
Enhancing Models Correctness through Formal Verification: a Case
Study from the Railway Domain

Davide Basile1, Felicita Di Giandomenico1 and Stefania Gnesi1
1 Istituto di Scienza e Tecnologia dell’Informazione “A. Faedo”,Consiglio Nazionale delle Ricerche, ISTI-CNR, Pisa, Italy

{davide.basile,felicita.digiandomenico,stefania.gnesi}@isti.cnr.it

Keywords: Verification, Cyber-physical System, Communication-centric Applications

Abstract: Model-based approaches are widely used for analysing systems belonging to a variety of domains, including
the transportation sector. A critical issue with models is their validation, in order to justifiably put reliance
on the analysis results they provide (including non functional indicators such as reliability, performance and
energy consumption). Typically, cross-validation is performed, e.g. through exercising modelling by different
formalisms/tools or through forms of experimental analysis. In this paper, we address validation of a case
study from the railway domain via formal techniques, specifically with automata-based models. Validation of
interaction aspects of Stochastic Activity Networks models of rail road switch heaters, developed for the pur-
pose of evaluating energy consumption and reliability indicators, is performed through a tool based on contract
automata, a recently introduced formalism for verifying properties of communication-based applications.

1 Introduction

Stochastic model-based analysis is a widely
adopted methodology for evaluating measures of in-
terest related to dependability and efficiency aspects,
such as performance, energy consumed and probabil-
ity of failures. This analysis approach is useful for
expressing the stochastic nature of physical phenom-
ena involved in Cyber-Physical Systems (CPS) (Lee,
2008), where digital control units interact with con-
tinuous phenomena describing the surrounding envi-
ronment.

Formalisms as (extensions of) Petri Nets (Balbo,
2007; Sanders and Meyer, 2000; David and Alla,
2001) and (Non) Markov based models (Sanders and
Meyer, 2000; Bause and Kritzinger, 1996) are used
for modelling and evaluating CPS, where reward
structures (Reibman et al., 1989) are defined in or-
der to evaluate measures of interest (e.g. reliability,
performance, energy consumption) at the variation
of relevant parameters, either analytically or through
simulation. However, in general these measures are
assessed without performing any validation of the
model through which they are obtained, especially
when error prone communication-based applications
are involved. These errors may compromise the trust-
worthiness of the results obtained through analysis,
which means a loss of time and moneys for industries.
Hence, models validation is paramount for safety crit-

ical applications.
In this paper, we propose a case study from the

railway domain. In particular, we verify the sound-
ness of interaction aspects of a rail road switch heat-
ing system, originally modelled through Stochastic
Activity Networks (Sanders and Meyer, 2000) (SAN)
for evaluating the energy consumption and the proba-
bility of failure of these devices (Basile et al., 2016a;
Basile et al., 2016e). Rail road switch heaters are es-
sential components for the correct functioning of rail-
way stations, in absence of which possible disasters
can take place (i.e. derailments, trains collision). In
particularly cold regions, ice and snow can prevent
the switches from working properly, hence heaters
are used for guaranteeing the correct functioning of
the rail road switch system. In the analysed system
a central control unit is in charge of managing poli-
cies of energy consumption while satisfying reliabil-
ity constraints, by communicating with the network
of switches to manage the energy supply.

Representation of the interactions between the
system of heaters and the central control unit con-
stitutes a critical part of the developed SAN mod-
els. It is therefore beneficial to provide evidences of
the correct modelling, which is the goal of this pa-
per. We will adopt the contract automata (CA) for-
malism (Basile et al., 2016b; Basile et al., 2016d),
that has been originally introduced for composing
and verifying services. The interactions of the anal-



ysed system will be modelled with CA for guarantee-
ing their soundness. Contract automata are endowed
with a specific tool, called Contract Automata Tool
(CAT) (Basile et al., 2016c), that implements the the-
oretical results of CA, using techniques of control the-
ory and linear programming. We automatically verify
the correctness of the interactions through CAT. It is
possible then to combine the quantitative assessment
of stochastic measures of interest with the qualitative
verification of interactions correctness, so improving
the correctness of the obtained results.

Structure of the paper. A brief review of re-
lated work is discussed in Section 2; while Section 3
introduces the formalisms used in the paper, which
are SAN and CA. The proposed methodology is de-
scribed in Section 4, and in Section 5 we recall the for-
malization of the proposed case study as SAN mod-
els and we verify the correctness of the interactions
through CAT. Finally, conclusions and future direc-
tions are in Section 6.

2 Related work

In the literature, several approaches for the ver-
ification and validation of stochastic models have
been proposed, as for example testing, fault injec-
tion, model checking. In particular, model check-
ing (Clarke et al., 1999) is a widely-used and pow-
erful approach for the verification of finite state sys-
tems, based on an exhaustive exploration of the state-
space. Generating the whole state space is in gen-
eral inefficient, since the number of states grows ex-
ponentially in the number of components of a sys-
tem. Several techniques have been developed to over-
come this issue, among them we mention modular
model checking (Kupferman and Vardi, 1998), par-
tial order reduction (Clarke et al., ), symbolic model
checking (McMillan, 1993). Tools like SPIN (Holz-
mann, 2003) are widely-adopted for modelling and
verifying finite state systems, which implement the
above techniques. However, the continuous dynam-
ics nature of CPS is not always captured by finite
state systems, and models as Timed automata (Alur
and Dill, 1994), Hybrid Petri Nets (David and Alla,
2001), Stochastic Activity Networks (Sanders and
Meyer, 2000) have been proposed for modelling CPS,
where the evolution of the continuous variables can
be uniform or described by ordinary differential equa-
tions. Several tools have been proposed for their mod-
elling, evaluation and verification, as for example UP-
PAAL (Larsen et al., 1997), Kronos (Yovine, 1997),
Möbius (Clark et al., 2001). When the continuous
time behaviours of CPS are subject to complex and

stochastic dynamics, the model checking problem is
undecidable (Henzinger and Ho, 1995), and gener-
ally an approximation to more tractable models, as for
example Timed automata, is performed. Statistical
Model Checking (SMC) (Legay et al., 2010) uses re-
sults from statistics on top of simulations of a system
to decide whether a given property is satisfied with
some degree of confidence. UPPAAL-SMC (David
et al., 2015) has been proposed as a tool that imple-
ments the above techniques.

We will provide a validation of interaction aspects
of the analysed case study by formalising the interac-
tions into a finite state formal model, which allows to
apply formal verification techniques.

3 Background

In this section, we briefly introduce the Stochastic
Activity Networks and contract automata formalisms.

3.1 Stochastic Activity Networks

The Stochastic Activity Networks (Sanders and
Meyer, 2000) formalism is widely used for perfor-
mance, dependability and performability evaluation
of complex systems, given its high expressiveness
and the powerful tools for modelling and evaluating
them (Clark et al., 2001). The SAN formalism is a
variant of Stochastic Petri Nets (Bause and Kritzinger,
1996), and has similarities with Generalised Stochas-
tic Petri Nets (Balbo, 2007). A SAN is composed
of the following primitives: places, activities, input
gates and output gates. Places and activities have
the same interpretation as places and transitions of
Petri Nets. Input gates control the enabling condi-
tions of an activity and define the change of mark-
ing when an activity completes. Output gates define
the change of marking upon completion of the activ-
ity. Each enabled activity may complete. Activities
are of two types: instantaneous and timed. Instan-
taneous activities complete once the enabling condi-
tions are satisfied. Timed activities take an amount
of time to complete following a temporal stochastic
distribution function. An enabled activity is aborted,
i.e. it cannot complete, when the SAN moves into a
new marking in which the enabling conditions of the
activity no longer hold. Cases are associated to ac-
tivities, and are used to represent probabilistic uncer-
tainty about the action taken upon completion of the
activity. When an activity completes, the following
steps are executed: (i) one of the cases of the activity
is chosen according to its marking-depending proba-
bility; (ii) the function of each input gate of the activ-



ity is executed; (iii) the function of each output gate
linked to the case selected at first step is executed.
The primitives of the SAN models are defined using
C++ code. SAN models are defined and solved by
using the multi-formalism multi-solvers tool Möbius
(Clark et al., 2001). Möbius is a tool that supports var-
ious formalisms such as SAN, PEPA, Fault Tree, and
different analytical and simulative solvers. Möbius
can be used for studying the reliability, availability,
and performability of systems. It follows a modular
modelling approach, where atomic models are build-
ing blocks that can be composed with proper opera-
tors Rep and Join to generate a composed model.

3.2 Contract Automata

Contract automata have been introduced in (Basile
et al., 2016d; Basile et al., 2016b) for modelling and
verifying contract-based services applications. A con-
tract automaton (see Definition 1 below) represents
the behaviour of a set of principals capable of per-
forming some actions. More precisely, the tuples of
actions are restricted to be offers/requests (a principal
performs an offer/request and the other principals stay
idle), or matches (two principals handshake their re-
quest/offer while the others stay idle). Consequently,
transitions of CA will be labelled with tuples of ele-
ments in the set L def

= R∪O∪{�} where: requests of
principals will be built out of R while their offers will
be built out of O, R∩O= /0, and � 6∈R∪O is a distin-
guished label to represent components that stay idle.
We let a,b,c, . . . range over L and fix an involution
· :L→L such that R⊆O,O⊆R,∀a∈R∪O : a= a
and � = �. As usual, offer actions will be topped
by bar (i.e. a). Service composition is naturally de-
scribed in terms of product automata. The matching
between offers and requests has to guarantee agree-
ment properties that amount to safe communications.
Intuitively, an automaton admits strong agreement if
it has at least one trace made only by match transi-
tions; and it is strongly safe if all the traces are in
strong agreement. Basically, strong agreement guar-
antees that the composition of services has a sound
execution, while strong safety guarantees that all ex-
ecutions of the composition are sound.

We borrow the following definition from (Basile
et al., 2016b), where the rank is the number of princi-
pals inside the contract automaton, and ~q stands for a
vector where~q(i) is the i-th element.
Definition 1 (Contract automata). Assume as given a
finite set of states Q = {q1,q2, . . .}. Then a contract
automaton A of rank n is a tuple 〈Q, ~q0,Ar,Ao,T,F〉,
where

• Q = Q1× . . .×Qn ⊆ Q n

• ~q0 ∈ Q is the initial state
• Ar ⊆ R,Ao ⊆O are finite sets (of requests and of-

fers, respectively)
• F ⊆ Q is the set of final states
• T ⊆ Q×A×Q is the set of transitions, where

A⊆ (Ar ∪Ao∪{�})n and if
(~q,~a,~q′) ∈ T then both the following conditions
hold:
– ~a is either a request or an offer or a match
– if~a(i) = � then it must be~q(i) = ~q′(i)

A principal is a contract automaton of rank 1 such
that Ar ∩ co(Ao) = /0.

A principal is not allowed to make a request on
actions that it offers. Contract automata are endowed
with two (associative/non associative) operators of
composition that interleave or match the transitions of
their operands. Synchronisations are forced to happen
when two contract automata are ready on their respec-
tive request/offer action.

A tool called Contract Automata Tool
(CAT) (Basile et al., 2016c) has been imple-
mented for supporting the modelling and verification
of contract automata. It provides functionalities
for generating and composing different models, for
synthesising the central orchestrator, and for check-
ing if the composition of automata is correct under
different properties, which amount to synchronous
or asynchronous interactions, for a closed or an
open-ended system. Moreover, in case one of such
properties is not satisfied, it is possible to point out
which principals in the composition are responsible
of violating the analysed property.

4 Methodology

In this section we briefly describe the proposed ap-
proach to model and validate CPS. In the following
sections this approach will be concretely applied to a
representative case study.

Generally, in energy-saving CPS (Lee, 2008) the
supervision of the cyber-control is in charge of strate-
gies to supply energy to components of the physi-
cal system, necessary to keep them effective and re-
liable in the service they accomplish. Our interest
is in assessing measures that are representative of
the energy consumption, to be combined with other
dependability-related properties dictated by the crit-
ical domain the CPS is employed in. In the case
of critical systems, it is paramount to further guar-
antee the soundness of interactions among compo-
nents and the trusthworthiness of the related mea-
sures. Indeed, in case of misbehaving interactions,



Cyber-Physical system

Verified Discrete aspects Continuous, Stochastic aspects

CA SANcross-modelling, mapping
–

Figure 1: The proposed approach for modelling CPS based on CA and SAN models

wrong measures could be assessed. Unexpected eval-
uation results could be due to a non-optimal policy of
energy consumption but also to a wrong implemen-
tation of the adopted policy. Generally, identifying
these issues is not an easy task, and an optimal policy
could be discarded due to a wrong implementation of
it. In order to avoid this unpleasant situation, we aim
at formally proving the soundness of the interactions.
As mentioned in Section 2, the formal verification of
stochastic hybrid systems is in general undecidable.
To overcome this difficulty, we propose to separately
model through different formalisms the cyber and the
physical modules of the analyzed system.

The diagram depicted in Figure 1 illustrates our
methodology. In particular, the discrete aspects con-
cerning the interactions among components will be
modelled and verified through CA, while SAN mod-
els will be also adopted for modelling the stochastic
hybrid behaviours of the analysed system and for as-
sessing the measures of interest. In the future, we plan
to formally relate these two formalisations. In the fol-
lowing case study, the CA models of interactions will
be extracted from the underlying SAN models that
were previously designed (Basile et al., 2016a; Basile
et al., 2016e) for evaluating energy consumption and
reliability measures of the analysed system.

5 Case study: Rail road switch
heating system

The considered case study is a rail road switch
heating system. A rail road switch is a mechanism
enabling trains to be guided from one track to an-
other. It works with a pair of linked tapering rails,
known as points. These points can be moved laterally
into different positions, in order to direct a train into
the straight path or the diverging path. Such switches
are therefore critical components in the railway do-
main, and an error in the communications protocol of
the system may have potentially catastrophic conse-

quences.
During winter, snow and ice can prevent the

switches to work properly, hence heaters are used
so that the temperature of the rail road switches can
be kept above freezing. Different policies may be
adopted to power the heaters (by electricity), as for
example to heat a selection of switches for a given
amount of time or to heat all the switches together.

5.1 Stochastic model

We briefly recall the SAN models of the system of
(remotely controlled) rail road switch heaters, which
have been used for evaluating energy and reliability
indicators in (Basile et al., 2016a). An on-off pol-
icy is considered for heating the switches, with para-
metric thresholds representing the temperatures trig-
gering the activation/deactivation of the heating. The
management of the heaters is automatic, and is re-
motely controlled by a central computational unit.
Generally, in a railway station there are tracks which
are less important than others, for example the side
tracks. In case of extremely cold conditions, the total
amount of energy available could not be sufficient to
heat the overall system, hence it is important to assign
priorities to the heaters for identifying those that must
be primarily heated and those that may be heated later
on.

We identify two main logical components describ-
ing the system: the heater and the central coordina-
tor. The network of heaters is realised by replicating
the heater component, and the activation/deactivation
of each heater is controlled by the central coordinator.
The policy employed to activate/deactivate the heat-
ing is based on two threshold temperatures: the warn-
ing threshold (Twa) represents the lower temperature
that the track should not trespass. If the temperature
is lower than Twa, then the risk of ice or snow can
lead to a failure of the rail road switch and therefore
the heating system needs to be activated; the work-
ing threshold (Two) is the working temperature of the
heating system. Once this temperature is reached, the



Figure 2: The composed model.

heating system can be safely turned off in order to
avoid an excessive waste of energy.

The coordinator collects the requests of activation
from the pending heaters, and it manages the energy
supply according to a prioritized order. Indeed, the
first heater which asks to be turned on will be the first
to be activated. We assign priorities to switches based
on their criticality on the track; the purpose of con-
sidering priorities is to guarantee higher reliability to
those switches that are vital for the correct function-
ing of the overall station. If there is no energy avail-
able, each request will be enqueued in the queue of
pending heaters.

The overall model is obtained by the composition
of the atomic models, using the Join and Rep opera-
tors of the Möbius tool, as shown in Figure 2. Ba-
sically, with the Join operator different models are
linked by sharing some places, called shared places,
through which they interact. The Rep operator gener-
ates several instances of the same model, which can
be uniquely identified using a tailored SAN model
(SwitchIDSelector in our case).

The atomic model Coordinator is the central
coordinator. The submodel HeatherModuleM
is used for modelling an instance of a single
heater module, obtained by the composition,
using the join operator, of the four atomic
SAN models Pro f ileSelector, LocalitySelector,
SwitchIDSelector and RailRoadSwitchHeater,
which shares different parameters concerning a
single rail road switch heater. The submodel
HeatersNetM, obtained by replicating numRep times
the model HeatherModuleM, represents the network
of heaters, where the parameter numRep identifies the
number of devices composing the network. Finally,
the model SwitchHeatingSysM, obtained using the
join operator, represents the overall system. Indeed
all the submodels share the same coordinator.

In Figure 3a the SAN model representing the rail
road switch heater is depicted. We identify three log-
ical components inside this SAN model: the init sub-

net, the clock sub-net and the heater sub-net. The
heater sub-net implements the protocol of communi-
cation between a single heater and the central coordi-
nator, while the remaining modules are used for ini-
tialising and evaluating other parameters concerning
the energy consumption and the probability of failure
of the modelled heater. The heater sub-net represents
the status of the rail road switch heater. The heater
can be activated (one token in the place on), wait-
ing for being activated (one token in the place ready),
turned off (one token in the place o f f ), or failed (one
token in the place f ailure). The heater sub-net inter-
acts with the Coordinator SAN model through places
shared among all the replicas of the heater model and
the Coordinator model implementing the logic de-
scribed below. For example, if a heater H is on state
ready, in order to be turned on, the input gate i1ready2on
checks if the marking of the shared place noti f yIn is
equal to the marking of the place SwitchID of H(i.e.
its unique identifier). This means that the coordinator
has notified H to be turned on.

We emphasise the cyber-physical nature of the
case study by briefly describing its physical aspects.
The increment and decrement of the temperature of
the rail road track, respectively when the heater is
turned on or off, is modelled by a differential equa-
tion representing the balance of energy (Basile et al.,
2016a), where assuming that the values of the tem-
perature of the surrounding area Te and the previous
internal temperature T are known, the updated inter-
nal temperature T after time t is:

mc
∂T
∂t

=−uA(T −Te)+ Q̇,

where u is the coefficient of convective exchange;
c, the heat capacity of iron; A, the surface area ex-
posed to the external temperature; m, the mass of the
iron bar; Q̇, the power used when the heater is turned
on, if the heater is turned off this value will be zero.

5.2 Formal Verification of Interactions
Correctness

We now formally verify the interactions between the
network of heating switches and the central coordina-
tor, to improve the trusthworthiness of the results ob-
tained through the proposed SAN models in (Basile
et al., 2016a). For this purpose, we model the interac-
tions of the SAN models with contract automata. We
remark that we are not providing a generic mapping
from SAN models to CA models, which is matter of
future investigations. Indeed, here we focus on ver-
ifying the interactions of specific SAN models that
have been previously implemented. An over approx-



init

clock

heater

(a) The SAN model RailRoadSwitchHeater, log-
ically divided into three sub-nets: the init, clock
and heater sub-nets.

qH 0 qH 1 qH 2
ins NI

rem

NO

(b) the CA model of
the rail road switch
heater H

.

qQ0 qQ1

qQ2qQ3

ins

ins/rem

rem

NI

NONI NI

(c) the CA model of
the coordinator Q

Figure 3: The SAN model and the contract automata models.

imation of all the possible behaviours of the system
will be verified against the property of strong agree-
ment of the product automaton, which only allows
for synchronous interactions (i.e. traces only made
by match actions), as those are the behaviour showed
by the modelled system. In Figure 3b the contract
automaton representing a rail road switch heater H is
displayed, while the contract automaton of the coor-
dinator Q is in Figure 3c. We now describe all the
possible interactions between the central control unit
and the network of switches implemented in the SAN
models and modelled with CA:

• H: in the initial state qH0 the heater is switched off
and the internal temperature is above the warn-
ing threshold. Once the internal temperature goes
below the warning threshold, the heater issues a
request to be activated to the coordinator with the
action ins.
In state qH1 the internal temperature is below the
warning threshold and the heater is waiting a noti-
fication from the central coordinator to be turned
on. When the message NI (i.e. notify in) is re-
ceived, the heater is turned on, represented by the
state qH2 . From this state two transitions are al-
lowed:

– rem (i.e. remove), the heater reaches an internal
temperature above the working threshold, and
communicates to the central coordinator the ter-
mination of the heating phase and switches to
state qH0 ;

– NO (i.e. notify out) a second heater H′ with
higher priority asks to be turned on. The energy
delivered to H is turned off and H is switched to

state qH0 , even though it has not yet reached
an internal temperature above Two (however the
temperature could be above Twa: if it is not the
case there will be an instantaneous transition
from qH0 to qH1 as previously described).

The target state of both transitions is qH0 , which is
also the final state of the heater.

• Q: in the initial (and final) state qQ0 the central
coordinator is waiting for a message from one of
the heaters in the network. Two messages can be
received:

– ins: a heater asks to be activated. This request
can be rejected in case there is no available en-
ergy and the priority is not higher than those ac-
tivated heaters, which is modelled by the inner
loop (qQ0 , ins,qQ0). In this case a notification
of activation will be issued as soon as there is
energy available (see below).
Otherwise, the request is accepted and the tar-
get state is qQ1 . In state qQ1 two transitions are
allowed. In case there is enough available en-
ergy, the heater is activated with the message
NI. Otherwise, if there is no available energy
but H has a priority higher than one of the ac-
tivated heaters H′, firstly a message NO is is-
sued to H′, which will be consequently turned
off, and then the activation is notified to H with
the message NI;

– rem: a heater H notifies the deactivation. If
there are no heaters H′ activated or waiting for
being activated then no action is performed,
modelled with the inner loop (qQ0 ,rem,qQ0).
Otherwise, after receiving the message rem,



one of the pending heater H′ is activated by is-
suing the message NI to H′.

The places o f f ,ready,on of the SAN model in
Figure 3a are modelled as states qH0 ,qH1 ,qH2 of the
corresponding automaton in Figure 3b. The mod-
elling of states of the SAN model Coordinator (not
displayed here) with the contract automaton Q in
Figure 3c is similar. The interactions of H and Q
are modelled in the SAN models through the places
noti f yIn,noti f yOut,action and id that are shared
among the different replicas of the SAN models
for the heater and the unique SAN model of the
coordinator. More precisely, through the places
noti f yIn,noti f yOut the coordinator sends messages
to one of the heaters in the network, which is uniquely
identified by the number of tokens into these places.
These interactions are modelled as transitions of the
contract automata labeled by the actions NI and NO.
Similarly, the places action and id are used by the
heaters to communicate to the coordinator the action
ins or rem of the contract automata (respectively one
or two tokens in the place action) and the identity of
the sender (place id).

The contract automata models over approximate
the real behaviour of the system. For example, from
states qQ0 of Q different transitions can be chosen non-
deterministically. Moreover, since here we want to
verify the progress of interactions, we do not consider
possible failures of heaters. By making the product
automaton of numRep instances of the heater model
H with the coordinator Q, it is possible to analyse the
behaviour of the overall system. For displaying pur-
poses, here we only discuss the verification of a net-
work with two heaters and the coordinator, which is
composed of 29 transitions and 16 states.

We remark that this approach scales to more
complex systems. We have successfully analysed
a model with ≈ 5000 transitions, which can be
accessed at https://github.com/davidebasile/
CAT/tree/master/JaMata/HeatersNet. The cor-
responding liable transitions (see below) have been
checked in few seconds.Note that generally it is not
decidable to verify the correctness of a network with
an arbitrary number of replicas of a SAN model
(through Rep operator), because the different repli-
cas can be uniquely identified. Indeed, a reduction to
the halting problem for Turing machines is provided
in (Apt and Kozen, 1986).

We check that no interactions between the cen-
tral coordinator and the heaters lead to a dead-
lock. For this purpose, CAT checks the pres-
ence of strongly liable transitions in the composed
automaton, which represent the bad behaviour of
the system (i.e. interactions responsible of leading

((qH0 ,qH1 ,qQ0),(ins,�, ins),(qH1 ,qH1 ,qQ0))

((qH1 ,qH0 ,qQ0),(�, ins, ins),(qH1 ,qH1 ,qQ0))

((qH2 ,qH2 ,qQ0),(rem,�,rem),(qH0 ,qH2 ,qQ3))

((qH2 ,qH2 ,qQ0),(�,rem,rem),(qH2 ,qH0 ,qQ3))

((qH2 ,qH0 ,qQ0),(rem,�,rem),(qH0 ,qH0 ,qQ3))

((qH0 ,qH2 ,qQ0),(�,rem,rem),(qH0 ,qH0 ,qQ3))

Figure 4: the strongly liable transitions of H1⊗H2⊗Q.

the composition to a deadlock). CAT detects dif-
ferent strongly liable transitions, displayed in Fig-
ure 4. In the first row, we have the transition
((qH0 ,qH1 ,qQ0),(ins,�, ins),(qH1 ,qH1 ,qQ0)), where
H1 interacts with Q by synchronising on the ac-
tion ins, and Q non deterministically decides to take
its inner loop, while H1 stays idle. In the target
state, both heaters are on the state qH1 . In this
configuration Q cannot send the message NI any
more and the system gets stuck with both heaters
waiting their turn for being activated. Note that
in the source state of the transition (qH0 ,qH1 ,qQ0),
the component H2 is in state qH1 , hence there are
no heaters activated. Indeed, this transition repre-
sents a false positive that is a behaviour that will
never be possible in the real system; because if
there are no activated heaters, a request of activa-
tion will never be refused. The second transition,
i.e. ((qH1 ,qH0 ,qQ0),(�, ins, ins),(qH1 ,qH1 ,qQ0)), is
the symmetric case for the heater H2. All the other
liable transitions represent all the possible combina-
tions of interactions where none of the two heaters is
waiting for being activated on state qH1 , one heater
terminates the heating phase by sending the message
rem and the coordinator Q moves non deterministi-
cally to state qQ2 , however no heater is waiting for
being activated and the message NI cannot be deliv-
ered. Once again, all these transitions are false posi-
tive. Indeed if no heater is in state qH1 , Q will never
send a NI message, because there are no heaters wait-
ing for being activated, and the inner loop of Q will
always be taken.

These false positives are automatically removed
by CAT, by computing the so-called most permis-
sive controller. In particular, the “bad” states ~q that
are removed are those satisfying the conditions: ∀i ∈
0 . . .numRep− 1.~q(i) = qH1 ∧~q(numRep+1) = qQ0 or
∀i ∈ 0 . . .numRep−1.~q(i) 6= qH1 ∧~q(numRep+1) = qQ3.

No strongly liable transitions are found in the re-
fined automaton, and we conclude that the interac-
tions of the system are sound: no deadlock will ever
occur.



6 Conclusions

We have verified the correctness of the interac-
tions of a stochastic model of a cyber-physical sys-
tem. The selected case study is a system of rail road
switch heaters that have been modelled in (Basile
et al., 2016a) through SAN models in order to eval-
uate indicators of the reliability and the energy con-
sumption. Starting from the SAN models, the in-
teraction patterns have been modelled with contract
automata, so allowing the automatic verification of
the progress of interactions through the Contract Au-
tomata Tool (Basile et al., 2016c).

Based on the obtained results, we are planning to
generalise the adopted technique to formally relate
SAN models and CA models and proving the cor-
rectness of the mapping. Moreover, we would like
to extend the comparisons with: (i) stochastic hybrid
automata that have been used in (Basile et al., 2017a)
to analyse rail road switch heating systems, and (ii)
an extension of contract autamata formalism to ex-
press necessary and mandatory requirements (Basile
et al., 2017b), useful for modelling critical requests
that must be fulfilled.

REFERENCES

Alur, R. and Dill, D. L. (1994). A theory of timed automata.
Theoretical Computer Science, 126(2):183 – 235.

Apt, K. R. and Kozen, D. (1986). Limits for automatic ver-
ification of finite-state concurrent systems. Inf. Pro-
cess. Lett., 22(6).

Balbo, G. (2007). Introduction to generalized stochastic
petri nets. In Bernardo, M. and Hillston, J., editors,
Formal Methods for Performance Evaluation, volume
4486 of LNCS. Springer.

Basile, D., Chiaradonna, S., Giandomenico, F. D., and
Gnesi, S. (2016a). A stochastic model-based approach
to analyse reliable energy-saving rail road switch heat-
ing systems. Journal of Rail Transport Planning &
Management, 6(2):163 – 181.

Basile, D., Degano, P., and Ferrari, G. L. (2016b). Au-
tomata for specifying and orchestrating service con-
tracts. CoRR, abs/1607.08363.

Basile, D., Degano, P., Ferrari, G.-L., and Tuosto, E.
(2016c). Playing with Our CAT and Communication-
Centric Applications, pages 62–73. Springer Interna-
tional Publishing, Cham.

Basile, D., Degano, P., Ferrari, G. L., and Tuosto, E.
(2016d). Relating two automata-based models of or-
chestration and choreography. Journal of Logical and
Algebraic Methods in Programming, 85(3).

Basile, D., Di Giandomenico, F., and Gnesi, S. (2016e).
Tuning energy consumption strategies in the railway
domain: a model-based approach. In 7TH Inter-
national Symposium on Leveraging Applications of

Formal Methods, Verification and Validation, ISOLA
2016.

Basile, D., Di Giandomenico, F., and Gnesi, S. (2017a).
Statistical model checking of an energy-saving cyber-
physical system in the railway domain. In The 32nd
ACM Symposium on Applied Computing, SAC 2017.
(to appear).

Basile, D., Di Giandomenico, F., Gnesi, S., Degano, P., and
Ferrari, G.-L. (2017b). Specifying variability in ser-
vice contracts. In Proceedings of the 11th Interna-
tional Workshop on Variability Modelling of Software-
intensive Systems (Vamos), February 1 - 3. (to appear).

Bause, F. and Kritzinger, P. S. (1996). Stochastic petri nets:
An introduction to the theory. SIGMETRICS Perform.
Eval. Rev., 26(2).

Clark, G., Courtney, T., Daly, D., Deavours, D., Derisavi,
S., Doyle, J. M., Sanders, W. H., and Webster, P.
(2001). The möbius modeling tool. In Proceedings
of the 9th International Workshop on Petri Nets and
Performance Models, pages 241–250.

Clarke, E., Grumberg, O., Minea, M., and Peled, D. State
space reduction using partial order techniques. In-
ternational Journal on Software Tools for Technology
Transfer, 2(3).

Clarke, Jr., E. M., Grumberg, O., and Peled, D. A. (1999).
Model Checking. MIT Press, Cambridge, MA, USA.

David, A., Larsen, K. G., Legay, A., Mikuăionis, M., and
Poulsen, D. B. (2015). Uppaal smc tutorial. Int. J.
Softw. Tools Technol. Transf., 17.

David, R. and Alla, H. (2001). On hybrid petri nets. Dis-
crete Event Dynamic Systems, 11(1-2):9–40.

Henzinger, T. A. and Ho, P. (1995). Algorithmic analysis of
nonlinear hybrid systems. In Computer Aided Verifi-
cation, 7th International Conference, Proceedings.

Holzmann, G. (2003). Spin Model Checker, the: Primer
and Reference Manual. Addison-Wesley Professional,
first edition.

Kupferman, O. and Vardi, M. Y. (1998). COMPOS’97,
chapter Modular Model Checking.

Larsen, K. G., Pettersson, P., and Yi, W. (1997). Uppaal in
a nutshell. Int. Journal on Software Tools for Technol-
ogy Transfer, 1.

Lee, E. A. (2008). Cyber physical systems: Design chal-
lenges. In Proceedings of the 2008 11th IEEE Sympo-
sium on Object Oriented Real-Time Distributed Com-
puting, ISORC ’08. IEEE Computer Society.

Legay, A., Delahaye, B., and Bensalem, S. (2010). RV 2010.
Proceedings, chapter Statistical Model Checking: An
Overview. Springer.

McMillan, K. L. (1993). Symbolic Model Checking. Kluwer
Academic Publishers, Norwell, MA, USA.

Reibman, A., Smith, R., and Trivedi, K. (1989). Markov
and markov reward model transient analysis: An
overview of numerical approaches. European Journal
of Operational Research, 40(2).

Sanders, W. H. and Meyer, J. F. (2000). Stochastic activity
networks: Formal definitions and concepts. In Lec-
tures on Formal Methods and Performance Analysis.



Yovine, S. (1997). Kronos: A verification tool for real-
time systems. (kronos user’s manual release 2.2). In-
ternational Journal on Software Tools for Technology
Transfer, 1:123–133.


