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ABSTRACT
We describe FMCAT, a toolkit for Featured Modal Contract Au-
tomata (FMCA). FMCAT supports the analysis of dynamic service
product lines, i.e., applications consisting of ensembles of interact-
ing services organized as product lines. Services are modelled as
FMCA, with features identifying obligations and requirements of
services. Service requirements can be either permitted or neces-
sary, whereas the latter are further partitioned according to their
criticality. A notion of agreement among service contracts is used
to characterise safety.

We show how FMCAT can be used to (i) specify dynamic ser-
vice product line, (ii) e�ciently identify all valid products, and to
synthesise a safe orchestration of services for either (iii) a single
product, or (iv) the whole service product line. FMCAT exploits
the theory of FMCA to e�ciently perform the above tasks by only
visiting a subset of valid products, and it is equipped with a GUI.
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1 INTRODUCTION
Service-oriented computing (SOC) [15] is a paradigm for distributed
applications based on the publication, discovery and orchestration
of services. Services are composed to provide Web applications and
can be reused in di�erent con�gurations over time.

Through SOC it is possible to build dynamic service-based appli-
cations capable of adapting to changes in the environment or to the
resources of the devices on which they run. Services are usually
programmed with little or no knowledge about clients and other
services before being loosely coupled into networks of collaborat-
ing end-user applications. Therefore the idea to organise them into
dynamic service product lines has been explored at di�erent SPLC
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conferences (cf., e.g., [18]), leading to applications for Web stores,
smart grids and services as used in scienti�c work�ows and grid
computing [1, 3, 11] and interest has been recently revived [16].
Concerning SOC, service contracts [4] have been introduced to for-
mally describe the behaviour of services in terms of their obligations
(i.e. o�ers of the service) and their requirements (i.e. requests by the
service). Contracts characterise an agreement among services as
an orchestration (i.e. a composition) of them based on the satisfac-
tion of all requirements through obligations. Orchestrations can
dynamically adapt to the discovery of new services and to services
that are no longer available.

Featured modal contract automata (FMCA) have been introduced
in [9] for modelling contract-based dynamic service product lines,
and are an extension of modal service contract automata [8] and
contract automata [5]. An FMCA can model either single services
(called principals) or compositions of services based on an orches-
trated coordination [7]. The goal of each principal is to reach an
accepting (�nal) state by matching its requests with corresponding
o�ers of other principals. Through service contracts it is possible
to characterise the behaviour of an ensemble of services. An execu-
tion is considered safe if all requests are matched by corresponding
o�ers. Variability mechanisms are available to distinguish neces-
sary (2) from permitted (3) requests. O�ers are only permitted as
dictated by agreement. Necessary service requests can be urgent,
greedy or lazy and have, in decreasing order of relevance, further
restrictions on their satis�ability.

Features are identi�ed as service actions, and each FMCA repre-
sents a behavioural product line of services equipped with feature
constraints. Feature models are described as usual, where each prod-
uct of the product line is identi�ed as a truth assignment satisfying
the corresponding feature constraints. Contract agreement guaran-
tees the ful�lment of all feature constraints, all variants of necessary
requests and the maximum number of permitted requests that could
be ful�lled without spoiling the service composition. Contracts
adapt to the overall agreement by renouncing to unsatis�able, yet
permitted requirements.

In this paper we present FMCAT: a prototypical tool imple-
menting the theory of FMCA [9]. FMCAT organises the prod-
ucts into a partial order, to e�ciently compute all valid products
and the orchestration of the service product line from only a sub-
set of products. FMCAT also allows to compute the orchestra-
tion of a single product and features both a GUI and a command-
line prompt. FMCAT is open-source and a demo is available at
https://github.com/davidebasile/FMCAT.
2 FMCAT FUNCTIONALITIES
We consider a simple franchise of Hotel reservation systems and
model it as a service product line. Such a system consists of clients
(either business or economy) interested in booking a room in a Ho-
tel, which o�ers either credit card or cash payments and possibly
emits an invoice according to the Hotel feature model depicted in

https://github.com/davidebasile/FMCAT
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Figure 1: FMCAT at work

Fig. 2 (cf. [9] for more details on this example). The orchestration for
the composition EconomyClient⊗Hotel⊗BusinessClient com-
puted with FMCAT is depicted in Figure 1, speci�cally for the
product requiring features invoice and card while forbidding fea-
ture cash (cf. product p2 below), i.e. payments can only be made
through credit card and invoices are required. This orchestration
dictates how the computation evolves: at each transition the states
of principals and their actions are identi�ed, e.g. BusinessClient
(third service) is served before EconomyClient (�rst service), and
according to the product no cash payment is performed.

Urgent, greedy, lazy and permitted transitions are speci�ed by
the colour of the corresponding transitions, which are red, or-
ange, green and blue, respectively. O�er actions are pre�xed by
! while requests are pre�xed by ?. In our example, the room re-
quest (?room) of BusinessClient is urgent while the same request
for EconomyClient is lazy, accordingly in their orchestration the
urgent request is served before the lazy one.

FMCAT exploits FMCA [9] (see De�nition 5.4), and in particular
it uses results from Supervisory Control Theory [19] to build a safe
orchestration of services as the most permissive controller (mpc)
of the composition of FMCA. Permitted and necessary actions are
interpreted as controllable and uncontrollable actions, respectively.
Controllable actions can be blocked by the mpc, while this is not
possible for the uncontrollable ones. Indeed, necessary require-
ments of all service contracts must be ful�lled for obtaining a safe
orchestration of services (see Section 6). The main functionalities
provided by FMCAT are listed below:

Import/Export FMCA FMCAT features both a command-line
interface and a GUI. Accordingly, an FMCA can be speci�ed either
through a text �le (extension *.data) or through the GUI (extension
*.mxe). It is possible to import textual descriptions of FMCA directly
into the XML format for the GUI and vice-versa. In the actual
version of the tool, the graphical arrangement of an FMCA (e.g.
Figure 1) is not exported to the textual description, where only the
information about states and transitions is kept.

Contract Composition the operation of contract composition
is an adaptation of the one available for contract automata [6] (see
De�nition 5.6). FMCA are composable, and an automaton can spec-
ify either a single service or a service composition. Indeed, through
FMCA it is possible to specify dynamic service product line, where

hotel

• ◦
payment invoiceOO

card cash

Figure 2: A feature model

new services can be added to the whole composition at binding time.
The operator of composition basically interleaves all the actions of
principals, with the only restriction being the case in which two
principals are ready on their corresponding request/o�er action: in
this case only their synchronization (called match) will be available.
The FMCA in Figure 1 is a composition of three principals.

Generation of Partial Order of Products An FMCA con-
sists of a behavioural description of a service (i.e. the automaton)
together with a feature model describing the product line. In par-
ticular, in FMCA a text �le (extension .prod) speci�es each product
through its set of required and forbidden actions that are, respec-
tively, true and false atoms of the formula (feature constraints)
representing the feature model (see De�nition 5.1). An example
of family description is below, corresponding to the feature model
in Figure 2, also identi�ed by the formula φ = ((card ∧ ¬cash) ∨
(cash ∧ ¬card)) ∧ (¬cash ∨ invoice). Three products satisfying φ
are listed below:
p2: R={card,invoice} F={cash}; p3: R={card}
F={cash,invoice}; p4: R={cash,invoice} F={card}

Note that in FMCA the leaves of the corresponding feature model
are features, and are a subset of service actions. Moreover, FM-
CAT considers products where not all variability has been resolved
(aka sub-families), but su�cient to decide whether the formula
is satis�ed or not. In this case, the interpretation function (i.e.
product) card= true , cash= false satis�es φ and has to solve the
variability related to the invoice feature: this is the product p1:
R={card} F={cash}, identi�ed as a super-product of both p2 and
p3. Indeed, required and forbidden actions of p1 are included in its
sub-products; and the two “top” products are p1 and p4 (see De�ni-
tion 5.2). FMCAT exploits this ordering relation (i.e. set inclusion)
among products to e�ciently verify the service product line. In
Figure 3 the partial order of the above products is depicted, and it
is automatically generated by FMCAT.

Veri�cation of Valid Products Once an FMCA A has been
loaded or imported, together with its partial order of products, all
products that are valid in the FMCA A can identi�ed, i.e. those
where all required features (i.e. actions) are available in A, and
none of the forbidden features is (see De�nition 5.7). By relying
on the theory of FMCA, it is possible to identify all such products,
potentially exponential in number, without performing the check
for each one of them. Indeed, FMCAT internally represents the
products through a tree data-structure. The algorithm for this op-
eration basically performs a top-down breadth-�rst visit of the tree,
where sub-trees rooted in products non-valid in A are pruned. It
is known that validity of a product of an FMCA implies validity
of all its super-products [9]. Given the FMCA depicted in Figure 1
and the products in Figure 3, the products valid in the FMCA are
p1 and p2 only.

ComputingCanonical ProductsCanonical products are those
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Figure 3: A partial order of products generated by FMCAT

characterising the whole service product line. All other services of
the given family can be obtained by re�nement of some canonical
product. Canonical products are all valid “top” products of the
given partial order, quotiented by their set of forbidden features.
FMCAT allows to identify all canonical products from an FMCA
and its products. In the above example, p1 is the only canonical
product of the service product line. Indeed, the orchestration of p2
is contained into the one of p1.

Orchestration of a Product An orchestration of services is the
maximal sub-portion of the FMCA that is safe, i.e. all requests of
services are matched by corresponding o�ers (e.g. the FMCA in
Figure 1 is safe). The orchestration, being the mpc from Supervisory
Control Theory, tries to keep the maximum number of permitted
actions, while necessary requests must be matched for reaching a
non-empty orchestration. Urgent, greedy and lazy necessary re-
quests characterise “when” the request can be matched, and give rise
to di�erent priorities. Urgent requests do not allow delays (due to
interleavings generated by the composition), i.e. they are uncontrol-
lable. For example, the red transition in Figure 1 is matched in the
initial state. Greedy (orange) requests can be delayed as soon as the
�rst match is available, that is, greedy matches are uncontrollable.
Lazy matches/requests can be controlled by the orchestration, pro-
vided that at least one match is available. For example, in Figure 1,
the green request of the �rst principal (EconomyClient) is served
after the red request of the third principal (BusinessClient).

FMCAT computes an orchestration for a single product, where
all its required actions must be available in the orchestration, and
none of the forbidden actions is available.

Orchestration of a Service Product Line Through FMCAT it
is also possible to compute the orchestration of a whole service
product line. By exploiting theoretical results from [9], the orches-
tration can be computed without iterating through each product.
In particular, the orchestration of the service product line is the
union of the orchestrations of all canonical products. The FMCA in
Figure 1 is the orchestration of the canonical product p1 and hence
it is also the orchestration of the whole service product line, iden-
ti�ed by the feature model in Figure 2. Indeed, the orchestration
of p2, in this case, is exactly the one of p1 (in general it could be
a sub-automaton). If, for example, we would add a �fth product
p5: R={receipt,invoice}, F={taxi} (obtained by modifying
the feature model), then this would be another canonical product
and the union of the orchestrations of p1 and p5 would be the mpc
of the service product line.

3 FMCAT ARCHITECTURE
FMCAT is based on a previous tool for contract automata (CA) [6],
implemented in Java. In particular, FMCAT extends the main classes
used for CA by adding the new functionalities described in Section 2.
The Contract Automata Tool also relies on a previous framework

Figure 4: The Architecture of FMCAT

for specifying Finite State Automata in Java, from which it inherited
some basic functionalities for storing and printing automata.

A Diagram showing the architecture of FMCAT is depicted in
Figure 4, and it is composed of three main modules:

User Interface This module contains the two Java classes
FMCATGUI.java and FMCATPROMPT.java. The �rst one implements
the GUI of FMCAT, and it is based on an existing framework called
mxGraph for editing graphs in Java. The command line prompt is
mainly inherited from the previous versions of the tool and it al-
lows to interact with the API of FMCAT by means of an interactive
command-line interface.

I/O Module This module concerns with the storing of �le de-
scriptors used by FMCA. There are three types of �les used by
the tool: *.prod �les contain textual descriptions of products as
described previously. An FMCAT is stored in either a readable
textual representation (*.data) or an XML format (*.mxe). The
*.data format is mainly used by the command-line interface and it
consists of a textual declaration of states and transitions of each au-
tomaton. The XML representation of FMCA (*.mxe) is used by the
GUI for saving and loading FMCA. This �le descriptor also stores
information related to the graphical visualization of the FMCA. The
module also contains the Partial Order Generation from a *.prod
�le, computed when the product �les are loaded, and it contains
the utilities for converting a description of FMCA into one of the
available formats.

Core The core module of FMCAT is composed of, among the
others, the class FMCA.java, extending CA.java and implementing
the algorithm for synthesising a safe orchestration of services for
a given product. This class uses two others: FMCAUtils.java is a
stand-alone class o�ering functionalities for composing automata,
for computing the union of FMCA (used for synthesising the or-
chestration of a family) and other utilities. The class Family.java
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uses another class Product.java for memorising the various prod-
ucts composing a given product line. It contains the methods for
computing the valid products of a family, for computing the partial
order of products and the canonical product. It is also used by the
FMCA class for computing the orchestration of the service product
line (i.e. the union of the mpc of the canonical products).

4 RELATEDWORK AND CONCLUSION
In this paper, we discussed FMCAT, a tool supporting dynamic
service-based product lines, based on featured modal contract au-
tomata. FMCAT features a GUI and a command-line interface, and
organises the product line into a partial order for e�ciently compute
a safe orchestration of services, specifying a dynamic service-based
product line application.

FMCAT is an extension of a previous tool called Contract Au-
tomata Tool (CAT) [6]. Whilst FMCAT is tailored to Service Product
Line, CAT tackled the problem of verifying circularity issues among
service contracts, modelled as �ow problem and solved through lin-
ear integer programming techniques. CAT also tackled the problem
of translating an orchestration of services into a choreography. It
was based on a command line interface, while FMCAT also o�ers a
user-friendly GUI. Below we discuss some tools that can be used for
editing and managing feature models, to be solved and imported
into the FMCAT format (*.prod).

FeatureIDE [22] is an open-source framework for feature-oriented
software development based on Eclipse. It uses di�erent feature
models management tools and has a Java API to manipulate feature
models. A tool for feature models edits [21] has been integrated into
FeatureIDE. FAMILIAR [2] is a Domain-Speci�c Language (DSL)
that is dedicated to the large scale management of feature models.
It provides operations for decomposing, aggregating and merging
several feature models. It can be coupled with FeatureIDE to reason
about feature models.

A compositional modelling framework for dynamic product lines
is discussed in [14], that relies on annotated versions of probabilistic
automata with costs. Compared to [14], composition of FMCA can
vary also depending on the order of the operands and di�erent
critical levels of actions are available, thus adding an extra layer of
expressiveness, whilst in [14] a standard synchronous composition
with messages broadcast is available. Moreover, FMCAT avoids to
enumerate all products of a product line, whilst [14] may not.

Supervisory Control Theory was previously applied to Software
Product Line Engineering in [12], where the CIF 3 toolset was used
to synthesise all valid products of a product line composed of be-
havioural components and requirements modelled as automata. Our
approach to synthesise a family of services does not consider all
actions to be controllable, as in [12], but considers increasing levels
of uncontrollability (from urgent to lazy requests). The information
related to the speci�c requirements of each product (required and
forbidden features) is also integrated into the synthesis algorithm.
Moreover, the organisation of the family’s products (and their mpc)
into a partial order makes our approach more scalable. As a result,
in FMCAT the obtained mpc of the family of services can be synthe-
sised from only a subset of its products, whereas other approaches
require to synthesise the mpc of each single product.

The FMCA Tool is still under development, and the currently
available implementation has been used by the authors for develop-
ing the theory of FMCA and exploring the problem of specifying
service-based dynamic service product lines. Possible future ex-
tensions of FMCAT are listed below. Some functionalities of CAT
(i.e. choreography, circularity) have not been included in FMCAT,
and their feasibility in a product line environment requires more
research from a theoretical viewpoint. A utility for importing di-
rectly into the FMCAT format di�erent feature models computable
through other tools (e.g. FeatureIDE) is also under development. A
static check of the user input is also a future improvement, to help
users in specifying FMCA correctly through the GUI. We are also
planning to compare our tool with others existing in the literature
to emphasise pros and cons of our approach.
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5 APPENDIX
In the following FMCA are recalled. See [9] for more details.

5.1 Feature Models
A feature model is a rooted and/or tree in which nodes are features
and additional relations between nodes model further constraints
(typically mandatory, optional or alternative, but also requires and
xor) [13, 20]. It is well known that a feature model is equivalent
to a propositional formula over features. Thus, checking the va-
lidity of a product with respect to the feature model reduces to a
Boolean satis�ability problem, e�ciently computable with BDD or
SAT solvers [10, 17]. Following [10, 20], we distinguish compound
features (intermediate, decomposable nodes) and primitive features
(in�uencing �nal products). The latter are represented by the leaves
of a feature model and the propositional formula representing a
feature model uses only them as literals.

In our framework, we distinguish basic actions belonging to the
sets of requests R = {a,b, c, . . .} and o�ers O = {a,b, c, . . .} where
R ∩ O = ∅. Primitive features are identi�ed as basic actions. A
feature constraint is a propositional logic formuale φ over R ∪ O.

A service product line is then characterised by a conjunction of
feature constraints with literals in R∪O, such that each assignment
p satisfying φ (written φ |=p true) is a valid product.

De�nition 5.1 (Products). Let φ be a conjunction of feature con-
straints with literals in R ∪ O and let P : R ∪ O⇒ {true, false} be
an interpretation function. Then JφK = {p | φ |=p true and p ∈ P }
is the set of all products of φ. Moreover, given p ∈ JφK, the sets of
required and forbidden actions in p are Required(p) = { a | p(a) =
true } and Forbidden(p) = { a | p(a) = false }, respectively.

All products JφK of a family can be ordered by component-wise
set inclusion as (a subset of) elements of a lattice such that the
bottom element ⊥ requires and forbids all actions, whereas the top
element > has neither required nor forbidden actions. Note that
not all elements of such a lattice correspond to products of JφK.

De�nition 5.2 (Sub-products). Let (R, F ) ⊆ (R′, F ′) ∈ ((R ∪ O) ×
(R ∪ O), ⊆) be a lattice i� R ⊆ R′ and F ⊆ F ′. The partial order of
products of a family JφK is (JφK, �), wherep � p′ (p is a sub-product
of p′ or, alternatively, p′ is a super-product of p) i�

(Required(p′), Forbidden(p′)) ⊆ (Required(p), Forbidden(p))

5.2 FMCA
We now formally de�ne featured modal contract automata (FMCA),
which extend modal service contract automata (MSCA) [8].

We borrow some useful notation from [5, 7]. The alphabet of
basic actions is de�ned as Σ = R ∪ O ∪ {•} where • < R ∪ O is a
distinguished element representing the idle move. We de�ne the
involution co(•) : Σ 7→ Σ s.t. co(R) = O, co(O) = R and co(•) = •.

Let ®v = (e1, ..., en ) be a vector of rank n ≥ 1, denoted by rv , and
let ®v(i) denote the ith element with 1 ≤ i ≤ rv . By ®v1 ®v2 · · · ®vm
we denote the concatenation of m vectors ®vi . From now onwards,
we stipulate that in an action vector ®a there is either a single o�er
or a single request, or a single pair of request-o�er that matches,
i.e. there exists exactly i, j such that ®a(i) is an o�er and ®a(j) is the
complementary request or vice versa; all the other elements of

the vector contain the symbol •, meaning that the corresponding
principals remain idle. In the following, let •m denote a vector of
rankm, all elements of which are •. Formally:

De�nition 5.3 (Actions). Given a vector ®a ∈ Σn , if

• ®a = •n1α•n2 ,n1,n2 ≥ 0, then ®a is a request (action) on α if
α ∈ R, whereas ®a is an o�er (action) on α if α ∈ O

• ®a = •n1α •n2 co(α)•n3 ,n1,n2,n3 ≥ 0, then ®a is a match
(action) on α , where α ∈ R ∪ O

Actions ®a and ®b are complementary, denoted by ®a 1 ®b, if and
only if the following holds: (i) ∃α ∈R∪O s.t. ®a is either a request or
an o�er on α ; (ii) ®a is an o�er on α implies that ®b is a request on
co(α); (iii) ®a is a request on α implies that ®b is an o�er on co(α).

The actions and states of contract automata are vectors of basic
actions and states of principals, respectively. The alphabet of an
FMCA consists of vectors, each element of which intuitively records
the execution of basic actions of principals in the contract.

An FMCA declares a contract-based service product line through
(i) permitted and necessary transitions; and (ii) a conjunction of
feature constraints φ identifying all valid products. We recall that
all o�ers are permitted. Permitted o�ers and requests are optional
and can be discarded.

The set of necessary requests of an FMCA is further partitioned
into urgent, greedy and lazy. These sets contain necessary requests
that must be matched to reach an agreement among contracts. We
thus o�er modellers another layer of variability based on the possi-
bility to specify “when” requests must be matched in a composition.

De�nition 5.4 (Featured modal contract automata). Assume as
given a �nite set of states Q = {q1,q2, . . .}. Then a featured modal
contract automaton A, FMCA for short, of rank n ≥ 1 is a tuple
〈Q, ®q0,A3,A2u ,A2д ,A2` ,Ao ,T ,φ, F 〉, where

• Q = Q1 × · · · ×Qn ⊆ Q
n

• ®q0 ∈ Q is the initial state
• A3,A2u ,A2д ,A2` ⊆ R are (pairwise disjoint) sets of per-

mitted, urgent, greedy and lazy requests, resp., and we
denote by Ar = A3 ∪A2u ∪A2д ∪A2` the set of requests

• Ao ⊆ O is the �nite set of o�ers
• T ⊆ Q × A × Q , where A = (Ar ∪ Ao ∪ {•})n , is the set

of transitions partitioned into permitted transitions T3

and necessary transitions T2 with T = T3 ∪T2 such that,
given t = (®q, ®a, ®q′) ∈ T , the following holds:
– ®a is either a request or an o�er or a match
– ∀i ∈ 1 . . .n, ®a(i) = • implies ®q(i) = ®q′(i)
– t ∈ T3 i� ®a is either a request on a ∈ A3, an o�er on

a ∈ Ao or a match on a ∈ A3 ∪Ao

– t ∈ T2 i� ®a is either a request a ∈ A2u ∪A2д ∪A2`

or a match on a ∈ A2u ∪A2д ∪A2` ∪Ao

• φ is a conjunction of feature constraints
• F ⊆ Q is the set of �nal states

A principal FMCA (or just principal) has rank 1 andAr ∩ co(Ao )=∅.

5.3 Composing FMCA
The FMCA operators of composition are crucial for specifying dy-
namic service product lines, in particular for generating (at binding
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time) an ensemble of services. By adding new services to an exist-
ing composition, it is possible to dynamically update the service
product line and to synthesise, if possible, a composition satisfying
all requirements de�ned by the service contracts.

A set of FMCA is composable if and only if the conjunction of
their feature constraints leads to no contradiction.

De�nition 5.5 (Composable). A set Set = {Ai | i ∈ 1 . . .n} of
FMCA is composable i� (

∧
Ai ∈Set φAi ) 6|= false.

The operands of the composition ⊗ are either principals or com-
posite services. Intuitively, the product composition interleaves
the actions of all operands, with the only restriction that if two
operands are ready to execute two complementary actions (®ai 1 ®aj )
then only their match will be allowed and their interleaving pre-
vented. Below we use # as a placeholder for both necessary (2) and
permitted (3) transitions. More in detail, the transitions of the com-
posite service are generated as follows. Case (1) in De�nition 5.6
generates match transitions starting from two operands’ transitions
having complementary actions (®ai 1 ®aj ). If, e.g., (®qj , ®aj , ®q′j ) ∈ T

2,
then the resulting match transition will be marked as necessary
(i.e. (®q, ®c, ®q′) ∈T2). If both operands’ complementary actions are
permitted, then their resulting match transition t will be marked as
permitted. All other principals not involved in t will remain idle.

Case (2) in De�nition 5.6 generates all interleaved transitions
only if no complementary actions can be executed from the com-
posed source state (i.e. ®q). In this case, an operand executes its
transition t = (®qi , ®ai , ®q

′
i ) and all other operands remain idle. The

composed transition will be marked as necessary (permitted) only if
t is necessary (permitted, respectively). Note that condition ®ai 1 ®aj
excludes pre-existing match transitions of the operands from gen-
erating new matches. Recall that we implicitly assume the set of
labels of an FMCA of rankm to be A ⊆ (Ar ∪Ao ∪ {•})m .

De�nition 5.6 (Composition). Let Ai be composable FMCA of
rank ri , i ∈ 1, . . . ,n, and let # ∈ {3,2}. The product composition⊗

i ∈1...n Ai is the FMCA A of rankm =
∑
i ∈1...n ri , where

• Q = Q1 × · · · ×Qn , with ®q0 = ®q01 · · · ®q0n
• Ar =

⋃
i ∈1· · ·n A

r
i , Ao =

⋃
i ∈1· · ·n A

o
i ,

• T# ⊆Q ×A×Q s.t. (®q, ®c, ®q′) ∈T# i�, when ®q= ®q1 · · · ®qn ∈Q ,
(1) either there are 1 ≤ i < j ≤ n s.t. (®qi , ®ai , ®q′i ) ∈ T

#
i ,

(®qj , ®aj , ®q
′
j ) ∈ T

#∪3
j , ®ai 1 ®aj and

®c = •u ®ai •
v ®aj•

z ,with u = r1 + · · · + ri−1,
v = ri+1 + · · · + r j−1, z = r j+1 + · · · + rn , |®c | =m
and ®q′ = ®q1 · · · ®qi−1 ®q′i ®qi+1 · · · ®qj−1 ®q

′
j ®qj+1 · · · ®qn

(2) or there is 1 ≤ i ≤ n s.t. (®qi , ®ai , ®q′i ) ∈ T
#
i and

®c = •u ®ai•
v ,with u = r1 + · · · + ri−1,

v = ri+1 + · · · + rn , |®c | =m,
®q′ = ®q1 · · · ®qi−1 ®q′i ®qi+1 · · · ®qn and ∀j , i, 1 ≤ j ≤ n

s.t. (®qj , ®aj , ®q′j ) ∈ T
#∪3
j , ®ai 1 ®aj does not hold

• φ =
∧
i ∈1...n φi

• F = { ®q1 · · · ®qn | ®q1 · · · ®qn ∈ Q, ®qi ∈ Fi , i ∈ 1 . . .n }

5.4 Valid Products of FMCA
Intuitively, a valid product p of an FMCA A is such that all its re-
quired actions are available while its forbidden actions are not. More
precisely, p is a (valid) interpretation of the feature constraints ofA

(i.e. p ∈ JφAK) such that for all true literals a (i.e. a ∈ Required(p))
a reachable transition t on a is executable in A, whereas for all
false literals b (i.e. b ∈ Forbidden(p)) no reachable transition t on b
can be executed in A. Let Danдlinд(A) denotes the unreachable
states of A from initial or �nal states. Formally:

De�nition 5.7 (Valid product). LetA be an FMCA, then p ∈ JφAK
is valid in A i� (i) ∀a ∈ Required(p) ∃(®q, ®a, ®q′) ∈ TA s.t. ®a is an
action on a and ®q′ < Danдlinд(A), and (ii) ∀b ∈ Forbidden(p)

@(®q, ®b, ®q′) ∈ TA s.t. ®b is an action on b and ®q′ < Danдlinд(A).

Given a service product line A, one of the bene�ts of adopting
a partial order of products is the possibility to determine all valid
products in A by only exploring a subset of them, as proved in the
following theorem. In particular, if a sub-product p is valid then all
its super-products p′ are also valid products or, equivalently, if a
product p′ is not valid then neither is any of its sub-products p.

6 CONTROLLER SYNTHESIS
We describe an algorithm for synthesising an orchestration of
FMCA, viz. the maximal sub-portion of an FMCAA that is safe. The
orchestration will be the most permissive controller (mpc for short)
in the style of Supervisory Control for Discrete Event Systems [19].

The purpose of contracts is to declare all executions of a prin-
cipal in terms of requests and o�ers. Therefore, all actions of a
(composed) contract are observable.

The behaviour to enforce upon a given FMCA are exactly the
traces in agreement; thus we assume both (i) request transitions
and (ii) forbidden transitions to lead to a forbidden state. To ful�l
the modalities imposed by FMCA, a composition is forced to be in
agreement only if there exists a match for each necessary (urgent,
greedy or lazy) request.

We now outline the iterative algorithm for computing the mpc
of product p of an FMCA A. With respect to the standard syn-
thesis in [19], non-local information related to other transitions is
exploited for deciding whether a given transition is controllable or
uncontrollable. At each step i , the algorithm updates incrementally
a set of states Ri and revises an FMCA Ki ; it terminates when
no more updates are possible. Intuitively, the property of agree-
ment requires that all requests are matched. Hence, all possible
(non-matched) requests must be removed, and also all actions that
are forbidden by the product. The mpc must prevent these “bad”
transitions (requests and actions forbidden by the product) from
being executed. This is straightforward for bad controllable transi-
tions, while the bad uncontrollable transitions can only be made
unreachable. To this aim, the sets Ri contain the “bad” states: those
that cannot prevent a necessary request or a forbidden action to
be eventually executed (i.e. states in uncontrollable disagreement).
The algorithm proceeds backwards from �nal states, to discover
new states to be added to Ri . The algorithm terminates when no
new updates are available. Upon termination, if the initial state is
bad (in Rn ) or some action required by product p is unavailable in
Kn , then the mpc is empty. Otherwise, the synthesised automaton
Kn is the mpc of p. Since the set Ri is �nite and can only increase
in each step, the termination of the algorithm is guaranteed.
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