Client2.

From now onwards we assume that every MSCA A of rank rA > 1
is composed by MSCAs using the operators of composition de-
scribed in this section. We introduce the refinement relation be-
tween MSCAs. Intuitively, an MSCA Ap refines an MSCA A when
all the necessary transitions of A are maintained in Ap and only a
subset of the permitted transitions of A are available in Ap.

Firstly, we need the auxiliary notion of dangling state: an un-
reachable state or a state from which no final state can be reached.

DEFINITION 7 (DANGLING STATE). Let A be an MSCA, then
~q ∈ Q is dangling, and belongs to the set Dangling(A), if
@w.(w, ~q0)→∗ (ε,~q)∨∀~q f ∈ F,@w.(w,~q)→∗ (ε, ~q f).

DEFINITION 8 (REFINEMENT OF MSCA). An MSCA Ap is
a refinement of an MSCA A written Ap � A , if and only if there
exists a refinement relation R ⊆ Q×Qp such that Ar

p ⊆ Ar,Ao
p ⊆

Ao, (~q0, ~q0 p) ∈ R and for all (~q,~qp) ∈ R the following holds:

• (~q,~a,~q′) ∈ T2 iff ∃~q′p ∈ Qp.(~qp,~a,~q′p) ∈ T2
p ∧ (~q′,~q′p) ∈ R ;

• if (~qp,~a,~q′p)∈ T � then ∃~q′ ∈Q.(~q,~a,~q′)∈ T �p ∧(~q′,~q′p)∈R ;

• ~q 6∈ Dangling(A)∧~qp 6∈ Dangling(Ap).

Example 4. Consider the MSCAs K (Client1 ⊗ Hotel Service) ⊗ Client2
and Client1 in Figure 1e and Figure 1a respectively, let Client1p be
the MSCA ∏

1(K (Client1 ⊗ Hotel Service) ⊗ Client2). The MSCA Client1p
has the set of states {qC10 ,qC11 ,qC13 ,qC15}, the set of final states
{qC15} and the language L (Client1p) = {room2 card � receipt�}.
Finally, the relation Client1p � Client1 holds.

In the next section a notion of well-formed composition of ser-
vices and a technique for synthesising it are described.

4. SYNTHESIS OF ORCHESTRATION
In this section we introduce the notion of modal agreement (called

agreement for brevity) and a technique for synthesising an orches-
tration of services in agreement. We start by introducing the notion
of modal agreement as a property of the language recognised by an
MSCA; intuitively a trace is in agreement if it is a concatenation of
matches, offer actions and their modalities.

DEFINITION 9 (MODAL AGREEMENT). A trace accepted by
an MSCA is in agreement if it belongs to the set

A= {w ∈ (Σn◦)∗ | ∀i.w(i) =~a◦,~a is a match or an offer,n > 1}

An MSCA is safe when all the traces of its language are in agree-
ment, and admits agreement when at least one of its traces is in
agreement. Formally:

DEFINITION 10 (MODAL SAFETY). An MSCA A is (modal)
safe if L (A)⊆ A, otherwise it is unsafe.
Additionally, if L (A)∩A 6= /0 then A admits (modal) agreement.

Example 5. Consider the MSCA K Client1 ⊗ Hotel Service in Fig-
ure 1d. Its language is L (K Client1 ⊗ Hotel Service)= {(room,room)2
(?, f reebrk)�(card,card)�(receipt,receipt)�}. This MSCA is safe,
because L (K Client1 ⊗ Hotel Service)⊆ A.

We now introduce an algorithm for synthesising an orchestra-
tion of MSCAs, that is the maximal sub-portion of an MSCA A
that is safe. In particular, the orchestrator will be the most per-
missive controller (mpc) in the style of the supervisory control for
discrete event systems [11]. A discrete event system is a finite state
automaton, where marked(i.e. final) states represent the successful
termination of a task, while forbidden states should never be tra-
versed in “good” computations. Generally, the purpose of supervi-
sory control theory is to synthesise a controller that enforces good
computations. To do so, this theory distinguishes between control-
lable events (those the controller can disable) and uncontrollable
events (those always enabled), besides partitioning events into ob-
servable and unobservable (obviously uncontrollable). If all events
are observable then a most permissive controller exists that never
blocks a good computation [11]. The purpose of contracts is to de-
clare all the activities of a principal in terms of requests and offers.
Therefore all the actions of a (composed) contract are observable.

Clearly, the behaviours that we want to enforce upon a given
MSCA are exactly those traces in agreement, and so we assume that
permitted requests and necessary requests that cannot be matched
(called unmatchable) lead to a forbidden state.

The introduction of variability in MSCAs plays a crucial role
in the synthesis of orchestration (see Theorem 1 below). Indeed,
while in [7] all actions are controllable, the presence of necessary
requests calls for a tailored notion of uncontrollable actions in the
mpc and a new synthesis algorithm, as exemplified below.

Example 6. Assume that all actions (necessary and permitted)
are controllable. The orchestration of Client3⊗Hotel Service
would then admit agreement. In fact, it would be the same of the
orchestration Client1⊗ Hotel Service. Clearly, the necessary
locker requirement of Client3 is ignored by the orchestrator.

In order to avoid the situation described in Example 6 and fulfil
the modalities imposed by an MSCA, we force a composition to be
in agreement only if there exists a match for each necessary request.
Therefore, we assume that the unmatchable necessary requests are
uncontrollable, i.e. they cannot be disabled by the controller. Now
the scenario in Example 6 does not hold any more, because the
necessary locker request cannot be ignored by the orchestrator.

We only allow matchable necessary requests (see Definition 11)
and permitted transitions to be controllable: they can be disabled by
the controller without spoiling the overall agreement. Intuitively, if
a necessary request r is matchable there exists a transition in the
composition where r is matched (Definition 8 is updated by con-
sidering as optional the necessary matchable requests). For defin-
ing and computing the most permissive controller, we firstly need

to formally introduce the notions of matched, unmatched (must re-
quest) transitions, and uncontrollable disagreement. A request tran-
sition t is matched in an MSCA A if there exists a necessary match
transition t ′ in A where in both t and t ′ the same request is per-
formed by the same principal that is in the same internal state, and
the source state of t ′ is not dangling. If this is not the case, then t
is unmatched. Intuitively, the request is matched somewhere in the
MSCA. Formally:

DEFINITION 11 (MATCHED TRANSITION). Let A be an
MSCA and t = (~q1,~a1,~q′1) be a (must) request transition, then t
is matched in A iff ∃(~q2,~a2,~q′2) match ∈ T2s.t.~q2 6∈Dangling(A),
~q1(i) = ~q2(i), ~a1(i) = ~a2(i) ∈ R; otherwise t is unmatched in A .

Example 7. Consider again the example in Section 2, and the
product composition A = Client3 ⊗ Hotel Service. For display-
ing purposes, we do not depict the whole product composition. A
necessary match transition that is reachable in A through the trace
(room,room)2 (?, f reebrk)� is t = ((qC31 ,qH2), (locker, locker),
(qC36 ,qH6)). Moreover, through the trace (room,room)2 the nec-
essary request transition t ′ = ((qC31 ,qH1),(locker, ?),(qC36 ,qH1))
is also reachable in A . For the above reasons, the transition t ′ is
matchable in A , while t ′ is unmatchable in the modal service con-
tract automaton K Client3⊗Hotel Service that is actually empty.

A state is in uncontrollable disagreement if the controller cannot
avoid an unmatched request to be eventually fired.

DEFINITION 12 (UNCONTROLLABLE DISAGREEMENT). Let
A be an MSCA, a transition ~q ~a−→ is forced in A if ~a is either (i) a
necessary match or unmatched request or (ii) the only outgoing ac-
tion and ~q 6∈ F. A state ~q of A is in uncontrollable disagreement
if ~q 6∈ Dangling(A) and there exists a trace w such that ~q w−→∗~q1 by
only firing forced transitions, and w 6∈ A or~q1 ∈ Dangling(A).

Note that also final states can be in uncontrollable disagreement.
The most permissive modal controller allows (1) all traces in agree-
ment where (2) no states in uncontrollable disagreement are tra-
versed, and blocks those traces not satisfying (1) or (2). Note that a
controller of an MSCA A (obtained through the operators of Sec-
tion 3) is also an MSCA, and that the most permissive controller is
unique up to language equivalence.

DEFINITION 13 (MODAL CONTROLLER). Let A and K be
MSCAs, we call K modal controller of A if and only if it holds
that L (K)⊆ A∩L (A), Dangling(K) = /0, and there is no trace
w ∈ L (K) such that (w, ~q0K) w−→∗(ε,~qK), (w, ~q0)

w−→∗(ε,~q) and ~q
is in uncontrollable disagreement. A controller K of A is the most
permissive (modal) controller (mpc) if and only if for all K ′ con-
troller of A , L (K ′)⊆L (K) holds.

We are now ready to describe the algorithm for computing the
most permissive controller of an MSCA A . The mpc is computed
through an iterative procedure that at each step i updates incremen-
tally a set of states Ri and revises an MSCA K i. The algorithm
terminates when no more updates are possible.

Intuitively, the property of agreement requires that all requests
are matched. Hence, we want to remove all possible unmatched re-
quests. This is straightforward for permitted requests, because they
are controllable, while for the necessary requests we can only re-
move those requests that are matched somewhere in the MSCA, and
try to make the unmatched necessary requests unreachable. For this
purpose, the sets Ri contain the “bad” states, that are those that can-
not prevent an unmatched necessary request to be eventually fired

(i.e. states in uncontrollable disagreement). Note that by pruning
transitions, a matched request may become unmatched if all the
available matches become unreachable.

The algorithm starts with an MSCA K 0 obtained from A by
pruning all permitted request transitions and all necessary request
transitions that are matched in A . The starting set R0 contains all
dangling states of K 0 and all source states of must transitions of A
that are unmatched in K 0. At each step i the algorithm prunes in a
backwards fashion may transitions with target state in Ri and must
transitions with source state in Ri. The set Ri is updated by adding
(1) source states of must transitions t of K i not previously added
with dangling target state, and (2) source states of must transitions t
of A that are unmatched in K i. At termination of this procedure, if
the initial state of A is in Ri then the most permissive controller is
empty: A does not admit agreement. Otherwise, the revised MSCA
K i is the most permissive controller of A .

Since the set Ri is finite and can only increase at each step, the
termination of the algorithm is ensured. By an abuse of notation, in
the following we denote with MSCA the set of all possible modal
service contract automata. The algorithm for computing the most
permissive controller is formally defined below.

THEOREM 1 (MPC SYNTHESIS). Let A be an MSCA,
f : MSCA×2Q→MSCA×2Q be a monotone function on the cpo
P = (2Q,⊆). Moreover, let K 0 = 〈Q, ~q0,Ar,Ao,T � \{t ∈ T � | t is
a request transition },T2 \{t ∈ T2 | t is matched in A},F〉,
R0 = Dangling(K 0)∪{~q | (~q,~a,~q′) ∈ T2

A is unmatched in K 0},
f (K i−1,R i−1) = (K i,R i) where:

• K i = 〈Q, ~q0,Ar,Ao,

T �K i−1
\{(~q,~a,~q′) ∈ T �K i−1

| ~q′ ∈ R i−1},
T2

K i−1
\{(~q,~a,~q′) ∈ T2

K i−1
|~q ∈ R i−1)},F〉

• R i =R i−1 ∪{~q | (~q,~a,~q′)∈T2
K i

.~q 6∈Ri−1,~q′ ∈Dangling(K i)}
∪{~q | (~q,~a,~q′) ∈ T2

A is unmatched in K i}∪Dangling(K i);

and (K n,Rn) = sup({ f n(K 0,R0) | n ∈ N}) is the least fixed point
of f . Then, the mpc of A is computed as:

if~q0 ∈ Rn then K A = 〈〉, else

K A = 〈Q\Dangling(K n), ~q0,Ar,Ao,

T �K n
,T2

K n
,F \Dangling(K n)〉

PROOF. We will prove that the algorithm always terminates,
that K A is a controller of A and in particular it is the most per-
missive controller of A .

We ensure that the algorithm always terminates, by proving the
existence of the least fixed point of f . The function f is monotonic
because it is the defined on the cpo P and at each iteration the set Ri
can only increase, hence by Knaster-Tarski theorem the least fixed
point of f exists.

We now prove that K A is a controller of A , that is (1) L (K A)⊆
L (A)∩A and (2) (w, ~q0K) w−→(ε,~qK), (w, ~q0)

w−→(ε,~q) with~q in un-
controllable disagreement does not hold.

We start by proving (1). Since K A is derived from A by pruning
transitions, trivially L (K A)⊆L (A).

For proving L (K A) ⊆ A we have to show that no trace w′

recognised by L (K A) contains a request ~a. We observe that the
algorithm only prunes and never adds transitions, and since in K 0
all permitted requests are pruned,~a cannot be a permitted request.

By contradiction assume that ~a is a necessary request and w′ is
recognised by K A . We note that ~a cannot be matched otherwise

it would have been pruned in K 0, consequently ~a is an unmatched
necessary request and by definition we have ~q ∈ Rn where ~q ~a2−−→.
Let Qw′ = {~q0,~q1, . . . ,~qm} be the sequence of states visited by K A
for recognising w′, we have ~q ∈ Qw′ . Moreover, by definition of Ri
it must be that Qw′ ⊆ Rn, and in particular ~q0 ∈ Rn and we reach
the contradiction K A = 〈〉.

We now prove (2). The argument is similar to the previous point.
Assume (w, ~q0K) w−→(ε,~qK) and (w, ~q0)

w−→(ε,~q) with ~q in uncon-
trollable disagreement holds. Since KA is derived from A , we have
~q0K = ~q0 and ~qK = ~q. Let Qw = {~q0,~q1, . . . ,~q} be the sequence
of states visited by K A for recognising w. Since ~q is in uncontrol-
lable disagreement and is reachable in K A , by definition of Ri it
must be that Qw ⊆ Rn, and in particular ~q0 ∈ Rn and we reach the
contradiction K A = 〈〉.

It remains to prove that K A is the most permissive controller. By
contradiction assume K ′ to be a controller of A such that it holds
L (K A)⊂L (K ′). Hence there must be a trace w2 ∈L (K ′),w2 6∈
L (K A), and let Qw2 = {~q0,~q1, . . . ,~qm} be the sequence of states
visited by K ′ for recognising w2. We have that the set Qp =
Qw2 \QK A is non-empty. Moreover, Qp ⊆ Rn, otherwise we would
obtain w2 ∈L (K A). Let ~qp ∈ Qp be one of the states traversed
by K ′ for recognising w2, by definition of Ri and Definition 12 ~qp
is a state of A in uncontrollable disagreement, hence K ′ is not a
controller of A , contradiction.

Example 8. Consider the MSCAs of the example in Section 2.
The mpc of Client1⊗ Hotel Service is K Client1⊗Hotel Service; and the
mpc of (Client1 ⊗ Hotel Service) ⊗ Client2 is the automaton
K (Client1⊗Hotel Service)⊗Client2, both computed through Theorem 1.

Let A = Client3⊗Hotel Service, to illustrate the algorithm in
Theorem 1 we describe the iterations for computing the correspond-
ing mpc, that we recall to be empty (see Section 2).

Initially, in K 0 all possible may requests of A are removed (re-
call that in A we have interleavings of actions of Client3 and Hotel
Service), as well as all the matched must requests. In particular,
the must requests qC32

receipt2−−−−−→ and qC37
receipt2−−−−−→ are matched in

A when Hotel Service is in state qH4, and the source states of these
match transitions are not dangling in A . For example
(w,(qC30 ,qH0))→∗ (ε,(qC34 ,qH5)) with w = (room,room)2
(cashr, ?)� (?, f reebrk)� (?,card)� (receipt,receipt)2.

The set R0 contains all dangling states of K 0. The sources of
unmatched transitions of A in K 0 are all the possible combinations
of states where the first principal (Client3) is in states qC32 or qC37 .
Indeed, these states have become dangling in K 0.

In the first iteration, all may transitions of K 0 leading to states
in R0 are removed in K 1. In particular, the (dangling) matches in
K 0 that are removed are ((qC38 ,qH2),(cashr,cashr),(qC32 ,qH3)),
((qC36 ,qH6),(cashl,cashl),(qC37 ,qH2)) and the transition
((qC31 ,qH2),(cashr,cashr),(qC32 ,qH3)).

The must transitions with source state in R0 are also removed,
in particular they are: ((qC37 ,qH4),(receipt,receipt),(qC38 ,qH5))
and ((qC32 ,qH4),(receipt,receipt),(qC34 ,qH5)).

The set R1 is updated with the state (qC31 ,qH2) and no new un-
matched transitions are generated.

In the second iteration, there are one may transition and one must
transition in K 1 with respectively target and source state in R1
and in particular (qC31 ,qH2) (the state added at the previous iter-
ation). Consequently, the transitions to be removed from K 1 are
the must transition ((qC31 ,qH2),(locker, locker),(qC36 ,qH6)) and
the may transition ((qC31 ,qH1),(?, f reebrk),(qC31 ,qH2)). This re-
moval causes the state (qC30 ,qH0) to be added to R2. Moreover,
a newly generated unmatched transition of the MSCA A in K 2 is
((qC31 ,qH1),(locker, ?),(qC36 ,qH1)), because the only match of the

locker request remained in K 1 has been removed.
The third (last) iteration removes the outgoing must transition

((qC30 ,qH0),(room,room),(qC31 ,qH1)), because the source state
has been added to R2 in the previous iteration.

No more updates are possible for K 3 and the algorithm returns
an empty mpc because the initial state of K 3, i.e. (qC30 ,qH0), is in
R3 (it has been added during the second iteration).

Note that if the synthesis succeeds (i.e. the mpc is not empty)
then all the (combinations of) variation points that guarantee agree-
ment are exactly the (combinations of) permitted requests of prin-
cipals in the mpc. Conversely, the permitted actions disabled by
the mpc are the variation points to be removed for guaranteeing
agreement. The following theorem is based on the notion of modal
refinement in Definition 8 and it states that the most permissive
controller of an MSCA A produces the largest refinement of the
principals in A such that an agreement among the parties is pos-
sible. Intuitively, if a permitted action does not spoil the overall
agreement then it will be available in the composition of services.

THEOREM 2 (LARGEST REFINEMENT). Let A = ⊗i∈IAi be
a product composition of principal MSCAs Ai, let K A be its non-
empty mpc computed through Theorem 1 and let Πi(K A) = Api be
its projections on i-th principals. The following holds:

∀i ∈ I . Api � Ai (1)

∀K ′ controller of A ,∀i.Πi(K ′) = Ap′i � Api (2)
PROOF. We start by proving (1). By Theorem 1 we know that

Qmpc ⊆ Q, Qmpc ∩Dangling(A) = /0 and T �mpc ⊆ T �. Given a
generic principal Ai, it remains to prove that all reachable neces-
sary transitions of Ai are available in Api . By contradiction, let q
be a reachable state of both Ai and Api , and t = (q,a,q′) be such
that t ∈ T2

Ai
, t 6∈ T2

Api
. Let Q′ = {~q |~q ∈ QA ,~q(i) = q}∩Qmpc. We

have two cases: if there exists ~q ∈ Q′ in uncontrollable disagree-
ment then K A is not a controller of A , contradiction. Otherwise,
there exists (~q,~a,~q′)∈ T2

A with~a(i) = a and~q′ not in uncontrollable
disagreement, and since K A is the most permissive controller by
Theorem 1 it must be t ∈ T2

Api
, contradiction.

For proving item (2) by contradiction assume that for some i we
have Api ≺ Ap′i = Πi(K ′). It follows that there exists a trace w ∈
L (K ′)⊆A∩L (A),w 6∈L (K A), and no states in uncontrollable
disagreement are traversed by K ′ for recognising w. Since K A is
the most permissive controller of A , we have L (K ′) ⊆L (K A),
contradiction.

The theory presented in this paper has been implemented in a
prototypical tool called MSCA tool, that is open-source and avail-
able online. The MSCA tool is described in the next section.

5. IMPLEMENTATION
In this section we briefly introduce the prototypical tool that

has been implemented for mechanising the algorithms proposed
in this paper and proving the effectiveness of our proposal. With
the MSCA tool (MSCAT) it is possible to create, load and store
MSCAs, and to compose several MSCAs with the two composi-
tion operators described in Section 3. The algorithm in Theorem 1
has been implemented in MSCAT and it is possible to compute the
most permissive controller of a composition of MSCAs.

The MSCAT is based on the API of the Contract Automata Tool
(CAT) [8], a tool available online for managing contract automata.
In particular, the API of MSCAT extends those of CAT. It is im-
plemented in Java and it is available online at https://github.com/
davidebasile/CAT.

This tool is still under development and its functionalities can
be invoked through command line. All the examples in this pa-
per have been computed through MSCAT, and are available on-
line. In particular, the MSCAs of the example in Section 2 can be
found at https://github.com/davidebasile/CAT/tree/master/JaMata/
MSCAexamples/hotel_reservation. For example, the controller
K Client1⊗Hotel Service in Figure 1d that is stored in the file
K_C1xSH.data is:

Rank: 2 , Number of states: [9, 7], Initial state:
[0, 0], Final states: [[4, 5][3, 5]], Transitions:
!([0, 0],[-1, 1],[1, 1]) ([1, 2],[3, -3],[3, 4])
([3, 4],[-5, 5],[5, 5]) ([1, 1],[0, 4],[1, 2])

This automaton has been computed automatically through the
method public MSCA mpc() of the class MSCA.java in less than
a second. The file contains the rank of the automaton, the total
number of states of each principal, the initial state and the final
states of each principal (the final states of the whole automaton are
the combination of final states of the principals). The MSCA has
four transitions, three of them are permitted and one is necessary.
In particular the necessary transition is prefixed by !. The states
and actions are encoded into integers, for example the encoding
of the offer action room is the number 1, while the corresponding
request is −1. The actions f reebrk,card,receipt are respectively
encoded into 4,3,5, and the idle move is encoded into zero. A more
user-friendly GUI is under development. More information about
MSCAT can be found in the documentation available online.

6. RELATED WORK
The MSCA formalism is an extension of a recent formal model

of service contracts called contract automata (CA) [7]. By com-
paring MSCA and CA, the main difference is the possibility of ex-
pressing necessary and permitted requirements, a feature not avail-
able in CA. Indeed, in an orchestration of CAs all actions are con-
trollable, that is necessary requirements cannot be expressed. Con-
tract automata have been used for studying other important issues
arising in a composition of service contracts. The problem of cir-
cular dependencies among contracts has been investigated through
the property of weak agreement of CAs. This property intuitively
admits traces where requests can be recorded as debits provided
that in the future the corresponding offers will be honoured, and
the verification techniques are based on optimisation of network
flow problems [7]. The above properties have been studied for
both competitive and collaborative contracts, stating that generally
safety is preserved in collaborative contracts and not in competitive
ones. This model has also been related to two intuitionistic logics
introduced for modelling circular dependencies among contracts
in [7]. Orchestrations of CAs have been related to an automata-
based model of choreographies in [4], by identifying the condi-
tions for dismissing the central orchestrator for both synchronous
and asynchronous choreographies. For thorough comparisons with
other formalisms for service contracts, we refer the reader to [7].

The problem of modelling and analysing variability in product
families has been investigated in [9]. In product families, applica-
tions are derived from generic behavioural descriptions by spec-
ifying which features will be available and which not. Product
families are formally represented as labelled transition systems en-
dowed with may and must transitions, representing both permitted
and necessary features that all derived software share. Additional
variability constraints not directly definable are specified through
an action-based branching time temporal logic enriched with vari-
ability constructs called v-ACTL. The logic is based on a deontic
characterisation of feature models [1], specifically characterising

those permitted and necessary features of a product family; and
techniques for verifying these constraints on product families are
introduced. Compared to our approach, may and must transitions
of MSCA model necessary and permitted requirements of service
contracts, and are not used for modelling features of SOC software
families. Moreover, in [9] the focus is on guaranteeing that vari-
ability constraints satisfied in a product family are also satisfied for
all derived products, through model checking. We do not focus
on checking that the property of agreement is satisfied (that is, the
MSCA A is modal safe), which can be trivially obtained by veri-
fying that the most permissive controller of A is A itself [7]. We
study the problem of composing several service contracts with vari-
ability requirements and synthesising their orchestration, that is the
largest sub-portion of the composed automaton that is modal safe.

Supervisory Control Theory has been applied to Software Prod-
uct Line Engineering in [10]. The CIF3 toolset is used to syn-
thesise all the valid products of a family composed of behavioural
components and behavioural requirements rendered as finite state
automata. Additional constraints are generated from an attribute
feature model and other behavioural requirements (e.g. guards on
events, state invariants). Unlike here, the authors consider all ac-
tions to be controllable, and necessary features are behavioural re-
quirements rendered as additional constraints. A further difference
is that synthesis of services orchestration is not studied.

Modal I/O Automata (MIOA) are introduced in [12] as an exten-
sion of interface automata for modelling product lines in component-
based software engineering. An MIOA is a finite state automaton
with may and must transitions labelled by input, output and internal
actions. The authors prove that alternating simulation of interface
automata coincides with modal refinement of modal transition sys-
tems. Compared to MSCA, MIOAs are introduced for modelling a
different scenario, therefore the underlying assumptions of the two
formalisms are different. For example, in MSCA we do not need
to require syntactic consistency (i.e. T2 ⊆ T �), as it is the case for
MIOA, and the same request can be both permitted and necessary
in different states (e.g. the request receipt of Client1 in Section 2)
or can only be necessary (the request locker of Client3). The com-
position operators of MIOA are restricted to composable MIOAs,
and do not admit contracts that compete in offering or requiring
the same action. We do not have this restriction in MSCAs, and
for example in K (Client1⊗Hotel Service)⊗Client2 in Figure 1e both
Client1 and Client2 perform the same offer card. Moreover,
MIOAs are input-enabled (in every state all possible requests must
be performed), feature non-linear behaviours (i.e. broadcasting of-
fers to every possible request), and have a notion of compatibility
opposite to our agreement (i.e. all offers are matched).

With a coincidentally similar name, contract automata have been
introduced in [2] for modelling generic natural language legal con-
tracts between two parties. They are finite state automata in which
states are tagged with deontic modalities that are obligations and
permissions. A contract is satisfied if all deontic modalities are
honoured and it is violated otherwise. Compared to our proposal,
MSCAs have been introduced to study a different domain (i.e. ser-
vice contracts) than the one in [2] (i.e. natural language contracts).
We define obligations and permissions on the actions of contracts
while in [2] modalities are defined on the states of automata, and
only biparty contracts are considered. Our formalism is compo-
sitional and an MSCA can represent either a single principal or
a multi-party composition of contracts. Finally, we focus on the
problem of synthesising an orchestration of services in agreement,
while in [2] techniques for solving violation of contracts are mainly
studied.

7. CONCLUSION AND FUTURE WORK
In this paper we tackled the problem of specifying variability

in service contracts. We have introduced modal service contract
automata as a novel compositional formalism for modelling adap-
tive service contracts. Through MSCA each service provides a be-
havioural description of both its necessary and permitted require-
ments. An agreement among the parties is possible if all their nec-
essary requirements are satisfied by corresponding offers.

Our approach is based on an orchestration of services that adapts
the contracts to satisfy the maximum number of permitted require-
ments while guaranteeing agreement. A technique for synthesising
an orchestration of service contracts is described, in particular nec-
essary requirements are interpreted as uncontrollable actions in the
style of supervisory control for discrete event systems [11], and the
orchestrator is defined as the most permissive controller. We have
fully mechanised our proposal in a prototypical tool available at
https://github.com/davidebasile/CAT.

We describe some possible future developments of the proposed
approach. Concerning the synthesis of the orchestrator, note that
our orchestration generates a “greedy” coordination policy: the
mpc can prevent a principal from firing a (matched) necessary re-
quest as long as the first match is available. Indeed, in our for-
malism necessary match actions are uncontrollable. It would be
interesting to study two different policies of orchestration.

In the first one we could allow necessary match transitions to be
controllable, to avoid the aforementioned case. We conjecture that
this form of orchestration guarantees larger behaviours in agree-
ment than the one presented in this paper, because intuitively we
are increasing the controllable actions.

On the converse, a second stricter orchestration policy could not
prevent a service from firing one of its requests even if the corre-
sponding offer is not yet available (i.e. necessary matched requests
are uncontrollable). This could be used to model critical service re-
quests to be satisfied in each possible state. This scenario is reason-
able in case of critical applications, where an example of a critical
request could be to seal the doors of a chemical laboratory where
infective pathogens have been accidentally released. We believe
that the two discussed policies of orchestration can be synthesised
with minor changes to Theorem 1.

Other more general future improvements follow. An interest-
ing line of research concerns the identification of the conditions
for removing the orchestrator to obtain a fully distributed chore-
ography of services in agreement. These conditions have been
successfuly identified in contract automata [4], but it is not clear
whether they hold for the MSCA formalism. It is also worthwhile
to analyse circular issues in modal contracts, similarly to [7] (see
Section 6). Studying security-related variability in a SOC frame-
work [6], where sessions among services are triggered by MSCAs
in agreement, is an interesting future implementation of our pro-
posal.

Along the line of [9], we are planning to enrich MSCAs with
logic formulae for defining feature diagrams-related variability con-
straints that cannot be expressed only through MSCA, as for exam-
ple exclusive or (at most one among a set of permitted requirements
must be satisfied).

Another important future improvement is the enhancement of
request and offer actions with quantities. For example, Client1
in Section 2 could express the actual amount of money that it is
willing to pay. Reaching an agreement would amount to find the
optimal trade-off among principals, such that each one has a posi-
tive pay-off function. More generally, we are planning to formalise
Quality of Service parameters in Service Level Agreement through
our formal model, to assess non-functional parameters as reliability

or energy consumption in a composition of service contracts. We
would like to apply our formalism to model and analyse real world
service-based applications, as it has been done in [5].

Finally we are planning to improve the scalability of our proto-
typical tool and to add a user-friendly GUI.

8. REFERENCES
[1] Asirelli, P., ter Beek, M.H., Fantechi, A., Gnesi, S.: A

Logical Framework to Deal with Variability, pp. 43–58.
Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

[2] Azzopardi, S., Pace, G.J., Schapachnik, F., Schneider, G.:
Contract automata. Artificial Intelligence and Law 24(3),
203–243 (2016)

[3] Bartoletti, M., Cimoli, T., Zunino, R.: Compliance in
behavioural contracts: A brief survey. In: Essays Dedicated
to Pierpaolo Degano on Programming Languages with
Applications to Biology and Security - Volume 9465. pp.
103–121. Springer-Verlag (2015)

[4] Basile, D., Degano, P., Ferrari, G., Tuosto, E.: Relating two
automata-based models of orchestration and choreography.
JLAMP 85(3), 425–446 (2016), http://www.sciencedirect.
com/science/article/pii/S2352220815000930

[5] Basile, D., Chiaradonna, S., Giandomenico, F.D., Gnesi, S.:
A stochastic model-based approach to analyse reliable
energy-saving rail road switch heating systems. Journal of
Rail Transport Planning & Management 6(2), 163 – 181
(2016), http://www.sciencedirect.com/science/article/pii/
S2210970616300051

[6] Basile, D., Degano, P., Ferrari, G.L.: A formal framework for
secure and complying services. The Journal of
Supercomputing 69(1), 43–52 (2014)

[7] Basile, D., Degano, P., Ferrari, G.L.: Automata for
Specifying and Orchestrating Service Contracts. Logical
Methods in Computer Science Volume 12, Issue 4 (Dec
2016), http://lmcs.episciences.org/2618

[8] Basile, D., Degano, P., Ferrari, G.L., Tuosto, E.: Playing
with our cat and communication-centric applications. In:
Albert, E., Lanese, I. (eds.) FORTE 2016. pp. 62–73.
Springer International Publishing

[9] ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.:
Modelling and analysing variability in product families:
Model checking of modal transition systems with variability
constraints. JLAMP 85(2), 287 – 315 (2016), http://www.
sciencedirect.com/science/article/pii/S2352220815001431

[10] ter Beek, M.H., Reniers, M.A., de Vink, E.P.: Supervisory
controller synthesis for product lines using CIF 3. In:
Leveraging Applications of Formal Methods, Verification
and Validation: Foundational Techniques - 7th International
Symposium, ISoLA 2016, Proceedings, Part I. pp. 856–873
(2016)

[11] Cassandras, C.G., Lafortune, S.: Introduction to Discrete
Event Systems. Springer-Verlag New York, Inc., Secaucus,
NJ, USA (2006)

[12] Larsen, K.G., Nyman, U., Wąsowski, A.: Modal I/O
Automata for Interface and Product Line Theories, pp.
64–79. Springer Berlin Heidelberg (2007)

[13] Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.:
Service-oriented computing: State of the art and research
challenges. Computer 40(11), 38–45 (Nov 2007)

