UNIVERSITA DI P1sA
DOTTORATO DI RICERCA IN INGEGNERIA DELL’ INFORMAZIONE

DATA FLOW QUALITY MONITORING
IN DATA INFRASTRUCTURES

DOCTORAL THESIS

Author
Andrea Mannocci

Tutor (s)
Prof. Marco Avvenuti, Dr. Paolo Manghi

Reviewer (s)

Prof. Andreas Rauber, Marta Mattoso

The Coordinator of the PhD Program
Prof. Marco Luise

Pisa, November 2016

XXIX

To the ones who believed in me and always will. . .
maybe even more than I am used to.

“Among all the sure things,
the most certain is doubt.”
— Bertolt Brecht

Acknowledgements

URSUING this Ph.D. and putting this manuscript together have been not only my
last two labours, which several times led me to the brink of an emotional outburst,
but also a transition phase in my life. New and old challenges, experiences, jobs,

countries, cities, houses, loves and friends. Oh boy, what a hectic period! However, |
apparently survived it and I arrived to peek the light at the end of the tunnel, so with a
burst of joy I'd like to thank all the people that made this possible.

My first and foremost “thank you” goes to Dr. Paolo Manghi whose ideas, suggestions
and guidance steered and inspired me during this three year-long journey in this valley of
satisfaction and despair called Ph.D. He contributed to this work more than anyone with
both exciting and passionate discussions, so I owe him my profound gratitude. I wish to
thank also Prof. Marco Avvenuti who welcomed the supervision of this Ph.D. project
and Prof. Andreas Rauber and Prof. Marta Mattoso for reviewing this manuscript and
providing me with such constructive feedback.

I’d like to extend my gratitude to all the members of the NeMIS laboratory at ISTI-
CNR: it has been, both metaphorically and literally, my second home for these last four
years. Here I’ve had the opportunity to challenge myself and let my ideas thrive. My
gratitude also goes to my “roommates”, whose company made days pass by working
and studying, but also laughing and chatting. You made my average day always pleasant,
so here it is...my deepest thanks go to you Sandro La Bruzzo, Claudio Atzori, Michele
Artini, Alessia Bardi and Miriam Baglioni. Thanks also to Andrea Dell’ Amico and
Marko Mikulicic with whom I shared, despite not being in the same room, thoughts and
concerns about monitoring in all its shapes, and to Monja Da Riva, the only shiatsu-
techno therapist I know, for all the laughter and for sharing sesame snacks cravings with
me; best of luck for your career. An incommensurable thank you goes to Dr. Leonardo
Candela for endless talks about data infrastructures and papers, and to Alessandro
Nardi and Catherine Bosio for their terrific back-office work and for sharing their life
experiences and suggestions with me. Last but not least, I'd like to thank Dr. Donatella
Castelli whose experience and humanity created such an amazing and active group, and
the institute which gave me the opportunity to apply for a visiting period at The Open
University; thing that leads to the next series of acknowledgements.

I

Deep thanks to the Knowledge Media Institute for having me as a visiting Ph.D. stu-
dent and especially to Dr. Peter Knoth and the CORE team: Matteo, Lucas, Sam, Dasha,
Nancy, Aris and Vasa. Thanks to the rest of the KMi gang, the Knowledge Media
instruments band and the “OU bubble”: thank you Aitor, Alberto, the two Alessan-
dro, Allan, Angelo, Beppe, Bjarte, Brian, Davide, Dinar, Prof. Enrico Motta, Ginevra,
Giorgio, Ilaria, Jay, Julian, Koula, Lara (who, at the time of writing, counts for two),
Maria, Martin, Manu, Michael, Miriam, Paco, Patrizia, Simon and Tina. I hope I didn’t
forget anyone, in which case I beg your pardon. My gratitude also goes to Dr. Mathieu
D’ Aquin for offering me a tremendous opportunity as a PostDoc at KMi and to the
KMI-er Enrico Daga, whose life choices and studies brought him to be a workflows and
guitars expert and thus, poor him, so damn interesting to my eyes. Thanks for countless
minutes spent chatting.

A special mention goes to Penelope for being there everyday listening to me, probably
without having the faintest clue, talking about this thesis and providing me with useful
suggestions. Your love and patience — in nomen omen said the ancient Romans — largely
contributed in keeping my sanity at bay and won’t be forgotten.

Let me address my deepest gratitude to my parents, my lone and only Family; it’s
not the quantity but the quality that matters. I’ve mentioned it already in previous
dedications, but I want to stress it again here: thanks for educating me in the respect of
both science and literature; your support and unconditional love always pushes me in
pursuing my own interests and do my best. It’s been an honor to make you proud.

Thanks to Niccolo, Luigi, Flavio, Ilaria and all my old and new friends for countless
nights out and good time, to Monse for being a remote anchor point throughout all these
years, to the rest of the DpNn clan which amused me online in my little spare time, to
Livia who relentlessly tried to pull the best out of me, to Valentina for our long chats,
and to Rossella and Ludovica for all the silly videos that cheered my days up.

Somebody once made me notice that our life and our present self is the summation
of infinitesimal events and choices aligned in a timeline in which every instant, every
circumstantial action, even the most random encounter, takes part to the outcome. Even
if in engineering infinitesimal terms are reasonably disregarded somewhere along the
way, I'd like to extend my gratitude to everyone quoting two songs dear to me.

Here’s to us, Now that we’re here,
here’s to love, it’s so far away,
all the times all the struggle we thought was in vain
that we messed up. and all the mistakes
Here’s to you, one life contained
fill the glass they all finally start to go away.
Now that we’re here,
(Halestorm — “Here’s to us”) it’s so far away,

and I feel like I can face the day,
and I can forgive and I'm not ashamed
to be the person that I am today.

(Staind — “So far away”)

Abstract

N the last decade, a lot of attention worldwide has been brought by researchers,
organizations, and funders on the realization of Data Infrastructures (DlIs), namely
systems supporting researchers with the broad spectrum of resources they need to

perform science. DIs are here intended as ICT (eco)systems offering data and processing
components which can be combined into data flows so as to enable arbitrarily complex
data manipulation actions serving the consumption needs of DI customers, be them
humans or machines.

Data resulting from the execution of data flows, represent an important asset both for
the DI users, typically craving for the information they need, and for the organization
(or community) operating the DI, whose existence and cost sustainability depends on
the adoption and usefulness of the DI. On the other hand, when operating several data
processing data flows over time, several issues, well-known to practitioners, may arise
and compromise the behaviour of the DI, and therefore undermine its reliability and
generate stakeholders dissatisfaction. Such issues span a plethora of causes, such as
(i) the lack of any kind of guarantees (e.g. quality, stability, findability, etc.) from
integrated external data sources, typically not under the jurisdiction of the DI; (ii) the
occurrence at any abstraction level of subtle, unexpected errors in the data flows; and
(i11) the nature in ever changing evolution of the DI, in terms of data flow composition
and algorithms/configurations in use.

The autonomy of DI components, their use across several data flows, the evolution of
end-user requirements over time, make the one of DI data flows a critical environment,
subject to the most subtle inconsistencies. Accordingly, DI users demand guarantees,
while quality managers are called to provide them, on the “correctness” of the DI data
flows behaviour over time, to be somehow quantified in terms of “data quality” and in
terms of “processing quality”. Monitoring the quality of data flows is therefore a key
activity of paramount importance to ensure the up-taking and long term existence of
a DI. Indeed, monitoring can detect or anticipate misbehaviours of DI’s data flows, in
order to prevent and adjust the errors, or at least “formally” justify to the stakeholders
the underlying reasons, possibly not due to the DI, of such errors. Not only, monitoring
can also be vital for DIs operation, as having hardware and software resources actively

III

employed in processing low quality data can yield inefficient resource allocation and
waste of time.

However, data flow quality monitoring is further hindered by the “hybrid” nature of
such infrastructures, which typically consist of a patchwork of individual components
(“system of systems”) possibly developed by distinct stakeholders with possibly distinct
life-cycles, evolving over time, whose interactions are regulated mainly by shared
policies agreed at infrastructural level. Due to such heterogeneity, generally DIs are not
equipped with built-in monitoring systems in this sense and to date DI quality managers
are therefore bound to use combinations of existing tools — with non trivial integration
efforts — or to develop and integrate ex-post their own ad-hoc solutions, at high cost of
realization and maintenance.

In this thesis, we introduce MoniQ, a general-purpose Data Flow Quality Monitoring
system enabling the monitoring of critical data flow components, which are routinely
checked during and after every run of the data flow against a set of user-defined quality
control rules to make sure the data flow meets the expected behaviour and quality
criteria over time, as established upfront by the quality manager. MoniQ introduces a
monitoring description language capable of (i) describing the semantic and the time
ordering of the observational intents and capture the essence of the DI data flows to be
monitored; and (ii) describing monitoring intents over the monitoring flows in terms of
metrics to be extracted and controls to be ensured. The novelty of the language is that it
incorporates the essence of existing data quality monitoring approaches, identifies and
captures process monitoring scenarios, and, above all, provides abstractions to represent
monitoring scenarios that combine data and process quality monitoring within the scope
of a data flow. The study is provided with an extensive analysis of two real-world
use cases used as support and validation of the proposed approach, and discusses an
implementation of MoniQ providing quality managers with high-level tools to integrate
the solution in a DI in an easy, technology transparent and cost efficient way in order to
start to get insight out data flows by visualizing the trends of the metrics defined and the
outcome of the controls declared against them.

v

Sommario

ELL’ultimo decennio, ricercatori, organizzazioni e finanziatori di tutto il mondo

hanno rivolto la loro attenzione alla realizzazione di Data Infrastructure (DI),

infrastrutture digitali volte alla condivisione ed al riuso di dati e prodotti della

ricerca, € necessarie a supportare le attivita di una comunita di ricercatori con 1’ampia

gamma di servizi da essa richiesti. Le infrastrutture dati sono intese in questo lavoro

come (eco)sistemi ICT in grado di offrire componenti/servizi di processamento e persi-

stenza dati che possono venire combinati in data flow in modo tale da rendere possibile

una manipolazione dati arbitrariamente complessa atta a servire le richieste degli utenti
della DI, siano essi umani o macchine.

I dati risultanti dall’esecuzione dei data flow rappresentano una risorsa primaria sia
per gli utenti della DI, che richiedono i risultati attesi, sia per la comunita o organizza-
zione che la mantiene, la cui esistenza e sostenibilita in termini di costi spesso dipende
strettamente dalla usabilita ed dalla efficienza della DI stessa. Al tempo stesso, tuttavia,
la gestione nel tempo dell’esecuzione di molteplici (possibilmente concorrenti) data flow
apre ad una serie di problematiche ben note agli esperti che possono compromettere
il funzionamento della DI, minarne I’affidabilita e non soddisfare le richieste degli
stakeholder. Queste problematiche gettano radici comuni in una serie di cause, spesso
tra loro correlate o combinate, quali (i) la mancanza di garanzie di sorta — in termini di
qualita, stabilita dei dati, etc. — da parte delle sorgenti esterne aggregate, che tipicamente
non sottostanno al controllo diretto della DI; (ii) il verificarsi di errori inattesi a qualsiasi
livello di astrazione nel data flow; e (iii) la natura in continuo cambiamento dell’infra-
struttura, in termini di composizione dei data flow e degli algoritmi/configurazioni in
uso.

autonomia dei componenti di una DI, il loro (ri)uso in piu data flow e 1’evoluzione
nel tempo dei requisiti utente rendono quello delle DI e dei loro data flow un contesto
critico e soggetto alle piti disparate inconsistenze. E quindi di vitale importanza fornire
garanzie in termini di correttezza sul comportamento dei data flow nel tempo — garanzie
quantificate in base alla qualita dei dati prodotti e alla qualita dei processi svolti — in
modo tale da individuare comportamenti inesatti, prevenire e risolvere le inconsistenze o
quantomeno giustificare le ragioni di tali errori, talvolta non dipendenti in toto dalla DI,

A%

ai propri stakeholder. In aggiunta il monitoraggio puo essere vitale per il funzionamento
dell’infrastruttura stessa, in quanto impiegare attivamente risorse hardware e software
nel processamento di dati di scarsa qualita comporta una inefficiente allocazione di
queste ed uno spreco di tempo e denaro.

Tuttavia, il monitoraggio della qualita dei data flow ¢ ulteriormente complicata dalla
natura ibrida e distribuita delle DI che spesso consistono in patchwork di componenti
potenzialmente sviluppati da parti distinte con distinti cicli di vita, le cui interazioni
sono regolate da policy ed accordi stabiliti a livello infrastrutturale. E proprio a causa di
questa eterogeneita che spesso le DI sono sprovviste di strumenti di monitoraggio in
questo senso e i quality manager si vedono costretti ad integrare a posteriori soluzioni
ad-hoc facendosi carico di ingenti costi di sviluppo e manutenzione.

In questa tesi, introduciamo MoniQ, una soluzione general-purpose al problema
del monitoraggio della qualita dei data flow, in grado di monitorarne i componenti
critici e di controllarne costantemente le metriche vitali durante e a seguito di ogni
esecuzione contro un insieme di vincoli definiti dall’utente al fine di verificare che il
data flow si comporti, nel tempo, nel rispetto delle specifiche dettate dai quality manager.
MoniQ introduce un linguaggio descrittivo di monitoraggio in grado di (i) specificare la
semantica delle metriche e con quale ordinamento temporale queste intendono essere
campionate dal data flow sottostante; e (ii) descrivere gli intenti di monitoraggio in
termini di metriche da estrarre, aggregazioni, composizioni e controlli da effettuare. La
novita introdotta dal linguaggio consiste nel mettere a fattor comune, in un unico scenario
di monitoraggio, I’essenza degli approcci esistenti per il monitoraggio sia della qualita
dei processi che della qualita dei dati. Lo studio ¢ corredato da un’analisi estensiva di due
casi d’uso reali impiegati a supporto e validazione dell’approccio proposto, e descrive
una possibile implementazione di MoniQ che fornisce ai quality manager strumenti di
alto livello che consentano un’integrazione facile e dai costi contenuti della soluzione e
che mettano in breve tempo in condizione di ispezionare i trend delle metriche estratte
dai data flow e valutare ’esito dei controlli specificati su di essi.

VI

List of publications

International Journals

1. Artini, M., Atzori, C., Bardi, A., La Bruzzo, S., Manghi, P. and Mannocci, A.
(2015). The OpenAIRE Literature Broker Service for Institutional Repositories. In
D-Lib Magazine, 21(11), 3.

2. Manghi, P., Artini, M., Atzori, C., Bardi, A., Mannocci, A., La Bruzzo, S., Candela,
L., Castelli, D. and Pagano, P. (2014). The D-NET software toolkit: A framework
for the realization, maintenance, and operation of aggregative infrastructures. In
Program, 48(4), 322-354.

International Conferences/Workshops with Peer Review

1. Mannocci, A. and Manghi, P. (2016, September). DataQ: A Data Flow Quality
Monitoring System for Aggregative Data Infrastructures. In 20th International
Conference on Theory and Practice of Digital Libraries (TPDL) (pp. 357-369).
Springer International Publishing.

2. Mannocci A., Casarosa V., Manghi P. and Zoppi F. (2016, January). The EAGLE
data aggregator: data quality monitoring. In 7th EAGLE International Conference.

3. Mannocci, A., Casarosa, V., Manghi, P. and Zoppi, F. (2015, January) The EAGLE
Europeana network of Ancient Greek and Latin Epigraphy: a technical perspective.
In 11th Italian Research Conference on Digital Libraries (IRCDL).

4. Mannocci, A., Casarosa, V., Manghi, P. and Zoppi, F. (2014, November). The
Europeana Network of Ancient Greek and Latin Epigraphy Data Infrastructure.
In 8th Research Conference on Metadata and Semantics Research (MTSR) (pp.
286-300). Springer International Publishing.

5. Casarosa, V., Manghi, P., Mannocci, A., Rivero Ruiz, E. and Zoppi, F. (2014) A
Conceptual Model for Inscriptions: Harmonizing Digital Epigraphy Data Sources.
In 15t EAGLE International Conference on Information Technologies for Epigraphy
and Digital Cultural Heritage in the Ancient World (pp. 29-30).

VII

Others

1. Mannocci A. (2015). Data Flow Monitoring: system requirements and design.
OpenAIRE2020. Deliverable D8.4.

2. Mannocci A. (2014, November). Monitoring data quality in research data infras-
tructures. In 4th RDA plenary meeting. Poster session.

VIII

List of Abbreviations

ADI

DFD
DI

DIS

HITL
HPC

IMS
IQ

OA

QoS

SoA
SWIMS

Aggregative Data Infrastructure. 47

Data Flow Diagram. 3

Data Infrastructure. 1-5, 7-10, 12—-15, 21—
23, 29, 30, 34, 36-39, 41-53, 57-59, 61-63,
65, 66, 88, 89, 91, 93-98, 103, 104, 106,
107

Data Integration System. 26

Human-In-The-Loop. 34, 35, 43
High Processing Computing. 29

Information Manufacturing System. 3, 7
Information Quality. 27

Open Access. 8, 10, 11, 20, 21, 74, 78, 81

Quality of Service. 23

Service-oriented Architecture. 10, 11
Scientific Workflow Management System.
6, 24, 27-29, 35, 106, 107

IX

List of Abbreviations

VRE Virtual Research Environment. 2

w

WebUI Web User Interface. 7, 8, 21, 88-90, 93-95,
97, 105

WEP Workflow Execution Plan. 27, 35, 107

WIMS Workflow Management System. 6, 24, 25,
29, 31, 35, 43, 107

Contents

List of Abbreviations IX
1 Introduction 1
1.1 Datainfrastructures 1
1.2 Monitoring data infrastructures: the challenge 4
1.3 Thesis contribution Lo 7
1.4 Outlineofthethesis. 8

2 Real-world Use Cases 10
2.1 The OpenAIRE data infrastructure 10
2.1.1 Monitoring the aggregation data flows 13

2.1.2 Monitoring the deduplicationdataflow 16

2.1.3 Monitoring the inference dataflow 18

2.1.4 Monitoring the publishing dataflow 19

2.1.5 Monitoring the provisiondataflow 20

2.2 The CORE data infrastructure 21

3 State of the Art 23
3.1 Workflow quality and monitoring 23
3.2 Data quality and monitoring 25
3.3 Use of data quality concepts in workflows monitoring 27
3.4 A classification taxonomy for monitoring systems 29

4 MoniQ: A Data Flow Quality Monitoring System 37
4.1 Requirements of Data Flow Quality Monitoring Systems 37
4.2 MoniQ Architecture 41
4.3 The MoniQ Monitoring Flow Description Language 42
4.3.1 Monitoring flow examples 47

4.4 The MoniQ Monitoring Intent Description Language 50
441 MEtrics v v v e e e 51

442 Sensorso e e 52

Contents

4.4.3 Sessions and observations 54

4.4.4 Data-flow aware monitoring 57

445 Controls 59

4.4.6 Actuators.o e 61

4.5 Integration effort required by MoniQ 62

5 Experimentation and evaluation 64
5.1 The OpenAIREusecase 64
5.1.1 Monitoring the aggregation data flows 64

5.1.2 Monitoring the deduplicationdataflow 69

5.1.3 Monitoring the inference dataflow 70

5.1.4 Monitoring the publishing dataflow 73

5.2 The COREusecase vt 83

6 An Implementation of MoniQ 88
6.1 Implementationdetails 88
6.1.1 MoniQ server 89

6.1.2 Data infrastructure integration 95

6.2 Showcase 98

7 Conclusions 103
7.1 Futurework 104
7.1.1 Scalability issues: when “monitoring data” grow big 104

7.1.2 Dynamically reconfigured controls 105

7.1.3 Multi-state controls outcome 105

7.1.4 Real-time control of sub-process metrics 106

7.1.5 Data analytics of “monitoring data” 107

7.1.6 Off-the-shelf instantiation and customization of MoniQ 107
Bibliography 109

XII

CHAPTER

Introduction

In this chapter we will introduce context, motivations, challenges, and contribution of
the present thesis. Section 1.1 will introduce the notion of Data Infrastructures (DIs) as
intended and adopted in this work, while Section 1.2 will describe the major problems
arising when it is necessary to monitor the internal status and the data flows in such
infrastructures. Finally, in Section 1.3, we describe our contributions to the research
field and describe the main technical challenges we had to face.

1.1 Data infrastructures

In the last decade, a lot of attention worldwide has been brought by researchers, orga-
nizations, and funders on the realization of digital infrastructures or e-infrastructures,
namely systems supporting researchers with the broad spectrum of resources they need
to perform science, such as (i) hardware resources (e.g. networks, storage, computing
resources, clouds, grids), (ii) system-level middleware resources (e.g. service registries,
credential delegation services, certificate authorities), (iii) processing resources (e.g.
software, applications, tools, services), and (iv) data resources (e.g. repositories, archives,
databases). e-Infrastructures are by definition “systems of systems”, whose resources
may not constitute one coherent information system, but may be simply brought together
by common practices and needs of the researchers of a community. Today most of
science is conducted in a computation-driven or data-intensive fashion [45,48,107] and
the realization of powerful e-Infrastructure information systems or the improvement
of existing ones towards becoming more accessible information systems is of crucial
importance to accelerate science and optimize its costs. Evidence of this trend are: the
Cyberinfrastructure programme launched by the US National Science Foundation (NSF),

1

Chapter 1. Introduction

which planned! to develop new research environments in which advanced computa-
tional, collaborative, data acquisition and management services are made available to
researchers connected through high-performance networks; the European Strategy Fo-
rum on Research Infrastructures (ESFRI), which presented the first European roadmap?
for new, large-scale Research Infrastructures; and the European e-Infrastructure Re-
flection Group (e-IRG)?, which identifies guidelines and recommendations towards the
realizations of e-Infrastructures where the principles of global collaboration and shared
resources are intended to encompass the sharing needs of all research activities.

Although several definitions of “Data Infrastructure” can be found in the litera-
ture, which may differ depending on the level of abstraction (e.g. services, middle-
ware, software, hardware) and broadness of their interpretation (e.g. discipline, cross-
discipline, general-purpose), these explicitly are built on, or include, the definition
of e-Infrastructure. For example, in the context of scientific research and scholarly
communication, the notion of (Aggregative) Data Infrastructure (ADI) [7,57, 84] has
been given as “e-Infrastructures serving scientific research communities and created
to exploit the increasing and diffused online presence of research data scattered across
multiple data sources, the cross-discipline nature of science and the need of researchers
to gain immediate access to research all material”. With a broader perspective, the Euro-
pean Commission issued a vision document for Global Research Data Infrastructures
(GRDI)*, which identifies a roadmap technical and organizational recommendations for
designers and developers of future research DIs seen as e-Infrastructures connecting
data archives, library services, and community services. In summary, there seem to be
consensus on defining DIs as “e-infrastructures promoting data sharing and consumption,
needed for the operation of a society/community as well as the services and facilities

necessary for data economy to function.

Examples of DIs tailoring scientific communication are OpenAIRE® [58,94] and
CORE-UK’ [51]. Such systems deliver the aggregation of thousands data sources to
enable cross-source, cross-discipline, cross-continent discovery and, whenever possible,
the construction of citation indexes. Other examples from thematic-domain supporting
access to different research products in Cultural Heritage are Europeana®, the European
Film Archive [4], the Heritage of the People’s Europe [7], the Europeana network for
Ancient Greek and Latin Epigraphy® [60]; while other examples supporting scientific re-
search activities are D4Science!? — hosting more than 50 Virtual Research Environments
(VRES) to serve the biological, ecological, environmental, and statistical communities
world-wide [25] — the several instances of science gateways'! and one-stop shops serv-

INSF Cyberinfrastructure Vision for 21st Century Discovery, http://1lib.colostate.edu/publicwiki/images/
c/cf/CI_Vision_MarchO7.pdf

2ESFRI roadmap 2016, http://www.esfri.eu/sites/default/files/20160309_ROADMAP_browsable.
pdf

3e-IRG “blue paper” (2010), http://e-irg.eu/documents/10920/238805/e-irg_blue_paper_2010

4Global Research Data Infrastructures (GRDI), http://www.grdi2020.eu/repository/filescaricati/
6bdc07fb-b21d-4b90-81d4-d909£fdb96b87.pdf

Shttps://en.wikipedia.org/wiki/Data_infrastructure

%0penAIRE, http://www.openaire.eu

7CORE - The UK Open Access Aggregator, https://core.ac.uk

SEuropeana, http://www.europeana.eu

“EAGLE project, http://eagle—network.eu

10D4Science, https://www.d4science.org

Science Gateways http://sciencegateways.org/about/science-gateway-basics

2

http://lib.colostate.edu/publicwiki/images/c/cf/CI_Vision_March07.pdf
http://lib.colostate.edu/publicwiki/images/c/cf/CI_Vision_March07.pdf
http://www.esfri.eu/sites/default/files/20160309_ROADMAP_browsable.pdf
http://www.esfri.eu/sites/default/files/20160309_ROADMAP_browsable.pdf
http://e-irg.eu/documents/10920/238805/e-irg_blue_paper_2010
http://www.grdi2020.eu/repository/filescaricati/6bdc07fb-b21d-4b90-81d4-d909fdb96b87.pdf
http://www.grdi2020.eu/repository/filescaricati/6bdc07fb-b21d-4b90-81d4-d909fdb96b87.pdf
https://en.wikipedia.org/wiki/Data_infrastructure
http://www.openaire.eu
https://core.ac.uk
http://www.europeana.eu
http://eagle-network.eu
https://www.d4science.org
http://sciencegateways.org/about/science-gateway-basics

1.1. Data infrastructures

ing an entire community, such as Hola Cloud'?, nanoHUB'? [50], HUBzero!* [67], the
Protein Data Bank (PDB)!® [17], Galaxy'® [40] and many others.

In this thesis, we look at DIs from the perspective of their data processing components
—e.g. web services, desktop tools, libraries — and how such components are organized
into data flows so as to manipulate and produce data stored in and provided by data
components — e.g. databases, document stores, external data sources, data streams —
thereby excluding from the scope lower layers of the DIs stack, mainly relative to
hardware and deployment issues. In the following, we shall refer to the following
general definitions:

Definition 1.1. Data Infrastructures (Dls) are here intended as ICT (eco)systems consti-
tuted by data and processing components which can be combined into data flows so as
to enable arbitrarily complex data manipulation actions serving the consumption needs
of DI customers, be them humans or machines. O

Definition 1.2. Processing components logically represent software agents whose exe-
cution, fired by a human or machine, is intended to process given input data. U

Since we are dealing with digital science, a processing component does not represent
the action of a human in a laboratory. Examples of processing components can be a web
service, a local procedure, a desktop tool or a web application to be manually activated,
etc.

Definition 1.3. Data components logically represent “data stores” used to handle “col-
lections of objects” and living in the DI. They are used as sources or targets of processing
components. U

Examples of data components can be relational databases, indexes, streaming sources,
file systems, document stores, object stores, HBase stores, etc.

Definition 1.4. A data flow is the specification of “how” a given DI data processing goal
is achieved in terms of an ordered sequence of (possibly parallel) processing components
applied over data components of the DI. A data flow is completely (or partly) executed
when all (or part) of its processing components are executed. U

For the sake of clarity, by data flow we intend a more detailed, data-perspective-
oriented view of a workflow, classically intended as a sequence of activities ordered
according to casual and data dependencies. Inspired by the paradigms introduced by
Data Flow Diagrams (DFDs) and Information Manufacturing Systems (IMSs) [6,95],
a data flow can be seen as the specification of a workflow that includes also the data
components involved. As will be noticed in the following chapters, this terminology
will also help us to make a clear-cut distinction between workflow monitoring and data
flow monitoring as intended in this work.

It has to be noted that this definition makes no assumption on how components should
be implemented and if data flows are automated, i.e. based on orchestration mechanisms,
manual, i.e. consisting a sequence of manual steps, or hybrid, i.e. partly manual and

12Hola Cloud, http://www.holacloud.eu
BhanoHUB, https://nanohub.org
4HUBzero, http://hubzero.org

15Protein Data Bank, http://www.rcsb.org
16Galaxy, http://galaxyproject.org

http://www.holacloud.eu
https://nanohub.org
http://hubzero.org
http://www.rcsb.org
http://galaxyproject.org

Chapter 1. Introduction

partly automated. All abstractions above are logical, as are not intended to capture the
level of component gluing, automation, common middleware, common policies, etc.
as well as the data models, back-end peculiarities, or exchange formats. In summary,
we are interested to model the expected behaviour of DIs in terms of the critical data
flows which are daily supporting its users. For that we aim at representing the data
and processing components of a DI, expressing their time ordering and manipulation
business logic in terms of data flows, as conceived and realized by the collaboration of
multiple DI actors, with possibly overlapping roles, such as administrators, designers
and programmers, policy managers and quality managers; being the latter the main
addressee of this work. The high-level view supported by the model is generic enough to
express the behaviour DIs of research-oriented and commerce-oriented e-Infrastructures,
independently of their technological maturity, technical integration and cohesion, and
development platforms.

1.2 Monitoring data infrastructures: the challenge

Data resulting from the execution of data flows, as defined in Definition 1.4, represent
an important asset both for the DI users, typically craving for the information they
need [6, 39, 120], and for the organization (or community) operating the DI, whose
existence and cost sustainability depends on the adoption and usefulness of the DI. On
the other hand, when operating several data processing workflows over time, several
issues, well-known to practitioners, may arise and compromise the behaviour of the
DI, and therefore undermine its reliability and generate user dissatisfaction [36, 38, 88].
Data components and relative collections may disappear or be altered because of reasons
unpredictable by the DI quality manager(s), for example: (i) an entire collection or a
portion of it could be lost because of an hardware failure (e.g. unexpected hard drive
or network failures) or because it has been moved somewhere else by another data
flow or deleted by accident; (ii) data sources, whose control is often out of the scope
of the DI, do not always provide guarantees (e.g. SLAs) about the expected quality
level of the exported data or the stability of their collections; (iii) when produced in
high volumes by hardware instrumentation, data are subject to technological issues (e.g.
geo-location failure, quality degradation in the due to some transient error, hardware
failures, calibration drifts and so on).

Similarly, the computations underlying processing components may not behave as
expected, for example: (i) subtle programming imprecisions (e.g. overlooking exceptions
in the data to be processed) may introduce errors in the resulting data which are often
invisible to the naked eye within a single computation and may degenerate over time;
(i1) minor inconsistencies in the input data (e.g. conformance of the exchange format)
may prevent part of the data to be processed and therefore compromise the quality of
the results.

Finally, data flows combining data and processing components may suffer from
combinations of such inconsistencies, which may manifest in an individual execution
session of a data flow, or across several sessions over time. For example, a data flow
may consist of multiple parallel processing components contributing to the population of
the same data component collection, where data provenance [23,29,99] is not tracked;
the expected behaviour of the data flow is that the total size of this collection should

4

1.2. Monitoring data infrastructures: the challenge

be provided with given expected percentages by the individual processing components.
Monitoring the behaviour of individual processing components would not suffice to
validate this constraint, as well as monitoring the target data component collection.
Processing and data components should be individually monitored, but controls over
their combined behaviour should be applied within a scope which includes all of them.
In a more elaborated scenario, DI quality managers may be requested to verify that such
percentages are respected with a tolerance of 1 disruption out of 10 executions of the
data flow. In this case, controls should therefore be applied in a temporal scheme, taking
into account past observations and measurements over the data flow components.

The autonomy of DI components, their use across several data flows, the evolution of
end-user requirements over time, make the one of DI data flows a critical environment,
subject to the most subtle inconsistencies. Accordingly, DI users demand guarantees,
while quality managers are called to provide them, on the “correctness” of the DI data
flows behaviour over time, to be somehow quantified in terms of “data quality” and
in terms of "processing quality" [6, 88,102, 105]. Monitoring data flows is therefore a
key activity of paramount importance to ensure the up-taking and long term existence
of a DI. Indeed, monitoring can detect or anticipate misbehaviours of the DI, in order
to prevent and adjust the errors or at least “formally” justify to the stakeholders the
underlying reasons, possibly not due to the DI, of such errors. Not only, monitoring
can also be vital for DI operation, as having hardware and software resources actively
employed in processing low quality data can yield inefficient resource allocation and
waste of time [66, 89, 91].

As we have seen above, the quality of the data to be processed and produced and
the quality of the processes elaborating data are closely related to the success and
effectiveness of the DI data flows. Data flows demand a specific form of monitoring,
which we may refer to as Data Flow Quality Monitoring:

Definition 1.5. Data Flow Quality Monitoring is a practice in which, given a DI data
flow, its critical data components, as well as critical processing components involved
in their elaboration, are routinely checked during and after every run of the data flow
against a set of user-defined quality control rules to make sure the data flow meets the
expected behaviour and quality criteria over time, as established upfront by the quality
manager. U

DI Data Flow Quality Monitoring is complicated by the “hybrid” nature of such in-
frastructures, which typically consist of a patchwork of individual components (“system
of systems”) possibly developed by distinct stakeholders with possibly distinct life-
cycles, evolving over time, whose interactions are regulated mainly by shared policies
agreed at infrastructural level. Due to such heterogeneity, generally DIs are not equipped
with built-in monitoring systems and DI quality manager must therefore introduce such
capabilities as ex-post software integration. The literature on system monitoring is rather
rich and offers a number of solutions in the direction of monitoring the “quality” of
hardware resources, data, and workflows. Typically, the relative monitoring challenges
are dealt with separately, as uncorrelated problems, or span across hardware-applications
(workflows monitoring) and hardware-data (back-end optimization and monitoring), and
are often specific to an application context or given technology.

Regarding hardware monitoring, several off-the-shelf, both commercial and open
source, solutions are available at “system administration level” (e.g. Nagios, Icinga,

5

Chapter 1. Introduction

Ganglia), but they can do little when the focus is on the application level or, in particular,
on data content and its quality. Application monitoring frameworks such as Riemann'’,
Prometheus'8, DataDog!?, New Relic?® and the ELK?' or TICK?? stacks work great
for exporting metrics from the application level, but again they are mainly devised for
platform operations, availability checks and performance monitoring (e.g. response time,
counters, volume of data transferred, etc.), while fail to capture typical problems of
data quality, extract meaningful metrics from data processed by the infrastructure (e.g.
completeness of a dataset record) and put them in a data-flow-aware perspective, as
metrics are essentially “flat” for these tools, since they are conceived for monitoring the
application as an end-system.

As for data quality, it is generally agreed that quality falls under the “fitness for
purpose” principle [11,20,93,96,102, 104,105,114, 120]. In fact, determining whether
data has quality or not mainly depends on the application they are intended for or
the algorithms they are supposed to be fed to and, in general, there is no universal
rule-of-thumb to be applied to answer the question. Several tools, either commercial
or open source, have been proposed in this ambit, e.g. Attacama DQ Analyzer and
DQ Center?, Talend Open Studio for Data Quality?*, Data Cleaner®, Data Monitoring
Tool?®, Informatica Data Quality?’, Sourceforge’s DataQuality tool?® and Experian
Pandora®®. Despite these tools are valuable for getting insight about data, as well as their
patterns and flaws, in common back-ends (mostly E-R databases, occasionally noSQL
stores), they seldom take into account in its entirety the potentially complex data flows
responsible of populating the stores in exam, hence failing to provide a thorough vision
of the whole situation.

Regarding workflow monitoring, some Workflow Management System (WfMS) —
and Scientific Workflow Management System (SWfMS) too — offer advanced tools for
tracking the status and performances of past and present execution of workflows (e.g.
D-Net [57], Airflow®°, Taverna [78], Kepler [3], Chiron [77], Askalon [34]), Trident [8],
but they are in general not concerned with monitoring how workflows and relative
processing components may affect or be affected by the quality of the data [53], despite
a few extensions enabling “domain data analysis” in scientific workflows can be found in
the literature [66]. For example, while it is possible to know exactly how much time took
to execute activities of a workflow (in all its executions), it is in general not possible to
log and analyze any information extracted or derived from data processed by workflow
activities (e.g. compliance to a certain standard or data format).

17Riemann.io, http://riemann.io

8Prometheus.io, http://prometheus.io

YDataDog, https://www.datadoghq. com

20New Relic monitoring https://newrelic.com/application-monitoring

21 The ELK (elasticsearch, Logstash, Kibana) stack, https://www.elastic.co

22The TICK (Telegraf, Influx, Chronograf, Kapacitor) stack, https://www.influxdata.com/get-started/
what-is-the-tick-stack

23 Ataccama, https://www.ataccama.com/products/dg-analyzer

24Talend Open Studio for Data Quality, https: //www.talend.com/download/talend-open-studio#t2

2 Data Cleaner, https://datacleaner.org

26Data monitoring tool, http://www.uniserv.com/en/company/blog/detail/article/
data-monitoring-tool
Mnformatica Data Quality, https://www.informatica.com/products/data-quality/

informatica-data-quality.html
28 Arrahtec “Open Source Data Quality and Profiling”, ht tps://sourceforge.net/projects/dataquality
29Experian Pandora, https://www.edq.com/uk/solutions/experian-pandora
30AirFlow, http://nerds.airbnb.com/airflow

http://riemann.io
http://prometheus.io
https://www.datadoghq.com
https://newrelic.com/application-monitoring
https://www.elastic.co
https://www.influxdata.com/get-started/what-is-the-tick-stack
https://www.influxdata.com/get-started/what-is-the-tick-stack
https://www.ataccama.com/products/dq-analyzer
https://www.talend.com/download/talend-open-studio#t2
https://datacleaner.org
http://www.uniserv.com/en/company/blog/detail/article/data-monitoring-tool
http://www.uniserv.com/en/company/blog/detail/article/data-monitoring-tool
https://www.informatica.com/products/data-quality/informatica-data-quality.html
https://www.informatica.com/products/data-quality/informatica-data-quality.html
https://sourceforge.net/projects/dataquality
https://www.edq.com/uk/solutions/experian-pandora
http://nerds.airbnb.com/airflow

1.3. Thesis contribution

In summary, Data Flow Quality Monitoring demands tools capable of supervising
processing and data components and express constraints that regard their co-existence
and combination with other components within the scope of one data flow, regarding
its individual execution sessions and over time. To date, such tools are not available
off-the-shelf. DI quality managers are therefore bound to use combinations of existing
tools — with non trivial integration efforts — or to develop and integrate their own ad-
hoc solutions, at high cost of realization and maintenance. Indeed, it is complicated
and expensive to adopt and maintain multiple solutions for different components and
combine them to deliver uniform Data Flow Quality Monitoring tools.

1.3 Thesis contribution

In this thesis we addressed the problem of Data Flow Quality Monitoring in DIs described
above. Its main contributions are the following:

1. the definition of a monitoring description language capable of:

e describing monitoring flows: DI quality managers can express the semantic
and the time ordering of their observational intents and capture the essence of
the DI data flows to be monitored, by means of monitoring flow description
primitives;

e describing monitoring intents over the monitoring flows: DI quality managers
can specify the metrics and controls required to perform the monitoring using
monitoring intent description primitives.

The novelty of the language is that it incorporates the essence of existing data
quality monitoring approaches, identifies and captures process monitoring scenar-
ios, and, above all, provides abstractions to represent monitoring scenarios that
combine data and process quality monitoring within the scope of a data flow.

2. the implementation of a general-purpose Data Flow Quality Monitoring system,
called MoniQ (pronounced “moh-NEEK”), whose functionalities are based on the
concepts introduced by the monitoring description language. MoniQ features the
following desirable properties:

e Data flow sensitive monitoring: monitors the defined data flow entities of data
components and processing components and persists the history of monitoring
events of different data flow executions throughout time;

e Cross-platform compatibility: adapts to different DI technologies;

e Cost-effective integration: hides the complexity of monitoring and minimizes
the amount of work required to integrate the framework on top of existing DIs.

MoniQ offers DI quality managers off-the-shelf tools for data flow quality monitoring.
The DI quality manager is provided with a Web User Interface (WebUI) in which he
can formally describe the monitoring flows to be monitored over the infrastructure data
flows as a sequence of basic building blocks inspired to IMSs, introduced in [6, 95].
Once the monitoring flows have been defined, the WebUI allows quality managers to
assign sensors to the relative building blocks (or sets of them); a sensor is the mean to

7

Chapter 1. Introduction

introduce a set of metrics, each corresponding to a number of observations collected
over time, of pertinence for a block, be it relative to data or processing components.
Finally, the WebUI allows quality managers to define which controls should be enforced
over the metrics declared (e.g. rates, thresholds, upper bounds, moving averages, etc.),
visualize and aggregate trends of the monitored features, analyse comprehensive reports
and receive notifications and alerts about potential troubles happening in the operation
of the infrastructure.

In order to integrate MoniQ in the DI data flow, each sensor/metrics requires a
corresponding sensor hook within the DI, intended as a software counterpart capable of
extracting observations for the identified metrics and sending them to MoniQ. Given the
specification of the monitoring flow and the relative metrics, sensors and controls, MoniQ
lets DI quality managers focus on the business logic required to compute the metrics
observations (i.e. sensor hook) and relieve them of the hassle about implementing a
persistence and the control engine for assessing the observations produced. Currently the
system supports two methodologies: (i) a set of predefined Java classes for a facilitated
and more compact implementation of sensors, which hide the complexity required to
interact with MoniQ and whose interfaces must be implemented with a reference to
the relevant sensor (sensor identifier) and the metrics business logic; (i1) a REST API,
which has to be called by the DI components with the required sensor identifiers and the
metrics values.

MoniQ is currently used in the production system of the OpenAIRE infrastructure
to ensure the expected behaviour and quality of its data flows over time since 2015.
The OpenAIRE [58,59] Data Infrastructure is funded by the European Commission to
become the point of reference for Open Access (OA) and Open Science in Europe. The
initiative fosters free access, share and reuse research products in Europe and beyond and
provides an European data e-infrastructure linking people, ideas, projects, organizations
and funding streams. The system benefits from the flexibility of MoniQ, which allows
for the introduction of new data flows, new monitoring scenarios, and minimizes the
amount of work required to integrate OpenAIRE services with the framework.

1.4 Outline of the thesis

The remainder of this thesis is organized as follows:

Chapter 2 introduces the reader to fully fledged monitoring problematics by presenting
two real-world use cases, namely the OpenAIRE and the CORE Data Infrastruc-
tures, and describes thoroughly their critical data flows and monitoring concerns.
The two proposed use cases are taken into account in this thesis as a validation
instrument of the main contributions.

Chapter 3 provides the state of the art and reviews the relevant literature in the research
fields of (i) workflow quality and monitoring, (i) data quality and monitoring,
and (ii1) data and workflow quality. Finally, it outlines a taxonomy characterising
monitoring systems, be them for data or workflows, according to a number of
desirable properties.

Chapter 4 analyzes the requirements for the realization of a data flow quality monitor-
ing system and presents in all its details MoniQ, its architecture and the monitoring

8

1.4. Outline of the thesis

description language capable of modeling monitoring flows and monitoring intents
over DI data flows.

Chapter S provides an evaluation of the data flow quality monitoring description lan-
guage proposed in Chapter 4 against the two use cases presented in Chapter 2.

Chapter 6 discusses the current realization of MoniQ and its soundness and complete-
ness in relation to the reference architecture drawn in Chapter 4, and finally intro-
duces MoniQ-java-di, a thin-layer of Java classes developed in order to facilitate
the integration of MoniQ into Java-based DIs.

Chapter 7 finally provides a summary of the thesis and its main contributions, analyze
its impact and limitations, and provides an overview of possible future work,
extensions and viable research directions.

CHAPTER

Real-world Use Cases

In order to introduce the reader to fully-fledged monitoring problematics in Data In-
frastructures (DIs), in this chapter we describe two real-world use cases, namely the
OpenAlIRE infrastructure, described in Section 2.1, and the CORE infrastructure, de-
scribed in Section 2.2. For both initiatives, we will provide the context and outline
the data flows that can take benefit from data flow quality monitoring. Both the two
initiatives are relative to the world of scholarly communication and bibliographic meta-
data aggregation; however, the monitoring concerns here outlined are totally generic
and applicable at broad spectrum. Despite the similar mission of the proposed use
cases, their implementations are profoundly different from both an architectural and a
technological point of view. Nonetheless, they share similarities in data flow quality
monitoring concerns and this helped us in designing a monitoring systems that can be
adapted to different needs.

2.1 The OpenAlIRE data infrastructure

The OpenAIRE! [58,59] Data Infrastructure is funded by the European Commission
to become the point of reference for Open Access (OA) and Open Science in Europe.
The initiative fosters free flow, access, share and reuse research products in Europe and
beyond and provides an European data e-infrastructure linking people, ideas, projects,
organizations and funding streams.

From a technological perspective, OpenAIRE operates an open and collaborative
Service-oriented Architecture (SoA) enabling:

e the realization of a pan-European network for the definition, promotion and imple-
mentation of shared interoperability guidelines and best practices for managing

IThe OpenAIRE project, http: //www.openaire.eu

10

http://www.openaire.eu

2.1. The OpenAIRE data infrastructure

sharing, reusing and preserving research outcomes of different typologies;

e the promotion of Open Access and Open Science and practices at all stages of
the research lifecycle and across research communities taking part to different
application domains and geographic areas;

e the generation of statistics measuring the impact of Open Access and Open Science
as well as their return on investment (Rol) across Europe and individual countries
joining the initiative;

e the creation of a centralized entry point for discovering people, publications,

projects, and datasets produced as scientific output within H2020 (as well as FP7
and others funding schemes) and browsing their interconnections.

The SoA provided by OpenAlIRE is realized thanks to the tools and framework pro-

vided by the D-NET software toolkit [57]. The main programming language employed is
Java, but a few other specific parts have been developed using other languages too such
as Perl, Python and Groovy?. The infrastructure is operating in a regimen of continuous
data integration (i.e. 24/7/365) and feeds a public graph-like information space capable

of serving the aforementioned use cases.

Native slices ident ufydupkms on

Publishing

De-duplication
subsystem

subsystem

Aggregation | [anea | Pobulate
subsystem record :>
TrunSIOrMH Native De-duplicated

Clean www.openaire.eu
& enriched

Validate E
——
Collect]
Information L L0 i
Data Sources e Inference

(repositories, entity
registries, etc.)

test.openaire.eu

~

content
a: preview

subsystem

Figure 2.1: The OpenAIRE functional architecture

The OpenAIRE infrastructure features a number of subsystems, reported in Figure 2.1,
dedicated to four main activities:

e Aggregation subsystem: the subsystem takes care of the collection of informa-
tion packages about different entities declared in the OpenAIRE data model and
publication full-texts (e.g. PDFs, XMLs, HTMLs) from data sources. Based on
the typology of such information packages (e.g. Dublin Core® metadata records,
DataCite metadata records, CERIF-XML metadata records, proprietary formats),
the system transforms them into “cleaned” metadata records with uniform structure
and semantics, matching the specification of the OpenAIRE data model.

e Deduplication subsystem: given as input the native information space graph
as yielded by the data provision subsystem (see below), the system identifies
duplicates among the objects of the same entity type. For each entity among
publications, organizations and persons, the system generates a set (called actionset)

2The Groovy programming language, http: //www.groovy-lang.org
3Dublin Core Metadata Initiative, http://dublincore.org

11

http://www.groovy-lang.org
http://dublincore.org

Chapter 2. Real-world Use Cases

of similarity relationships between pairs of objects identified as duplicates, which
will be used by the data provisioning subsystem to generate a disambiguated
information space.

e Information inference subsystem: given as input the last public information
space graph (deduplicated and enriched by provision in the last round) and the
publications full-texts, the system applies a number of mining algorithms (i.e.
“modules”) over such data corpora. For each mining module the system produces
a set of inferred knowledge (another actionset), which will be used by the data
provision subsystem in order to enrich the information space graph. The enrichment
regards, for example, (i) new entities (e.g. publications), (ii) new attributes for
existing entities (e.g. metadata attributes for publications), (iii) new relationships
among entities (e.g. links from publications to projects, publication similarity,
citations among publications, links among publications and datasets, affiliations
between publications and organizations).

e Data provision subsystem: given as input the cleaned metadata records as yielded
by the aggregation subsystem, the similarity relationships as (lastly) yielded by
the deduplication subsystem, and the inferred knowledge as (lastly) yielded by the
information inference subsystem, the data provision subsystem: (i) populates an
initial bare-aggregation information space graph from cleaned metadata records (i.e.
native information space graph), (ii) enriches the graph with similarity relationships
and runs an object merging algorithm to remove duplicates, (iii) enriches the
graph with inferred information. The information graph ultimately produced
(deduplicated and enriched) is the next candidate to become publicly accessible.

e Publishing subsystem: given as input the deduplicated and enriched information
graph as produced by the data provision subsystem, the data publishing subsystem
materialize the graph over four different backends serving different use-cases:
(1) full-text index supporting portal queries, (i1) a document store supporting and
OAI-PMH publisher, (iii) a E-R database supporting statistics for funders, (iv) and
triple-store for Linked Open Data (LOD) export (this effort is currently under
development within the OpenAIRE2020 project). For the sake of prudence, the
four projections are written into “private” (i.e. shadow) collections, not yet publicly
accessible, into the four backends. Once the four materialization processes have
ended and their products have been checked, a manual switch brings the newly
generated information space online.

Talking about mere figures the OpenAIRE infrastructure features, a per-entity break-
down can be found in Table 2.1.

Given the complexity of the DI as well as the amount of information routed, certifying
the quality of “data products” and how much reliable is the information provided to the
end-users is a non-trivial, yet vital, task for providing trustful and valuable search and
statistical services.

However, data quality in OpenAIRE is dependent from a plethora of variables such
as the variety and variability of data source, the refinement of algorithms currently in
use for curation and mining, the cross-influence between the presence/absence of entire
sets of information and the chosen mining/deduplications algorithms, the presence of
network and 1/O errors, etc.

12

2.1. The OpenAIRE data infrastructure

Table 2.1: OpenAIRE in figures (as in August 2016)

Total amount

data sources 6,081
publications 16,923,747
full-text articles 4,099,925
persons 13,727,371
organizations 62,798
projects 652,384
datasets 23,830

For all these reasons, OpenAIRE, being indeed a DI featuring such serious monitoring
challenges, has been chosen and analyzed in order to extract valuable use cases for our
study; a representative selection of them, organized per subsystem, is exposed in the
following sections.

2.1.1 Monitoring the aggregation data flows

In the OpenAIRE infrastructure, the aggregation subsystem features different data flows
dealing with the collection of native records from data sources, their transformation and
(optional) cleaning. The different data flows deal with different types of data sources
and different types of collected information packages:

e Literature data sources:

— Institutional or thematic repositories: information systems where scientists
upload the bibliographic metadata and PDFs of their articles, because of
obligations with their organization or because of research community (good)
practices (e.g. ArXiv, EuropePMC);

— Third-party literature aggregator services: information systems that, like
OpenAlIRE, collect descriptive metadata about publications from multiple
sources in order to enable cross-data source discovery of given research prod-
ucts. Such aggregators tend to be driven by research community needs or
to target the larger audience of researchers across several disciplines. Some
examples are BASE* for scientific publications and DOAJ’ for Open Access
journals publications;

— Open Access Publishers: information system of open access publishers or rel-
ative journals, which offer bibliographic metadata and PDFs of their published
articles;

e Scientific data sources:

— Data archives: information systems where scientists deposit descriptive meta-
data and files about their research data (also known as scientific data, datasets,
etc.); data archives are in some cases supported by research and academic
organizations and in some cases supported by research communities and/or
associations of publishers;

4BASE, https://www.base-search.net
SDOAIJ, https://doaj.org

13

https://www.base-search.net
https://doaj.org

Chapter 2. Real-world Use Cases

— Third-party scientific data aggregator services: similar to the literature
aggregator services, but dealing with scientific data mainly. An example is
DataCite® for all research data with DOIs as persistent identifiers.

o Entity registries: information systems created with the intent of maintaining au-
thoritative registries of given entities in the scholarly communication, such as
OpenDOAR? for the institutional repositories or re3data.org® for the data reposito-
ries;

e CRIS systems: Current Research Information Systems (CRIS) are adopted by
research and academic organizations to keep track of their research administration
records and relative results; examples of CRIS content are articles or datasets
funded by projects, their principal investigators, facilities acquired thanks to fund-
Ing, etc.

The data flows collecting from such sources are probably one of the most sensitive
ones in the whole infrastructure as they superintend the first (and foremost) entry point
for “alien” data into OpenAIRE. In fact, data can possibly carry along imperfections
or suboptimal and unwanted data features that can invalidate the assumptions and the
premises for a good operation of the DI. As we are interested in controlling whether
certain characteristics of the data and the processes hold or not, a thorough monitoring of
these data flows is vital. In the following we will describe monitoring concerns divided
by data source typologies of interest, namely, at the time of writing, literature data
sources and entity registries.

Literature data sources

The aggregation data flow for literature data sources can be described in a nutshell as in
Figure 2.2. The data flow harvests literature metadata from a publicly accessible OAI-
PMH?’ endpoint, transforms and cleans the metadata records compatibly to OpenAIRE
specifications and stores the results produced in a document store dedicated for each
data source. In parallel, another process takes care of downloading PDF of the research
products, when available. Such data flows is executed in an independent instance for
each one of the literature data sources registered in OpenAIRE.

QAI cleaned
endpoint

Figure 2.2: OpenAIRE aggregation data flow for literature data sources

%DataCite, https://www.datacite.org
70penDOAR, http://opendoar.org

8Re3data, http://www.re3data.org

90AI-PMH, https://www.openarchives.org/pmh

14

https://www.datacite.org
http://opendoar.org
http://www.re3data.org
https://www.openarchives.org/pmh

2.1. The OpenAIRE data infrastructure

This kind of data sources (e.g. institutional repositories, literature aggregators, digital
libraries, etc.) provides OpenAIRE with metadata records about research literature (e.g.
publications, technical reports, deliverables, etc.). As research activities go further and
new literature got published, research products are expected to be registered into the
data sources; thus, the amount of harvestable data is expected to be increasing over time;
monotonically increasing to be precise. Any alteration in such kind of trend might be
caused by an overlooked situation and the event should be promptly detected and flagged
as a warning. This gives us a first metrics of interest accounting of the total number of
metadata records available over time at a generic data source.

Moving forward, literature metadata records comply to the Dublin Core standard.
Records must be checked for quality according to metrics of interest as they firstly reach
the OpenAIRE DI. Such analysis can be interesting both for both new records, as fresh
data entry error could have been made, and older ones as corrections and/or accidental
modifications could have been performed. This outlines, for example, the interest in
monitoring the completeness of records, e.g. according to a pool of expected initialized
fields such as title, author, keywords, description, year of publication, and compliance
w.r.t. OpenAIRE guidelines'® and analyse how these two metrics evolve over time as a
valuable indicator of the “health” of a generic data source.

Finally, the aggregation data flow also takes care of cleaning incoming literature
metadata records. The cleaning process takes care of aligning the content of certain
known fields (vocabulary-controlled fields) to agreed vocabularies defined upfront in
OpenAlIRE. In this sense, another interesting metrics to be monitored would indicate how
well the cleaning process performs; the metrics could track for example the number of
changes (i.e. corrected field’s content) performed by the process on average per-record.
Another valuable metrics could track the number of fields that the cleaning process did
not achieve to align (e.g. because they are not known).

Entity registries

The data flow aggregating from entity registry, represented in Figure 2.3, collects the
information packages provided by the entity registry at hand, transforms and cleans the
records and stores them into OpenAIRE database.

entity postgres

registry database

Figure 2.3: OpenAIRE aggregation data flow for entity registries

Each entity registry contributes to OpenAIRE with a specific kind of information
package providing a particular set of entities of the OpenAIRE data model. For example,
an instance of this data flow periodically aggregates records about FP7 and H2020
projects from Corda!!. For each record collected, a transformation is applied and partic-
ipating organizations are extracted. The information about projects and participating

100penAIRE guidelines, http://guidelines.openaire.eu
"1The CORDA (Common Research DAta Warehouse) database contains data on applicants/proposals and signed grants/beneficia-
ries with regards to the European Framework Programme for Research.

15

http://guidelines.openaire.eu

Chapter 2. Real-world Use Cases

organization is then stored in a relational database. It is important that subsequent execu-
tions of this data flow show specific trends at the end of the data flow. In particular, the
number of projects and the number of organizations is expected be monotonic increasing
ensuring that any record has been removed by accident at the source; a thing that in a few
occasions happened and invalidated the reasoning produced by the inference modules.

It is also important to keep under control the number of misdatedproject, meaning
that its duration falls within the funding stream time extension. For example, an FP7
project record might advertise a duration from 2005 to 2008 which clearly does not
comply with FP7, which covers from 2007 to 2015. The number of misdated projects
should be monotonically decreasing over time.

Moving further, it would be interesting to monitor the outcome of the cleaning
process. The cleaning process tries to fix the content of some fields in project records
according to a set of given controlled vocabularies. If the content of a field at hand
cannot be aligned to one of the admitted values by the vocabulary controlling the field,
then the cleaning process simply leaves the field content untouched and the record passes
through. In this case, it would be valuable to monitor the average degree of compliance
(to the defined controlled vocabularies) of project records leaving the cleaning process.

Finally, it would be useful to assess the completeness of the two tables about projects
and organizations stored in PostgreSQL. An average completeness lower than 0.7 would
mean scarcely initialized data in input.

2.1.2 Monitoring the deduplication data flow

The deduplication subsystem takes care of the delicate processes of finding duplicated
entities in the OpenAIRE information space. Hence, the whole deduplication data flow,

prepare
cleaned native

store graph

Figure 2.4: OpenAIRE deduplication data flow

represented in Figure 2.4, takes care of a delicate task to carry out as false positives
(and false negatives) produced by the deduplication discovery algorithm may alter over
time the quality (in terms of counts and in terms of hidden records) of the similarity
relationships produced in output and the resulting data published to the general public
and to the European commission. In particular, it is important to track the deduplication
factor of several entities of interest such as publications, organizations and authors. The
deduplication factor takes into account how many entities (either publications, organiza-
tions or authors) are merged into one representative by the deduplication process. More
precisely, if the deduplication process claims that e.g. five publications are considered
to be akin, it clusters the five publication records and generates one representative with
merged metadata.

During the development and fine tuning of the deduplication algorithm for publica-
tions, we identified that, on average, 2.4 publications get merged together [5], as can
be seen from Figure 2.5. This could be used as a reference threshold: every time the

16

2.1. The OpenAIRE data infrastructure

10.000.000

1.260.503

1.000.000
305.525
85.780
100.000
27.948
13.052
10.000 6745 4 om
2.666
1.000
131
89
100 51 a4
22 17
9
10 I I
2 3 4 5 6 7 8] 10 1 12 13 14 15 16

1

Group Frequency

Group size

Figure 2.5: Frequency of group sizes for deduplication of publications

deduplication process yields a average deduplication factor greater than or too distant
(either above or below) from 2.4, a warning should be flagged and the post-deduplication
data should be double checked as there could be issues (e.g. new data or missing data
invalidating deduplication reasoning, problems in the algorithm or in its configuration,
etc.).

In a similar way, on average 2.14 organizations get merged by the deduplication
process, as can be seen in Figure 2.6. This value can be used as well as a threshold

10.000
4.494

1.000

364
91
100
29
3 3 3
l l l 2
2 3 4 5 6 7 8 1

Group Frequency

=
5]

1

Group size
Figure 2.6: Frequency of group sizes for deduplication of organizations

for assessing the behaviour of the deduplication process for organizations and receive
warnings whenever something performs unexpectedly.

Finally, despite the deduplication of authors is a current work-in-progress, some
metrics (e.g. deduplication factor for persons) could be tracked and used as feedback for
our developers as important indicators about how the deduplication process is performing.

17

Chapter 2. Real-world Use Cases

Although there is no need to enforce controls over such metrics at this stage, this example
shows how even just plain monitoring can still be a valuable aid and drive fine tuning of
the configuration of the algorithm, and/or improving its implementation.

2.1.3 Monitoring the inference data flow

The inference data flow, reported in Figure 2.7, processes the PDFs collected by the
aggregation subsystem in the attempt of extracting full-texts of publications from them.
Once the extraction process has terminated, the extracted full-texts and the lastly avail-
able deduplicated graph are taken as input for inference algorithms (more details about
the inference subsystem can be found in [52]) that ultimately produces inferred rela-
tionships in an actionset (i.e. a set of “patches” to be applied in order to enrich the
information space graph).

deduplicated
graph

full-text
store

Figure 2.7: OpenAIRE inference data flow

It is interesting to ensure that subsequent productions of actionsets hold certain
properties. For example, the number of produced relationships of each kind (e.g. links
from publications to projects, publication similarity, citations among publications, links
among publications and datasets, affiliations between publications and organizations)
should be monotonic increasing over time and the percentage variation should not exceed
a certain threshold given the increase of the amount of data in input from the last round.
A potential issue should be flagged otherwise. Moreover, since mining algorithms can
be enhanced or exchanged over time as well as their configurations, it is interesting to
track their yielded production and verify that no drift is introduced into the system by
accident.

Moving forward, another interesting monitoring concern regards PDF and full-text
mining process. In its earlier years, in a few occasions, the OpenAIRE infrastructure
experienced some issues because of malformed collected PDFs, hence an important
aspect to monitor could regard the ratio between malformed PDFs and well-formed ones
which is desired to be decreasing over time. Finally, given a well-formed PDF, it is
not granted that the relative full-text can be extracted successfully; for example, PDFs
regarding old publications are usually scanned page by page, hence no (or little) text can
be actually extracted. For this reason it is interesting to verify whether the number of
successfully extracted full-texts covers more than a significant percentage (say 90%) of
the number of well-formed PDFs.

18

2.1. The OpenAIRE data infrastructure

2.1.4 Monitoring the publishing data flow

The publishing data flow, represented in Figure 2.8, materializes the information graph
(which is stored in HBase!? as yielded by mining and deduplication subsystems) into:
(i) a full-text index, implemented with Apache Solr'® to support search and browse
queries from the OpenAIRE Web portal, (ii) a PostgreSQL'* and a dedicated Redis"
key-value cache for statistics, (iii) a NoSQL document storage based on MongoDB!6
in order to support OAI-PMH export of the aggregated records, and finally (iv) a triple
store realized with OpenLink Virtuoso!” in order to expose OpenAIRE’s information
space as LOD via a SPARQL endpoint.

stats
database

graph

database —

Figure 2.8: OpenAIRE publishing data flow

Every time the publishing data flow executes, four new information space projections
are generated and placed in a “pre-public status” before being accessible from the general
public. The switch from pre-public to public, meaning that the currently accessible
information space projections and statistics will be dismissed and the new versions will
take their place, is still manual for safety reasons.

Whenever the pre-public information space projections (pre-public information space
(IS) for short) are created, it is interesting to verify some constrains in order to evaluate
whether the switch to public can be performed or something has gone wrong during the
data flow execution. Some conditions to be ensured are the following:

e Snapshot checks: right after the generation of a new pre-public IS, check whether
some properties in the four backends follow user-defined constraint or not.

12 Apache HBase, https://hbase.apache.org

13 Apache Solr, http://lucene.apache.org/solr
14PostgreSQL database, http://www.postgresqgl.org
15Redis, http://redis.io

mMongoDB, https://www.mongodb.org

170OpenLink Virtuoso, http://virtuoso.openlinksw.com

19

https://hbase.apache.org
http://lucene.apache.org/solr
http://www.postgresql.org
http://redis.io
https://www.mongodb.org
http://virtuoso.openlinksw.com

Chapter 2. Real-world Use Cases

— Inter-backend consistency checks: check whether certain relations hold
among properties extracted from different backends; for example, check if
different backends are aligned w.r.t their content. This means assessing (and
keep assessing over time) whether a certain property extracted from a backend
matches the same property extracted in the symmetrical way from another
backend. For example, check whether the total number of “publications funded
by Horizon2020 projects” indexed by Solr matches the same number of records
advertised via the corresponding OAI-PMH set and statistics.

— Intra-backend quality checks: check whether the pre-public IS in a certain
backend in a given moment satisfies a certain user-defined condition. For
example, evaluating whether the “completeness” of records indexed by Solr,
evaluated as the ratio between number of mandatory attributes and number of
not empty mandatory attributes, is above a certain threshold or not.

e History checks: check whether the last n-steps of pre-public IS generations (or
within a given time interval) of the history of given OpenAIRE properties of interest
follow certain user-defined trends.

— Single trend checks: check if a property extracted from a backend of choice
satisfies some desired constraints over time. For example, the number of “har-
vested publications” from a content provider should be monotonic increasing
with a max percent variation over time between two following values.

— Multiple trends checks: check whether a relation among properties is held
over time or not. For example, check if the increment of “H2020 OA publi-
cations” is greater than the increment of H2020 closed access publications
during last month.

As we will see in Section 5.1.4, the metrics extracted from the four data components
are many; it is important to notice that, since the four materialization processes run in
parallel, the aforementioned metrics could be evaluated in different time, as soon as it is
possible; hence to enable a correct comparison among them a synchronization routine
should take place in order to align them to the same “epoch”.

Finally, since the switch to public of the newly generated prepublic IS is performed
manually, it would be valuable to investigate in a solution enabling to perform the switch
automatically out of the results of controls defined over the extracted metrics.

2.1.5 Monitoring the provision data flow

Since monitoring intents have been outlined for each subsystem providing input to the
provision data flows (i.e. the aggregation, deduplication and inference subsystems)
as well for the publishing subsystem, which is located downstream, we deliberately
decided not to outline monitoring intents for the provision data flow as it merely combine
intermediate products, whose production is monitored (see Sections 2.1.1, 2.1.2, 2.1.3),
into final products (pre-public IS), whose quality is being assessed (see Section 2.1.4).

20

2.2. The CORE data infrastructure

2.2 The CORE data infrastructure

CORE (COnnecting REpositories) Data Infrastructure'® aims to collect available OA
(according to the BOAI" declaration) research outputs from repositories and journals.
The initiative started focusing primarily on UK Open Access repositories, but it has
recently started to gain momentum and expand across UK borders.

As seen for OpenAIRE, CORE DI is an application written in Java exposing services
and user friendly Web User Interfaces (WebUls) both to general public and to DI
administrators and operation team. After a recent refactoring, CORE aggregation system
has been re-engineered as a data flow (reported in 2.9) of different sequential processing
components over data components. Each processing component is launched on a

w
[
full-text
dump

|

metadata
extraction

OAIl metadata oAl
repository download Al

L3
i

PDF
download

full-text
extraction

PDF
dump

Figure 2.9: CORE aggregation data flow

per-repository basis and is devised for a specific task: metadata download, metadata
extraction, PDFs download, full-text extraction and indexing. An orchestrator (called
Supervisor) queues, schedules and instantiates different workers in order to trigger
proper actions at the due time.

More specifically, the different activities that CORE features can be described as
follows:

e Metadata download: a worker starts to process an OAI-PMH endpoint (a repos-
itory) and appends every result page in a file saved in a specific location on the
filesystem. At the end of the metadata download process, the file contains a whole
dump of the entire repository. In every moment, the filesystem stores the most
recent “hard-copy” of all the repositories harvested so far;

e Metadata extraction: a worker takes one of these OAI dump files and process it
record by record saving metadata information on a MySQL database;

e PDFs download starting from article metadata stored for a repository in the
MySQL database, a worker processes the records one by one, and for each one
of them attempts to locate and download the PDF of the article with increasingly
sophisticate logic; whenever the download attempt fails it scales up (e.g. looking
directly in the specific dc field, then looking for URLs pointing to valid PDFs with
matching title, etc.). If every defined strategy fails, the worker gives up on that
record and moves to the next;

18The CORE infrastructure, https://core.ac.uk
19Budapest Open Access Initiative, ht tp: //www.budapestopenaccessinitiative.org

21

https://core.ac.uk
http://www.budapestopenaccessinitiative.org

Chapter 2. Real-world Use Cases

o Full-text extraction a worker scans the downloaded PDF articles for a repository
and tries to extract, when possible, the full-texts from each one of them. Whenever
a full-text is found, the relative article metadata record is enriched on the MySQL
database;

e Indexing the content present in the MySQL database for a given repository is
indexed record by record into an Elasticsearch and becomes available for serving
user queries coming from CORE web portal.

By analyzing the CORE data infrastructure [51], its design and its data flow, we
identified some aspects that ought to be monitored over time and checked for consistency
in order to gain insight of what is going on within the infrastructure.

Since the CORE infrastructure belongs to the same class of DI of OpenAIRE (i.e.
literature aggregation DIs), some interesting aspects to be monitored are shared among
the two DIs. However, because of the different design and implementation the use case
served as a valuable support for designing the monitoring solution with an approach as
generic as possible. The following aspects have been selected as subjects for our study:

e The average completeness of articles collected from a repository should cover at
least the 80% of a pool of fields of interest agreed at infrastructural level.

e The number of articles collected from each repository should increase over time,
as well as the number of PDFs downloaded and the number of full-texts extracted
for each repository.

e The ratio between the number of successfully downloaded PDFs over the number
of articles should be monotonically increasing over time. As the PDF download
algorithm can be modified and improved, this indicator can play as a valuable aid to
programmers and can drive a fine tuning and the design of a better PDF download
process.

e The ratio of successfully extracted full-texts from PDFs over the number of avail-
able PDFs. This ratio should be monotonically increasing and over 0.98% success
rate.

e Alignment of backends (for the sake of consistency):

— the number of articles collected from OAI should match the number of articles
extracted to mySql and indexed by Elasticsearch. If articles are lost on the
way for any technical reason, an alert should be created;

— the number of successfully downloaded PDFs in the file system should match
the number of articles with PDF advertised by elasticsearch;

— the number of full-texts successfully extracted from PDFs should match the
number of articles with full-text advertised by Elasticsearch.

22

CHAPTER

State of the Art

The work in this thesis focuses on the challenges regarding Data Flow Quality Mon-
itoring, in the general context of Data Infrastructures (DIs). Decades of experience
and results in the area of monitoring systems have been taken into account, mainly
in order to justify the need of this work, but also to re-use excellent scientific results
whenever possible. The state of the art section revolves around the following research
fields, considered relevant to the given problem: (i) workflow quality and monitoring,
(1) data quality and monitoring, and (iii) data and workflow quality.

As we shall see, scientific results in each of these topics are considerable, but, al-
though such topics feature overlapping aspects and profound adjacencies, they are
approached separately and rarely the designed solutions converge into “hybrid” frame-
works, where aspects of quality and monitoring of data and workflows (i.e. processing)
are blended to deliver the models and tools required by Data Flow Quality Monitor-
ing. In this Chapter, we review the literature regarding the following research areas:
in Section 3.1 we target the problem of workflow Quality of Service (QoS); while in
Section 3.2 we will review some frameworks and techniques coping with data quality, a
vast and challenging research topic on its own. In Section 3.3 we explore the solutions
targeting the exploitation of concepts coming from data quality field into the context
of workflows execution monitoring. Driven by the literature review, in Section 3.4 we
provide a taxonomy characterising monitoring systems, be them for data or workflows,
according to a number of desirable properties.

3.1 Workflow quality and monitoring

The concept of workflow, proper of business process modelling field [9, 44], is a pur-
posely flexible concept, widely used in different fields of computer science to convey

23

Chapter 3. State of the Art

the general idea of (manual or automated) orchestration of computational steps ori-
ented to the processing of information, i.e. data. Relevant examples can be found in
Service-Oriented computing [18,79] and more recently in e-Science [41,53,66]. Indeed,
computational and data-driven science in the third and fourth science paradigms has
called for the combined use of modern computational technologies in simulations and
knowledge discovery [45,46].

With the expression workflow monitoring, the literature generally refers to the models,
policies, and tools aiming to track (i) information relative to the real-time (and past)
status of workflows (e.g. succeeded/committed workflows, ongoing tasks, failures and
issues) and (ii) information relative to their execution (e.g. elapsed execution time for
past workflows, progression) (44,53, 66].

Workflow monitoring is often a built-in function, i.e. coupled with Workflow Man-
agement System (WfMS) that offer this functionality out-of-the-box. This the case
for general-purpose WfMSs such as Airflow!, capable of describing directed graphs
of “jobs”, i.e. execution steps, or for service-oriented WfMSs such as D-NET [57].
The same holds for Scientific Workflow Management Systems (SW{fMSs) [53], which
in several cases provide capabilities for monitoring the status of scientific workflow.
Taverna [78], Galaxy [42], Kepler [3], Chiron [77], Askalon [34] all provide off-the-
shelf native tools in this sense. Scientific gateways* — possibly based on such SWfMS —
usually offer workflow monitoring capabilities in this sense too, e.g. WorkWays [76]
and several others [28,31,32,121].

A different approach is instead to provide workflow monitoring as a third-party
capability, external to the WEMS at hand. In [47,112], the authors designed Stampede, a
generic monitoring infrastructure capable of monitoring the execution of complex (in
general large-scale, parallelized and distributed) workflows. The Stampede approach
relies on confluence and harmonization of log data collected from the remote execution
nodes in which portion of the workflow is running to a centralized node for monitoring.
Stampede enables real-time workflow failure prediction and analysis, and offers post-
execution end-user tools for plots, statistics, analytics and programmatic access to
data. The Stampede monitoring system has been initially integrated in Pegasus [30]
SWEMS and later adapted to Triana [106] SWEMS, thus confirming the soundness and
adaptability of the approach.

Workflow monitoring is considered one of the key aspects in SWfMSs, and more
generally in WfMSs, but the most mature solutions in this ambit are mainly relative
to the aspects of ensuring correct execution of the steps and optimization of resources.
SW{MSs give life to discipline-specific data processing scenarios where workflow
quality and measures of success are also driven by other factors.

Cardoso et al. in [26], pointed out that modeling and analysis of non-functional
aspects of workflow systems is key for assessing and increasing their added value. The
authors introduce the concept of workflow quality and pinpoint four quality axes: specifi-
cation, analysis, monitoring and control. In particular, they focus on the specification
aspect and define a quadri-dimensional model spanning over the dimensions of time,
cost, reliability, and fidelity. Time is defined as the total time required for a task (a
workflow activity) instance to process data fed as input into outputs. Cost is defined

Airflow, http://nerds.airbnb.com/airflow
2Science Gateways, http://sciencegateways.org/about/science-gateway-basics

24

http://nerds.airbnb.com/airflow
http://sciencegateways.org/about/science-gateway-basics

3.2. Data quality and monitoring

as the cost associated to the WfMS management and monitoring and to the runtime
execution cost of workflow tasks. Reliability is defined as the ratio of the number of
time a task reach the state “done” or “committed” over the number of times it reaches
the state “failed” or “aborted”. Finally, Fidelity is defined as a function of the effective
design and refers to an intrinsic properties or expected characteristic of data products
being created, transformed or analysed. The Fidelity dimension is intentionally high-
lighted to be the most problematic to define and hard to evaluate mainly because of the
“fitness-for-purpose” effect, i.e. subjectivity of judgement and perception of the quality
of data. In [27], the same authors propose a formal predictive theoretical workflow
quality model based on time, cost and reliability dimensions, overlooking fidelity. They
provide the formulae required to automatically compute quality metrics of workflows,
and implement the proposed solution in METEOR WfMS?.

Similarly, but focusing on SWfMSs, Gil et al. report on the results of a workshop on
“Examining the Challenges of Scientific Workflows” [41] and advocate the need to pro-
vide frameworks and tools for specifying and monitoring quality of service requirements.
The idea is to push beyond workflow execution time and bandwidth optimizations, hence
to extend monitoring to other “quality” indicators, so as to cover other relevant aspects
of workflow execution such as responsiveness, fault tolerance, security, and cost.

Although the need of monitoring workflow quality has been clearly stated in the
literature and frameworks and taxonomies have been proposed, out-of-the-box tools for
workflow quality monitoring are today missing. Data Flow Quality Monitoring cannot
therefore be supported by adopting existing solutions in the area of SWfMSs and more
generally WIMSs.

3.2 Data quality and monitoring

Literature about data quality is as old as data itself as it strives to understand to which
extent data can be considered to have quality or not. An extensive literature review
on data quality models is provided by Batini and Scannapieco in [15], from which
it surfaces that the definition of data quality is non-trivial. Authors from different
research communities (e.g. mathematics and statistics, management, digital libraries,
computer science and engineering), hence with different background and target data
or metadata [80, 96, 104], perceive the data quality issue from different angles, with
different requirements and methodologies (intuitive, theoretical [115], empirical [120]).
The definitions, classifications and frameworks so far produced are in several cases
potentially relevant for Data Flow Quality Monitoring [11-13,19,22,24,37,49,62, 81,
85,87,92,93,96,102,103,113,115,117,118, 120].

In general, data quality is a multi-faceted problem which spans across different
dimensions depending on the perspective and focus of the application domain. Known
examples of data quality buzzwords in this ambit are accuracy, completeness, timeliness,
precision, reliability, currency, relevancy, accessibility and interpretability. And for each
of these data quality dimension multiple measurement methods can be found in the
literature [15]. This diversity is not surprising as the notion of data itself may range from
bit stored on disc, to data stored according to a given format, to data conforming to a
conceptual information model, etc. Wang and Strong in [120] surveyed what data quality

3SMETEOR Workflow Management System, http://knoesis.wright.edu/?g=projects/past_projects/
meteor

25

http://knoesis.wright.edu/?q=projects/past_projects/meteor
http://knoesis.wright.edu/?q=projects/past_projects/meteor

Chapter 3. State of the Art

means from a data customer perspective and coined for the first time the expression
fitness for use (also fitness for purpose [105]), meaning that data quality is met whenever
“data are fit for the use by data consumers”, a concept already anticipated in [6] in which
data quality is defined as “a placeholder for whatever dimensions of data quality are
relevant”. Similarly, in 2008, ISO defined the standard ISO/IEC 25012:2008 in order
to standardize data quality as “the degree to which the characteristics of data satisfy
stated and implied needs when used under specified conditions” and provides “a general
data quality model for data retained in a structured format within a computer system”.
It is useful however, when in the need of defining a custom notion of data quality, to
refer to common taxonomies, which can drive data quality managers through a rigorous
structured thinking and then be tailored to match local needs.

In terms of tools and frameworks, particular attention has been posed to (heteroge-
neous) Data Integration System (DIS) — the expression ETL (Extract-Transform-Load)
is also found in the literature — and to the E-R database world resulting in a plethora of
commercial and open source solutions (e.g. Attacama DQ Analyzer and DQ Center?, Tal-
end Open Studio for Data Quality®, Data Cleaner®, Data Monitoring Tool’, Informatica
Data Quality®, Sourceforge’s DataQuality tool® and Experian Pandora'®), frameworks
and research efforts [2,10,21,63-65,68,75,82,83,108,116]. Such tools and frameworks
mainly target data profiling, intended as the activity of analysing a data source to infer
indices (e.g conformance, semantics, quality, interlinking) useful to enhance the reuse of
the data source, and a few address data monitoring, intended as a repetitive (routinely)
validation of the data to assess its quality over time. An extensive literature review on
proposed frameworks and approaches can be found in [15].

An interesting data quality monitoring solution in DIS is the QBox architecture
and tool, described in [33,35,43]. When integrating different external data sources,
monitoring data quality becomes a major issue as the data sources involved are likely
adopting data profiling activities specific to their technology, data model, and data
quality models. Data profiling solutions are hardly interoperable, and coming up with a
consistent data monitoring system, capable of checking quality constraints by verifying
data sources (“local quality evaluation”) and data integration status (‘“‘global quality
evaluation”), is certainly far from being trivial. QBox is conceived as a system for
assessing and monitoring quality of integrated data by enabling the integration of
different data profiling systems. QBox mainly provides the following features:

1. a generic meta-model for the definition of quality goals and metrics,

2. a service-based infrastructure enabling the interoperability amongst different qual-
ity tools, and

3. an OLAP-based analysis and visualization dashboard.

4Ataccama, https://www.ataccama.com/products/dg-analyzer
STalend Open Studio for Data Quality, https://www.talend.com/download/talend-open-studio#t2
%Data Cleaner, https://datacleaner.org

"Data monitoring tool, http://www.uniserv.com/en/company/blog/detail/article/
data-monitoring-tool
8Informatica Data Quality, https://www.informatica.com/products/data-quality/

informatica-data-quality.html
9 Arrahtec “Open Source Data Quality and Profiling”, https://sourceforge.net /projects/dataquality
10Experian Pandora, https: //www.edq.com/uk/solutions/experian-pandora

26

https://www.ataccama.com/products/dq-analyzer
https://www.talend.com/download/talend-open-studio#t2
https://datacleaner.org
http://www.uniserv.com/en/company/blog/detail/article/data-monitoring-tool
http://www.uniserv.com/en/company/blog/detail/article/data-monitoring-tool
https://www.informatica.com/products/data-quality/informatica-data-quality.html
https://www.informatica.com/products/data-quality/informatica-data-quality.html
https://sourceforge.net/projects/dataquality
https://www.edq.com/uk/solutions/experian-pandora

3.3. Use of data quality concepts in workflows monitoring

The OLAP-based visualization dashboard offered by QBox supports the visualization of
quality dimensions over time so that the user can check the outcome of subsequent ETL
integrations and compare results over time.

QBox does not address the concept of data flow and the quality of Extract-Transform-
Load process is intentionally declared out of the scope of the paper (here called Process
Quality Scenario) [35]. The same aspects are missing in all data quality tools mentioned
above, which tend to focus on the analysis of a data source rather than tracking its quality
also in terms of how the data was generated. Accordingly, a tool like QBox could only
partially address the challenges of Data Flow Quality Monitoring.

3.3 Use of data quality concepts in workflows monitoring

Although traditionally monitoring of quality for data and workflows have been following
separate avenues, their research inheritance have been recently brought together in
the field of e-Science scientific workflows (e.g. [1, 111]), where data and workflows
give life to data flows demanding quality monitoring at the level of the data sources
and processing. Poor quality of data, often collected from uncontrolled data sources
and processed during an experiment, can yield revenue loss, bad resources allocation,
wrong results and deductions, and dissemination or propagation of such subtle errors to
subsequent experiments re-using previously produced data [44].

In [72,86], Missier et al. propose an Information Quality (IQ) ontology enabling
scientists and bioinformaticians to describe in scientific workflows their subjective
perception of data quality requirements in a natural, yet formal and domain-specific,
way. The ontology also fosters extension and reuse of already present quality concepts
by means of a catalogue.

In [69-71], Missier et al. describe the Quality Views framework. Quality Views
lets an user specify an abstract process that (i) collects Quality Evidence (QE) from a
dataset in input (item per item) thanks to a Annotation Function (AF), (ii) applies one or
more Quality Assertion (QA) functions to the computed QE in order to evaluate quality
classes and partition the initial dataset into different quality classes, and (iii) associates
quality actions to each quality class defined and perform that action to the corresponding
data. This process enables, for example, the user to filter dataset according to multi-
ple user-driven quality criteria. Quality views works under the assumption that AFs’
implementations are provided, meaning that they are seen as black-boxes and are not
exposed to the framework. The authors also provide a Haskel compiler for Quality
Views and provide the Qurator'! workbench implementing the Quality Views framework
into Taverna!?> SWfMS. Qurator provides a compilation mechanism that translates the
quality concepts modeled with Quality Views into the Taverna’s Workflow Execution
Plan (WEP), making workflows quality-aware. The study is supported by a case study
in the protein identification field (proteomics). Indeed the approach is promising, but
the implementation of Qurator for Taverna seems to be scarcely documented'® and the
project website broken.

"Qurator grant agreement GR/S67593/01, http://gow.epsrc.ac.uk/NGBOViewGrant .aspx?GrantRef=GR/
S67593/01

2Taverna SWfMS, http://www.taverna.org.uk

13Information quality in Taverna, https://taverna.incubator.apache.org/introduction/
taverna-in-use/information-quality

27

http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=GR/S67593/01
http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=GR/S67593/01
http://www.taverna.org.uk
https://taverna.incubator.apache.org/introduction/taverna-in-use/information-quality
https://taverna.incubator.apache.org/introduction/taverna-in-use/information-quality

Chapter 3. State of the Art

Na’im et al. introduce in [74] an approach based on the instrumentation of Kepler
SW{MS which enables the platform to provide visual cues — a three-colored blinking
visual indicator on workflow execution dashboard — to the scientist running the exper-
iment so that he can stop the execution if consider proper. The authors envisage also
a rule engine to capture quality conditions and automatically react in accordance. The
approach requires data quality values to be stored along with the data being processed.
The interface provides a configuration window where it is possible to set three quality
thresholds (i.e. low, average and good). As data is processed, the instrumented Kepler
instance provides to show the visual clue about data quality on top of the workflow ac-
tivities drawn within its execution dashboard. The solution is interesting, but it requires
that the quality feature is a field of the data itself and must be housed within its data
structure; a condition which cannot be guaranteed in general. Furthermore it provides
data quality information within just a workflow execution, an assumption which could
be a constraint in situations in which across-executions controls needs to be ensured.
Finally it fails to provide aggregate views of quality in an entire dataset, as it focus only
on the lowest granularity item composing the dataset. To the best of our knowledge, no
further update has followed to the work here mentioned.

In [89-91], Reiter et al. propose a framework for the evaluation and monitoring of
data quality during simulation workflow execution in order to detect promptly quality
issues, control and steer efficiently the execution of the simulation and potentially
prevent revenue loss [69] due to time loss in long-running experiments. They come up
with a novel data quality measurement process for simulation workflows and describe
how this approach and its components can be integrated into SWIMS in order to
achieve quality-driven workflow execution. They identify three levels to drive workflows
with data quality: workflow navigation (i.e. steering), service/algorithm selection and
service/algorithm dynamic configuration. The authors support their findings with a case
study on a Finite Element Method (FEM) simulation workflow which is able to steer
during its execution according to quality parameters evaluated at runtime over the FEM
grid used as input of a specific matrix solver.

In [55,56,101] Malaverri et al. propose and discuss and semi-automatic approach
based on provenance enabling practitioners to assess data quality of artifacts produced
during an experiment. They propose a provenance model compliant to the Open Prove-
nance Model (OPM) [73] capable of recording, during the execution of a Taverna
workflow, (i) generic properties about data processed and produced by the workflow,
(i1) domain-specific properties evaluated by the application of metrics over data pro-
cessed and produced by the workflow, and (iii) properties of different instantiations
of a processing component within a workflow. Such properties are exported along
provenance with the mechanism of “textual annotations” provided by Taverna, which
however has to be instructed by domain experts. The authors then propose a three-steps
methodology that outlines the basis for evaluating the quality of data components pro-
duced by an execution of a generic Taverna workflow. The study is supported by a
domain-specific case study (agriculture research field).

In [97,98], Silva et al. introduce an approach for the extraction at runtime of domain-
specific attributes from intermediate and final raw data consumed and produced by
running scientific experiments. Such extracted domain-specific data are then incorpo-
rated with provenance data and saved in the provenance database for later use. The

28

3.4. A classification taxonomy for monitoring systems

proposed provenance database stores both workflow specification (prospective prove-
nance) presenting its structure in terms of activities and data dependencies and the
workflow execution properties (retrospective provenance) and enables scientists to select
and access relevant raw data, track them during the whole production data flow and
assess whether they comply with defined quality criteria. The main advantage of the
approach proposed is that attributes are extracted from raw data as they are generated
instead of requiring to parse them ex post, once the workflow has ended. The study is
supported with a case study comprising a Montage'* large-scale scientific workflow
(computational astronomy research field). As stated by the authors the work needs
further generalization and extensions in order to be adopted broad-spectrum.

In [66], Mattoso et al. provide an extensive literature survey about workflow steering
in High Processing Computing (HPC) scientific workflows and provides a taxonomy for
concepts of workflow steering. The taxonomy includes data quality monitoring aspects
as they are considered relevant to HPC SWIMS, but the study highlights that the issue
still represent an open challenge in this context.

In summary, for several reasons, none of the approaches above is suitable for the kind
of functionalities required by Data Flow Quality Monitoring, which targets DIs whose
resources are not necessarily under the control of the DI quality managers and whose
workflows may be only partly automated. Some of the approaches are based on assump-
tions that cannot be generally valid (e.g the ability of defining Annotation Functions at
the item level), others are specific to given technological solutions or application fields
(e.g. the ability to “steer” workflows based on given feedback, integration in Kepler) and
cannot be adapted to different contexts.

3.4 A classification taxonomy for monitoring systems

The analysis of the literature above, and its validation with respect to the problem of
Data Flow Quality Monitoring and its requirements, has led us to define a classification
taxonomy of existing solutions in terms of a number of features characterising the
methodology, strategy, and architecture of monitoring systems, across data, workflows,
and data flows. The taxonomy grounds on the following terminology:

Target system It is the system to be monitored, e.g. data source, a WfMS, a SWIMS,
Data Infrastructure data flows;

Monitoring system It is the system that monitors the target system, capable of routinely
collect metrics observations over time and run validation tests;

Measurement (Metrics and Observations) A metrics is a named function (e.g. size
of a data collection, impact of an algorithm over its in/out data) that produces
observations, i.e. values, at given moment in time; observations relative to a
metrics constitute the tangible description of the behaviour of data, process, or
workflow to be observed; measurement is the action of generating an observation
relative to a metrics;

Control It is a function that applies to the observations of one or more metrics and
produces values representing the estimate of the overall quality of the entities under
monitoring.

“Montage, http://montage.ipac.caltech.edu

29

http://montage.ipac.caltech.edu

Chapter 3. State of the Art

The taxonomy develops across different dimensions, some of which are not totally
independent, meaning that one choice in a dimension may affect available choices across
others:

e Monitoring system integration: the degree of technological decoupling between
target system and monitoring system, namely embedded versus independent;

e Monitoring approach: blackbox monitoring versus whitebox monitoring;

e Monitoring exploitation: the intended exploitation of monitoring control results,
namely human-driven exploitation versus machine-driven exploitation;

e Measurement customization strategy: the flexibility of the monitoring systems
with respect to the definition of own function metrics, namely intuitive and out-
of-the box measurements and controls versus developer-oriented customization of
measurements and controls;

e Measurement location strategy: the decision whether metrics observations are
calculated at the target system or at the monitoring system site, namely in situ
versus remote evaluation;

e Observations storage strategy: the decision whether data quality observations are
to be stored together with data or separately, at the monitoring system;

e Measurement and controls strategy: the decision whether measurements constitute
the minimal elements necessary to determine quality or instead a separate notion
of controls, operating over input metrics, should be introduced;

e Control strategy: the decision to leave controls to machines or introduce humans in
the loop;

o Workflow awareness: the ability of a quality model to capture the notion of work-
flows in its measurements, i.e. metrics and observations are contextualized to the
execution of a workflow at a given time;

o Workflow quality awareness: the ability of a quality model to integrate notions of
workflow (data and process) quality beyond mere performance parameters.

In the following we shall describe in detail such features, providing examples, and
where needed commenting on their possible implementation in the context of DI data
flows.

Monitoring system integration The monitoring function of a generic target system
(in our case a DI) can be performed either internally, from a tool deployed within
(embedded) the target system, or externally, by leveraging an external monitoring system
pluggable on top of the target system and collecting measurements.

While the former solution is specially devised for the target system at hand and cannot
be easily adapted to other contexts, the latter outlines a “‘companion” (independent)
monitoring system which can be generally designed as:

e general purpose,

e programming language agnostic,

30

3.4. A classification taxonomy for monitoring systems

e technological platform agnostic,
e integrable at any moment in time,

e minimizing (possibly) the effort, i.e. cost, required to integrate with the target
system.

The monitoring system takes away from the target system, thereby hiding the relative
complexity, the monitoring layer by offering abstractions for the mechanism of com-
munications, persistence of monitoring data, enforcement of controls and any other
provided service (e.g. notification and alerting).

Monitoring approach In general, when dealing with monitoring, two possible mon-
itoring strategies emerge: blackbox and whitebox, sketched in Figure 3.1. These two
concepts are borrowed from system monitoring terminology'® [110].

_ Ao
Target S — Monitoring

system | | system

Target Monitoring
system | — .| system

Figure 3.1: Blackbox (top) VS whitebox monitoring (bottom)

When a monitoring system implements a blackbox monitoring architecture, it means
that it polls and pulls metrics out the target system, typically from public accessible
services containing finished or intermediate data products produced by the workflow
(e.g. filesystem, staging areas, databases), and typically when the workflow has executed
(WIMS in idle). Despite a blackbox monitoring architecture requires no participation
whatsoever from the target system, it is able just to capture external functionalities (i.e.
end customers’ view) and performs end-to-end checks, while the rest of the system’s
internals remains pretty much unobservable. The approach described in [33, 35, 43],
for example, follows a blackbox strategy as it focus data quality measurements on
pre-integration database (sources assessment) and on post-integration database (final
product assessment).

As opposed to blackbox monitoring, a whitebox monitoring architecture requires
instead a tighter cooperation from the target system which turns into an active counterpart
in the monitoring architecture and provides more granular information about its internals
that, with a blackbox approach, were simply unobservable. The user of the monitoring
system needs only to take care of instrumenting the source code of the target system
in the proper place in order to evaluate the metrics of interest. The solutions described
in [74, 89], for example, follow this monitoring strategy. Furthermore, any typical
workflow execution monitoring solution implements a whitebox strategy, e.g. for tracking
execution times of workflow activities, i.e. the WfMS itself takes case of advertising
this monitoring data (as this information would be lost otherwise).

15Aaron S. Joyner, presentation “Monitoring and Alerting”, http://www.ncsysadmin.org/meetings/1010/
Monitoring_and_Alerting.pdf

31

http://www.ncsysadmin.org/meetings/1010/Monitoring_and_Alerting.pdf
http://www.ncsysadmin.org/meetings/1010/Monitoring_and_Alerting.pdf

Chapter 3. State of the Art

Monitoring exploitation The conclusions drawn by monitoring controls can be used
with different purposes by humans, but also by machines. In particular, an active and a
passive usages of quality notions have been identified:

e Passive:

— Reporting: present a more or less organized view of quality metrics about the
target system as in [33,35,43,61,74,89,90];

— Accountability: show proof of system operations and internal state towards
data sources, consumers and stakeholders in general [33,35,43,55,56,61,97,
98,101].

e Active:

— Quality-driven steering: use quality notions locally in order to steer the work-
flow, select or configure algorithms and services [89,91];

— Quality-driven data manipulation: use data quality notions locally in order to
filter data out of shape (w.r.t. quality of data) and/or perform different actions
(possibly corrective) on data according to data quality classes [69-71];

— Management: use data quality notions in order to perform maintenance opera-
tions and/or trigger countermeasures in the target system [61] without altering
the data content or without altering the workflow. For example, the quality
information can be used in order to launch another workflow or in order to
launch customized routines, e.g. temporarily graylist a data source whose data
are out of shape.

Measurement customization strategy A monitoring system can either provide out-of-
the-shelf metrics implementations capable of working under certain controlled assump-
tions, or give total freedom to its users in order to implement (or customize existing
implementations) their own solutions to their specific problems.

The first solution provides a catalogue of metrics implementations [89], while the
second provides placeholders to be filled in. Metrics offered by the catalogue are specific
to certain data types or backends and cannot operate under different circumstances. For
example, the metrics implementation evaluating the completeness of a table in a E-R
database cannot work on a full-text index; similarly, a metrics evaluating the signal-to-
noise ratio for an X-Ray image cannot be applied on an audio file. Even more subtle, a
metrics implementation working on a specific version of a backend might not work with
another version of the same, or a metrics evaluating a property on data might be working
only for a specific version of the data format/schema. Depending on the context, the
literature provides a multitude of different measurement implementations [15].

Because of this context dependency and since no assumption can be done a pri-
ori about data flowing in the infrastructure and the relative data quality, authors in
the literature often refers to the “fitness for purpose” principle [105, 120] when refer-
ring to quality definition. For this reason, some other approaches also leave metrics
implementation as a placeholder and empower the user to implement their own strat-
egy [55,56,61,69-71,98, 101] which usually is domain specific.

32

3.4. A classification taxonomy for monitoring systems

Monitoring system

evaluation
data
data+features @

Target system

([

@

Target system

(a) In situ evaluation of metrics, in band storage of ex{b) In situ evaluation of metrics, remote storage of ex-

tracted features

tracted features

Monitoring system

Monitoring system

features | [

evaluation evaluation
& &

data | data

@ g @

Target system Target system

(¢) Remote evaluation of metrics, in band storage of ex-(d) Remote evaluation of metrics, remote storage of ex-
tracted features tracted features

Figure 3.2: Possible combinations of the available strategies for measurement location and observation
storage

Measurement location strategy Entities to be monitored can be “inspected” following
two possible general approaches, shown in Figure 3.2: in situ, i.e. at target system
site, or remotely, i.e. at the monitoring system site as shown in Figures 3.2a and 3.2b.
Some work present in the literature adopt the in situ approach [61,89,90,97], meaning
for example that the evaluation of metrics over data is performed locally at the target
infrastructure wherever the data is available.

Some monitoring frameworks present in the literature [89,91] advocate for remotely
evaluated metrics, a kind of metrics-as-a-service strategy, as shown in Figures 3.2¢ and
3.2d; of course in this case data have to be sent to the monitoring system. In order to
cope with heavy data transfer, Reiter et al. in [89] conceived the possibility of passing
data to their monitoring service by reference, a mechanism already used in [109] for
quality-based data selection in Data-as-a-Service (DaaS).

33

Chapter 3. State of the Art

Observations storage strategy Another direction of our taxonomy takes into consid-
eration the way in which observations are stored and where. A possible approach is
about housing such information in band (see Figures 3.2a and 3.2c), so that they are
propagated along data, as a price tag or a fact-sheet essentially, in order to be used
during the assessment of the quality of a data product [68,117,118]. For example, in
Cooperative Integration Systems (CIS) [68], data sources partake to one scenario of data
integration (rarely to different ones) and agree upon fostering the integration on how
observations can be pre-calculated and passed over towards the global system embedded
in the data source data.

The diametrically opposed approach instead is about storing observations out of
band (see Figures 3.2b and 3.2d), separately from data, in a subsystem devised to
persist and organize such information, typically located at the monitoring system site
[55,56,61,97,98,101].

The first solution is often far from trivial as it implies a tight collaboration among
data sources and a great effort in order to integrate the modification proposed. This
requirement is for example far from being considered as granted in DIs and relative
data flows, since data sources are not directly controlled in the majority of the cases.
In DI, there could be multiple workflows working over the same data, leading to an
unbearable efforts in order to adapt and mediate data sources in all the use-cases in
which is involved. In fact, the architectural modification suggested have to be adapted
and implemented for every single scenario in which a given data source participates.

Measurement and controls strategy Another direction we explored in our taxonomy
focuses on the degree of decoupling between measurements and controls. For exam-
ple, metrics may yield a two-state (tri-state) output representing the success/failure
(success/warning/failure) of the measurement. Somehow, in this scenario, controls
are embedded in the notion of metrics, whose observations are already encoding an
interpretation and an evaluation of the behaviour of the monitored entities. As suggested
in [89,90, 117], a symmetric approach is one where metrics have no judgemental value
and are used to produce observations over “objective data quality features”, e.g. com-
pleteness, conformance, accuracy, etc., and such observations be subject to the most
diverse interpretations, encoded by means of controls, ultimately resulting in an indicator
about “data goodness”. For example, let us assume that the metrics completeness maps
data under examination into a measure ranging in [0, 1]. If the evaluation of such metrics
returns 0.7, this “score” of the relative feature could be interpreted as acceptable in
one context, but not in another. In this case, metrics are generic functions that, at a
given time, can map data, processing steps, or data flows onto one or more observations
representing features in the monitoring domain. The interpretation of such features is
then subjective to the specific context, e.g. data flow, in which the features are being
evaluated.

Control strategy Monitoring solutions typically contemplate two control application
strategies, i.e. ways to assess quality given metrics and relative observations: fully auto-
matic, i.e. machine-driven, or Human-In-The-Loop (HITL), i.e. with ancillary support
from an human operator. HITL-oriented solutions [55, 66,74, 89,90,97]) foresee the

34

3.4. A classification taxonomy for monitoring systems

data feature quality

Figure 3.3: Decoupling evaluation of data features from their interpretation

possibility to:

e provide guidance and assist human operators (e.g. scientists or infrastructure
managers) in assessing the quality of data produced [55,56,74,97,101];

e delegate quality interpretation to human operators by presenting the findings ex-
trapolated by quality metrics and/or waiting for specific actions before proceeding
in the workflow [66, 89, 90];

It is important to note that the introduction of a HITL brings an alea into the quality
monitoring process as human beings evaluate in different ways according to their own
knowledge and past experience, or think, feel and judge with different criteria over
time [89].

Workflow awareness A monitoring approach can be more or less workflow-aware,
meaning that observations are extracted being aware of the context (i.e. location in time
and context of the workflow/data flow) where the measurement took place and that
such information can be used in order to compare metrics and enforce controls overs
them throughout time. A monitoring system is workflow unaware otherwise. To our
knowledge, the majority of the approaches found in the literature tackle the monitoring
problem without workflow awareness, meaning the just focus on one execution of the
workflow. In [66, 89-91], for example, the data quality information is used locally
in order to perform a choice (service/algorithm selection or configuration, workflow
steering) within the same run. In [69-71] the WEP is instrumented with quality-aware
workflows in order to perform different actions based on perceived quality of data, hence
quality criteria are local to the quality workflow only. In [74], again the information
about data quality is used locally to decorate the workflow representation in Kepler GUI.
The only studied approaches that propose workflow aware solutions seems the ones
described in [55,56,97,98, 101].

Workflow quality awareness Several solutions in the literature focused on analysing
workflow execution from a status and performance perspective (i.e. time elapsed for
execution, number of tasks run, workflows and tasks executing, tasks failed, errors
encountered, successfully committed workflows). Tools and services for workflow
activity monitoring are often provided natively by several WIMS (e.g. D-Net [57],
Airflow, Taverna [78], Kepler [3], Chiron [77], Askalon [34]). The Stampede monitoring
infrastructure [47, 112] has been proposed in order to track workflow execution in
complex and large-scale SWfMS such as Pegasus [30] and Triana [106] SWfMSs by
mean of distributed data logs confluence.

Despite performance monitoring represent the first milestone when monitoring work-
flows, practitioners show a keen interest in monitoring more than just mere workflow

35

Chapter 3. State of the Art

and WEMS performances, as mentioned in [26,27,41, 66].

Since in a DI the definition of a workflow can be in continuous evolution and
refinement, and the data it has to cope with may evolve over time too, the “health
status” of a workflow can be inferred also by runtime analysis of data as they go
down the line and by enforcing controls over such data features. The works described
in [55,56,69-71,74,89-91,97,98, 101] go along this research direction.

36

CHAPTER

MoniQ: A Data Flow Quality Monitoring System

Driven by the use-cases in Chapter 2 and the taxonomy defined in Section 3.4, in
Section 4.1 of this chapter, we draw the requirements for Data Flow Quality Moni-
toring Systems (DFQMSs). Based on such assertions, in Section 4.2 we will define
the architecture of the DFQMS MoniQ while in Section 4.3 and Section 4.4 we will
define the monitoring flow description language and the monitoring intent description
language, respectively. Finally, in Section 4.5, we conclude with an overall analysis of
the integration effort required by MoniQ.

4.1 Requirements of Data Flow Quality Monitoring Systems

Given the use-cases discussed in Chapter 2 and the taxonomy introduced in Section 3.4,
we can frame the rationale of the Data Flow Quality Monitoring Systems (DFQMSs) for
Data Infrastructure (DI) data flows, of interest to this work. More specifically, for each
of the monitoring systems features mentioned in the taxonomy, in the following we list
and justify the preferred options for DFQMSs. These considerations will be served as
key high-level requirements, summarized in Table 4.1, for the definition of the MoniQ
framework, architecture and languages, in the next sections:

e Monitoring system integration: due to the heterogeneity of DIs and the likely
autonomy of their processing components, DFQMSs should be designed to be
as independent as possible from the target system at hand. Such systems must
ensure some degrees of transparency with respect to development platforms, DI
subsystems, data models, and data quality models. Most importantly, the adoption
of DFQMSs should minimize the amount of development work necessary to
integrate with the DI data and processing components.

37

Chapter 4. MoniQ: A Data Flow Quality Monitoring System

e Monitoring approach: for the purposes of Data Flow Quality Monitoring, a black-
box monitoring approach is simply not viable because of the evolutionary character
and the dynamic nature of DI data flows and their components. By adopting a
white-box monitoring architecture instead, the DI quality manager will be able to
flexibly attach metrics and controls to data and processing components, and to their
gluing data flows, to satisfy evolving control needs.

e Monitoring exploitation: DFQMSs do not impose any specific requirement on the
side of monitoring exploitation and open up to both passive (accounting, reporting)
and active (steering, management, etc.) exploitations.

e Measurement customization strategy: DFQMSs cannot make any assumptions on
the DI components and data flows, their intent and goals, as well as their expected
measures of correct behavior. As such, DFQMSs should be flexible enough to
support DI quality managers at flexibly introduce custom metrics and controls that
properly satisfy their needs. Of course this does not prevent DFQMSs to offer a
“catalogue” of available metrics functions and relative implementations (e.g. for
given back-ends or processing components).

e Measurement location strategy: DFQMSs must perform in-situ evaluation for a
number of reasons. Beyond the decoupling requirements outlined above, which
impose independence from data and processing components, in several application
contexts, e.g. in a data-intensive workflow, the amount of data flowing in the DI can
be massive and often there is literally not even space enough to save intermediate
products into staging areas. In such a context, sending data through the network to
the monitoring system for remote evaluation or, worse, remotely duplicating the
data, is not an option. Passing data by reference as suggested in [89] for metrics
evaluation, to the best of our knowledge, can be seldom practicable in DI context,
since it requires persistence and globally reference-able data, constraints that in
general cannot be guaranteed.

e Observations storage strategy: in accordance with the requirement of decoupling
from the target system, DFQMSs cannot opt to alter the structure of data stored into
data components or flowing through processing components as this option would
reduce the application domain to a few selected DIs. DFQMSs must therefore offer
storage for observations, which in turn are to be computed on the DI side.

e Measurement and controls strategy: DFQMSs should offer the maximum flexibility
to DI quality managers, therefore deal with measurements as separate from control
management.

e Control strategy: DFQMSs do not impose any specific requirement on the side
of control monitoring, although in general monitoring and controlling a complex
environment such as the one of DI data flows would benefit from a more scalable
and fully automated approach.

o Workflow awareness: DFQMSs must be workflow aware, as their main intent is to
track measurements in the context of DI data flows and over time.

38

4.1. Requirements of Data Flow Quality Monitoring Systems

Table 4.1: DFQMSs requirements

Feature

Requirement

Monitoring system integration
Monitoring approach

Monitoring exploitation
Measurement customization strategy

Measurement location strategy
Observations storage strategy
Measurement and controls strategy

Control strategy
Workflow awareness
Workflow quality awareness

R1: DFQMSs are agnostic of DI component technologies
R2: DFQMSs follow a whitebox monitoring approach

R3: DFQMSs must allow custom definition and integration of
metrics

R4: DFQMSs must support in-situ evaluation

R5: DFQMSs must offer storage for observations

R6: DFQMS must support logical separation between mea-
surements and controls

R7: DFQMSs must be workflow aware

R8: DFQMSs must support quality of workflows

dataQ server

data infrastructure t time

tfn..’raPra metrics rsemj thand/a trs ceive

t{nfra Post

tmonirorm g

Figure 4.1: Introduced latency due to MoniQ monitoring activities

o Workflow quality awareness: DFQMSs must introduce a degree of workflow quality
in order to satisfy the desire of DI quality managers to provide answers to data
quality questions about a live system, in operation and in continuous evolution.

As a final comparison, in Table 4.2, we map the various approaches studied in the
literature review presented in Chapter 3 to the taxonomy described in Section 3.4 and
compare them with the requirements drawn for MoniQ.

It is worth noting that the drawn requirements imply the introduction of a overhead
latency into the DI due to the metrics evaluation and the communication with the
remote monitoring system. In Figure 4.1, we reported a simple scenario in which a
metrics m starts to be evaluated by a sensor hook at time ¢, and outline the relevant
time factors. The time employed for the normal execution of the data infrastructure
Linfra = tinfraPre + tinfraPost 1S T€presented in light blue, while in red we can see the
overhead latency accountable to data flow quality monitoring. More precisely, the
latency t,,onitoring Introduced by the presence of MoniQ is equal to

tmonitoring = tmetrics T teom + thandle =

“4.1)
= tmetrics + tsend + treceive + thandle

39

Chapter 4. MoniQ: A Data Flow Quality Monitoring System

Table 4.2: Comparison of MoniQ requirements against the state of the art

Workflow monitoring solutions Data quality Hybrid solutions DFQMS
Stampede monitoring Quality views Na’im et al. Silva et al. Malaverri et al. Reiter et al. .
Feature WIMS/SWIMS [47,112] solutions [69-72,86] [74] [97,98] [55.56,101] [89-91] MoniQ
yfg;imng Internal, External, dedicated External, Internal, Internal, \i]lgrekrgglv’v Internal, Internal, External,
;r}lliegration WIMS specific | (Pegasus, Triana) backend specific Taverna specific Kepler specific specific Taverna specific | SWIMS specific | general purpose
- . Whitebox
M Wh Black
onitoring itebox ackbox (compiled quality Whitebox Whitebox Whitebox Whitebox Whitebox
approach (assess workflow performances) (assess backends)
aware workflow)
Accounting, Hodon | reporting.
Monitoring Accounting reporting, Accounting Quality-driven Visual Accounting, Accounting, steerine and 'IPr ; ef.
exploitation and reporting failure forecast, and reporting data manipulation reporting traceability traceability e g8
analytics configuration, management
) reporting actions, steering
. . Automatic/manual - Custom data
Measurement None, typical metrics of . User-defined Custom Custom . User-defined User-defined
S selection of . features extraction .
customization workflow performances . data quality data features | data features . data quality data + processes
. . available data . . . and metrics over . . .
strategy (exec time, success/failures, etc.) . . metrics and classes extraction extraction metrics quality metrics
quality metrics data
Measurement In-situ .
. In-situ In-situ or remote In-situ In-situ In-situ In-situ In-situ
location strategy and remote
Generally
. Out-of-band out-of-band Out-of-band Out-of-band
Observations on Stampede . Out-of-band along . . Out-of-band
Out-of-band . although some - - along with . in a dedicated . .
storage strategy dedicated . with provenance as time series
repository exceptions provenance database
e.g. [68,117,118]
Measurement and Depending on Dlre‘ct: quality Tri-state Two phase Two phase
controls strategy - the approach metrics map to thresholds - - interpretation interpretation
o quality classes ; i
Automatic Generally . . Manual: Manual: Automatic Automatic
Control strategy - . Automatic Automatic . .
and manual automatic user queries user queries and manual and manual
Workilow Aware - Unaware Unaware Aware Aware Unaware Aware
awareness
Workflow quality
awareness Unsupported Unsupported Supported Supported Supported Supported Supported Supported

40

4.2. MoniQ Architecture

The latency factors required in order to send and receive the observation to MoniQ
server are indicated with .4 and ¢,..;,. respectively. Finally, the overhead factor
introduced by MoniQ server in order to handle and persist the observation is named as
T handle-

Under the desirable assumption that the overhead factor due to communication
between the DI and the monitoring system ¢,,,, and the ¢,,4. latency introduced for
handling the observation are as negligible as possible, the overall latency can be reduced
to:

tmonitoring ~ tmetrics (42)

which means that the dominant latency factor is the one due to metrics evaluation (i.e.
its implementation), as pointed out in [89]. Therefore, the introduction of a monitoring
layer affects the infrastructure “core business logic” execution time proportionally to the
complexity of metrics implementation.

It is duty of quality managers to satisfy this condition as closely as possible during the
implementation of the metrics of interest (see also Section 4.5 and Chapter 6). However,
if the metrics implementation is optimized and does not require continuous access to
external resources or calls to remote services (each of which is not recommended in
any case), the monitoring overhead latency can still be contained. In the case externals
resources may be required, it is advisable to prefetch and load them as internal resources
of the sensor when it is instantiated.

In conclusion, thanks to the adoption of monitoring layer, dramatic time for trou-
bleshooting, debugging and analyzing the DI status can be saved; thus we are confident
that a trade-off between introduced overhead VS benefits gained can always be found in
the majority of the cases.

4.2 MoniQ Architecture

MoniQ (pronounced “moh-NEEK”) is a system supporting quality managers at monitor-
ing their DI data flows. Its architecture, depicted in Figure 4.2, has been conceived as
client and server architecture (requirement R1), where the server is the DFQMS and the
client is the target system to be monitored, namely the DI and the relative data flows.
MoniQ supports quality managers at:

e Describing monitoring flows: DI quality managers can express the semantic and
the time ordering of their observational intents in terms of monitoring flows, which
capture the essence of the DI data flows to be monitored, by means of the primitives
of a monitoring flow description language; as we shall see in the following sections,
MoniQ monitoring flows are not in general mapping directly onto the components
of DI data flows, but rather representing their core parts to be monitored in terms
of storage blocks (SBs) and processing blocks (PBs); for example, as illustrated in
Figure 4.2, a MoniQ processing block may represent the processing effect obtained
by combining multiple processing components in the DI; finally, monitoring flows
are intended as ordered sequences of data and processing blocks, whose evaluation
(i.e. the calculation of the relative metrics) takes place in a block session;

e Describing monitoring intent: DI quality managers can specify the metrics and
controls required to perform the monitoring using the primitives of a monitoring

41

Chapter 4. MoniQ: A Data Flow Quality Monitoring System

MoniQ

controls 1 _——7| controls 2 |~
I - \
- -
/. -~
/ e

,.‘
1 l’
m o o

\

Quality e Monitoring Flow
manager * Monitoring Intent :33
)
e DI Data Flow E)
|ntegrat|on w

Data

U asaudal
implements

Third-party

\ services
Data

component

é?

s
dob

Processing
component

DI Data Flow
Data Infrastructure / End users

Figure 4.2: MoniQ logical architecture

intent description language; as we shall see in the following sections, metrics can
be attached to individual blocks of monitoring flows as well as to (sub-parts of)
such flows, hence controls can be at the level of individual blocks or such flows
(requirement 8); not only, controls can be performed across multiple runs of the
same monitoring flows (requirement R7), to evaluate metrics constraints over time;
finally, the concepts of metrics and controls are kept independent (requirement R6),
metrics and relative observations being the possible input of distinct controls;

e [ntegrating DI data flows with MoniQ: quality managers, on the client side of DI
data flows, must code the programs needed to calculate the metrics and send them
to the server side of MoniQ (requirement R2).

To this aim, MoniQ offers support for storing observations (requirement R5) that are
produced at the DI side (requirement R4) by means of metrics implemented by the DI
quality managers and specific to their measurement needs (requirement R3). Due to its
decoupling from the target system, MoniQ is not equipped with pre-defined metrics,
as the implementation of the relative functions depends on the technology, algorithms,
data models, and development languages adopted on the DI data flow components.
On the other hand, given specific DI platforms, it is possible for quality managers to
realize and then equip MoniQ with toolkits of metrics implementations in order to make

them reusable to other quality managers whose data flows are realized over the same
technology.

4.3 The MoniQ Monitoring Flow Description Language

DI data flows span over a variety of different macroscopic aspects and tasks such as data
collection from external sources, data processing (e.g. transformation, manipulation,
integration, reconciliation, deduplication), data movement from/to different backends

42

4.3. The MoniQ Monitoring Flow Description Language

Data processing block

| | Data storage block

H T —] Compound block

- |:| Relationship

Figure 4.3: DI construct blocks

and data models, and data provision. They may include Human-In-The-Loop (HITL),
in the sense some of their processing components are activated by humans (e.g. web
applications, shell scripts) or be entirely managed via Workflow Management Systems
(WIMSs). Data flows can be therefore specified in a natural language or given human
protocol (e.g. Protocols.io'), for humans to read and execute, or be encoded in any of
the workflow languages available in the literature, for machines to orchestrate. In any
case, DI data flows describe sequences of actions, modelled by processing components,
over data components.

The MoniQ monitoring flow description language is graphical, as it is intended to
reflect the impact of a graphical user-interface, and takes inspiration from well known
graphical languages for data flow representation. Such languages are built on the
analogy between systems for data processing, e.g. Data Infrastructures, and “production
systems” [6,49,83,95,119]: digital data is the “raw material” or the “final product”, data
processing is the manufacturing process, and data flows are the “assembly line”. Such
languages typically capture the notions of data sources, data storage, data processing,
and data consumers and describe the relationships between components in a data flow.
The monitoring flow language is instead intended to capture the data flow monitoring
logic: how areas of the DI, represented by monitoring blocks, are to be supervised
(i.e. behaviour observations are to be sampled) and in which specific time-ordering, by
MoniQ.

The monitoring description language models monitoring flows as workflows built
on three kinds of blocks: data storage blocks, data processing blocks, and compound
blocks using the formalism depicted in Figure 4.3. A block B is concerned with tracking
behaviour of a data flow component and collecting quality observation sent by the DI
data flows to MoniQ during their execution. Monitoring flows can combine blocks via
directed relationships dictating the expected ordering of the relative observations. More
specifically, if blocks By and Bs are in a relationship B; — B, then the measurement
session of B; needs to be completed, i.e. all observations from B; must be acquired,
before the measurements of B, can start.

As mentioned and exemplified in the previous section, monitoring flows aim at

IProtocols.io, https: //www.protocols.io

43

https://www.protocols.io

Chapter 4. MoniQ: A Data Flow Quality Monitoring System

modeling the high-level blocks of DI data flows to be monitored. As such, its data or
processing blocks are not necessarily meant to map directly onto the DI components
as well as monitoring flows are not necessarily mapping onto the full business logic
of DI data flows; e.g. quality managers may be interested in monitoring a sub-part of
one of their DI data flow. Indeed, it is up to the quality manager to decide what a
data storage block has to represent, in such a way his monitoring needs are satisfied.
Blocks can represent only components (or combinations of them) under the jurisdiction
of the quality manager, meaning that quality managers must be able to embed sensors
implementations close to their components.

Data storage blocks A data storage block represents the intention of modeling a data
source component or, in more complex scenarios, a combination of data source compo-
nents, logically seen as one storage system. For example, a filesystem providing access
to the content of a file or a folder in a specific location, a database exposing to data
stored in a table, or a NoSQL store (e.g. MongoDB) providing access to a collection of
documents. In general, it is assumed that data storage blocks will be concerned with
metrics and observations relative to collections of objects rather than to the individual
objects, that is the underlying DI components typically support APIs to implement
such metrics. For example, an API enabling to perform aggregated observations over
persisted collections such as counts of certain classes of items, number of occurrences
of a given property, number of empty fields of a E-R column, number of files in a folder
and so on.

Definition 4.1. A data storage block, here also referred to as SB, represents the intention
of monitoring a data management area in the DI supporting access to one or more data
collections. In particular, the following features apply:

e A storage block starts when the first observations relative to the block reaches
MoniQ;

e The start of a block spawns a new block session;

e The block session terminates correctly when all metrics have been measured as
specified by the quality manager.

e The block session terminates incorrectly when one of the metrics is received twice
before the correct termination of the session.

O

Data processing blocks A data processing block models the intention of monitoring
a computing function, which can be made of a pipeline or combination of processing
components, but it is perceived as one action to be executed over data and/or to produce
data and to be monitored. Examples of processing blocks to be monitored can be a
mediation component in the DI, entitled to collect data from an external data source
to deposit them in a data component in the DI. In this case there is not input to the
component, which generates instead a data collection as output. In a more general
sense, a processing block may represent combinations of DI processing components,

44

4.3. The MoniQ Monitoring Flow Description Language

whose goal and machinery are known only to the quality manager who is interested in
monitoring the output of the overall processing block starting from a given input.

More specifically, a data processing block is intended to model monitoring of a
common computing scheme in data flows which is that of processing a sequence of input
data to produce a sequence of output data; e.g a for-each, while, parallel algorithmic
skeleton. This general skeleton is typical to processing components in any DIs, where
for example a result set of records is passed over to a service in order to execute a
transformation to each of the records (multiple input multiple output, MIMO), or a
collection of objects is processed to return one “fusion” of such objects (multiple input
single output, MISO). By introducing this level of granularity, still without entering
the representation of input and output data, the MoniQ framework allows the definition
of sub-process metrics and observations at the level of the individual sub-calls of the
processing logic behind a processing block; e.g. with regard to the MIMO example
above, the “quality” measure of the improvement of one record before and after the
transformation. This is of crucial importance, since the metrics relative to a processing
block depend on combination or aggregations of observations relative to sub-process
metrics; e.g. with regard to the MIMO example above, the average quality impact of a
processing logic after its execution, hence after all its sub-calls have been executed. To
this aim, MoniQ offers storage for the observations relative to the individual sub-calls
while providing support for the calculation of process metrics, obtained by properly
combining the observations produced by sub-process metrics. Without this abstraction
mechanism, the modeling of the same metrics would require the quality manager
to develop a temporal cache for the intermediate observations (sub-process metrics),
conflicting with requirement R5. Obviously, we cannot pretend to have modeled all
possible patterns of processing logic. Some monitoring use-cases may well escape the
framework model and possibly require complex implementations of metrics functions
on the DI side. However, we are confident that the most common use-cases can be
expressed with such abstractions and therefore benefit from any MoniQ framework
implementation.

Definition 4.2. A data processing block, here also referred to as PB, represents the
intention to monitor a generic processing logic JF that is run & times within the execution
of a DI data flow, according to a sequential or parallel computing pattern.

In particular, the following features apply:

e A processing block starts when the first observation relative to the first invocation
of JF reaches MoniQ;

e The start of a block spawns a new block session;
e The block session correctly terminates with an explicit session closing notification;

e If a closing notification is not sent, the session may remain “idle”’; the MoniQ frame-
work allows to set time-to-wait thresholds, after which the session is terminated
incorrectly;

e When the block session terminates, all process metrics observations are calculated
by MoniQ.

O

45

Chapter 4. MoniQ: A Data Flow Quality Monitoring System

Compound blocks For monitoring purposes, blocks can be grouped into so called
compound blocks. Such blocks are used to model the fact that the including blocks
can be seen as part of the same session, even though their metrics are measured at
different times, following the ordering specified by the monitoring flow. This allows
metrics of different blocks to be aligned at the end of the compound block session, in
order to calculate compound metrics or perform controls that require such metrics to be
time-aligned.

Definition 4.3. A compound block, here also referred to as C'B, represents the intention
to monitor the overall behaviour of a group of blocks. CB can include a subset of data,
processing, and compound blocks that are part of a monitoring flow; its effect is to
inherit the metrics of the blocks it contains. If C'B includes blocks By, . .., By then the
following features apply:

e A compound block starts when the first B; starts;

e The start of a compound block spawns a new block session;

e The block session correctly terminates if By, ..., By correctly terminate;
e The block session incorrectly terminates if any B; incorrectly terminates.

e When the block session terminates, all compound metrics observations are calcu-
lated by MoniQ considering the metrics of B, ..., By as aligned at session closing
time.

0

The need of monitoring an entire monitoring flow, hence of defining metrics or
controls that refer to the scope of the whole flow, is modeled with a compound block
including all blocks of the monitoring flow.

Monitoring flows In order to capture the notion of data flow quality monitoring debated
in this thesis, MoniQ defines a monitoring flow (m-flow as a directed acyclic graph
(DAG) of data storage blocks, processing blocks, and compound blocks; see Figure 4.4
for an example. MoniQ provides quality managers with the abstractions required to
express which blocks they are willing to monitor and, most importantly, how such blocks
are chronologically related and can be monitored altogether. Specifically, a monitoring
flow:

1. Defines the temporal ordering of block sessions relative to the blocks: indirectly
this defines the temporal ordering in which the metrics relative to blocks should be
measured;

2. Defines the temporal scope of an m-flow session: the start and termination of all
session blocks in an m-flow reflects a complete execution of the DI data flow to be
monitored; multiple executions, sequential or parallel, of the data flow therefore
correspond to different m-flow sessions, with relative start and termination time.

46

4.3. The MoniQ Monitoring Flow Description Language

SB PB SB

1 2

Figure 4.4: Monitoring flow example

Definition 4.4. A monitoring flow (m-flow) is represented as a DAG of possibly inter-
connected processing blocks, possibly alternated by storage blocks, possibly including
compound blocks. In particular, the following features apply:

e An m-flow starts when the first block in the flow starts;
e When a m-flow starts a new m-flow session is spawned;

e The m-flow session correctly terminates when all sessions relative to the blocks in
the data flow have correctly terminated, respecting the proper ordering imposed by
the DAG, if provided;

e The m-flow session incorrectly terminates when one of the block sessions is
restarted before the m-flow session has correctly terminated; if the block session
restarted does not violate the monitoring flow specification, then a new m-flow
session is started.

U

The semantics of termination of an m-flow session is driven by the intuition that
all metrics observations that will be attached to the blocks of the monitoring flow are
assigned to the scope of an m-flow session. If the same metrics is computed again within
the same m-flow session, before the m-flow session has correctly ended (all its data
and processing components have produced their metrics and in respect of the ordering),
it means that the monitoring flow has somehow failed to comply to its specification.
In addition, if possible, MoniQ reacts by spawning a new m-flow session, as if the
monitoring flow had started again. From the monitoring perspective, MoniQ keeps track
of all m-flow sessions, and relative block sessions. The incorrect and correct terminations
allow to investigate possible misbehaviours while being tolerant to temporary failures of
the DI.

4.3.1 Monitoring flow examples

As explained above the quality manager in the need of monitoring a set of DI data flows
using MoniQ will have to specify the monitoring flows, the relative blocks and metrics,
and then implement the thin integration layer between these and the DI components.
The implementation work is left to the minimum, with MoniQ exposing the APIs to
be invoked in order to accept observations and send process closing notifications. In
this section we report two examples of possible monitoring scenario of a data flow in a
“staged data infrastructure” and in a “streaming data infrastructure”.

Staged data infrastructure The staged infrastructure data flow illustrated in Figure 4.5
is typical of Aggregative Data Infrastructure (ADI) [7,61]. It describes a data flow
where a processing component “harvests” a collection of XML metadata records from

47

Chapter 4. MoniQ: A Data Flow Quality Monitoring System

an institutional repository data source via OAI-PMH standard protocol and stores the
collection in a MongoDB data component. Another processing components collects the
records and applies an XML transformation function that improves the quality of the
records in order to make them conforming to a different XML semantics and structure.
The result of the transformation is stored in another MongoDB data component. The
quality manager is interested in monitoring two data flow quality aspects over time: the
average impact of the transformation function to improve the data flow, the increasing
level of conformance of the original repository. The level of conformance of a record to
the target schema can be calculated via a metrics conformance, which given an XML
record returns a real in the range [0...1]. To this aim the quality manager defines
a monitoring flow that includes a processing block CollectionBlock relative to the
record harvesting and storage into the MongoDB component, and a processing block
TransformationBlock relative to the transformation component. In MoniQ the quality
manager defines (i) a process metrics collectionConformance for CollectionBlock,
which is the average of the sub-process metrics originalRecordConformance, and (ii) a
process metrics overalllmpact for TransformationBlock, which is the average of the
observations relative to a sub-process metrics recordImpact. Finally, the quality manager
defines a control at the block level, which verifies that collectionConformance has an
increasing trend over time and visualizes overallImpact over time, and, by introducing
a compound block, defines a control at monitoring flow level, which verifies the average
ability of the transformation to improve the original collection is high (beyond a given
threshold) when the quality of the original collection is low (below a given threshold).
In order to instrument these metrics, the quality manager needs to code a thin integration
layer, which implements the metrics, sends the observations, and sends the closing
notifications when needed. Specifically, it will need to:

e Embedding in the record harvesting component code to calculate the function
conformance over the individual XML records collected and stored; the code
should then invoke the MoniQQ API to send an observation:

(originalRecordConformance, conformance(XMLrecord)) coupiock 4.3)

e Embedding code to invoke the MoniQ APIs to send a closing notification for
the block CollectionBlock whenever the harvesting component in the DI has
concluded;

e Embedding in the record transformation component code to calculate the function

diff (output XMLrecord, inputXMLrecord) =

conformance(outputXMLrecord) — conformance(inputXMLrecord)

4.4)

after every transformation of an input record; the code should then invoke the
MoniQ API to send an observation:

(recordImpact, diff (outputXMLrecord, inputXMLrecord)) rranstBiock ~ (4.5)

e Embedding code to invoke the MoniQ APIs to send a closing notification for the
block TransformationBlock whenever the harvesting component in the DI has
concluded.

48

4.3. The MoniQ Monitoring Flow Description Language

The integration cost is minimal, while MoniQ provides the scaffolding needed to
keep track of the observations over time and run the required controls, which can in turn
be modified, removed or added to satisfy future monitoring needs, still benefiting from
the history of quality observations persisted by the system.

P -~
! CompoundBlock control |
! control :
| . . 1
! Collection Transformation !
| I

collectionCon fo’(mance = A T overallimpact = :

AVG(originalRecordConformance) ;' | AVG(recordimpact) :
| . i

Figure 4.5: Example: literature aggregation data flow

Streaming data infrastructure The streaming infrastructure data flow depicted in
Figure 4.6 describes a processing component collecting Twitter data,> a subsequent
component tagging the tweets according to a strategy that is supposed to improve over
time, and a final component storing the tweets in a data component (a MongoDB) only
if they respect a predicate on the enriching tags. As an effect of improving the strategy,
the tweets to be stored are supposed to grow. To monitor and control this trend, the
monitoring flow in MoniQ is designed to keep the daily ratio of incoming tweets and
stored tweets. The first processing block represents the collection of tweets, where every
invocation of the JF returns a metrics call with observation “1”’; the block has a process
metrics Daily TweetsCollected that is calculated as the sum of all observations relative
to call. The second block is a storage block with a metrics Daily TweetsStored. The
m-flow has a control at the level of the block, which checks that over time, i.e. across
multiple workflow sessions, the ratio between the two metrics Daily TweetsCollected
and DailyTweetsStored decreases. In order to implement this scenario, the DI quality
manager has to:

e Embed in the component collecting from Twitter APIs a line of code to invoke the
MoniQ APIs in order to send the observation (call, 1) relative to PB every time a
tweet is collected;

e Set via MoniQ user interfaces the process metrics Daily TweetsCollected as the
sum of the observations of call taken in the process session;

e Implement the metrics DailyTweetsStored, which calculates the total of tweets
stored in MongoDB during the day;

e Implement in the DI a process that every day sends a closing notification to PB
and subsequently fires the calculation of the metrics Daily TweetsStored.

2Twitter streaming AP, https://dev.twitter.com/streaming/overview

49

https://dev.twitter.com/streaming/overview

Chapter 4. MoniQ: A Data Flow Quality Monitoring System

Tweets
store

TweetsCollection

P ~ |
daily TweetsCollected = SUM(call) .-~ “-..,_ GallyTwestsStored

Twitter Tweets
monitor Filter

Figure 4.6: Twitter streaming infrastructure

MongoDB

4.4 The MoniQ Monitoring Intent Description Language

Once the DI’s selected data flow has been modeled as a corresponding MoniQ m-flow,
in accordance with the formalism introduced in Section 4.3, the DI quality manager
can start specifying its monitoring-related intents. In the previous sections we have
already used the terms measurement, intended the evaluation of a metrics producing an
observation, and the term control, intended as a predicate over metrics observations,
whose failure raises a warning to the DI quality manager. These concepts were intuitively
introduced to better explain the monitoring flow description language and understand its
nature. In the following, we shall define the details of the monitoring intent language,
describing its expressiveness and monitoring ability. An overview of how monitoring
intent concepts and monitoring flow concept are related to each other can be found in
Figure 4.7; the concepts proper of MoniQ are coloured in red, while the concepts proper
of the monitored DI are coloured in blue.

Monitoring flows
i
Observation -
Selector
Blocks
| \
Metrics Sensor Control
Metrics Closing
implementations |~ notifications
! :
: | Components F------- -i Data Flows ! E

Figure 4.7: MoniQ’s information model

A sensor is intended to provide a scope of metrics, observations, and controls for a
given block. A block may have different sensors and each sensor declares at least one
metrics, i.e. groups them in a context. Vice versa, each metrics is associated to one or

50

4.4. The MoniQ Monitoring Intent Description Language

more sensors, and a sensor is associated to one block. Controls are associated to one
sensor and can therefore refer only to all metrics included in the sensor scope.

4.4.1 Metrics

Metrics can be about everything the DI quality manager would like to monitor and are
specific to the DI application context. They can be about data collections, data objects,
or processes, they can measure execution time, expressions of quality, or size. MoniQ
defines two classes of metrics: basic metrics, which are metrics whose observations are
calculated in the DI and sent to the framework, and derived, which are those calculated
by the framework.

Definition 4.5. A basic metrics m is a generic function expressing a feature of the DI
to be measured as a value v (not to be confused with an observation, to be described
below):

e Data metrics dm apply to storage blocks and are intended to measure features of
data managed by DI;

e Sub-process metrics spm apply to processing blocks and are intended to measure
features of a processing function F part of the DI data flow during the execution;
sub-process metrics do not surface at the level of the processing block, in the sense
controls cannot be performed over their observations.

The implementation of data and sub-process metrics resides in the DI. It is therefore
the DI that calculates and sends to MoniQ the relative observation, in respect of the
m-flow. O

Definition 4.6. A derived metrics is obtained by other metrics, be them basic or derived
and is of two kinds:

e Process metrics pm apply to processing blocks and are intended to measure features
of the application of the processing function F in a block session; as such they are
obtained as aggregation functions over sub-process metrics in the same block;

o Compound metrics cm are intended to measure features that depend on the metrics
of the sensors included in the block; as such they are obtained as aggregation/com-
position functions over such metrics.

The implementation of process and compound metrics resides in MoniQ, which includes
a selection of aggregation functions (e.g. count, sum, average, etc.) that are executed
on the server side over the observations relative to the metrics involved. MoniQ allows
quality managers to define and integrate custom metrics functions. U

For example, a data metrics could take into account the amount of NULL fields in a
E-R database column, the number of files in a filesystem path, the size of a folder or the
number of records persisted in an index matching a certain query.

For example, a sub-process metrics could evaluate the size of data in input to a
process block, or the compliance to a given standard of reference of data produced in
output, or again the completeness of data in input against a certain schema defined as:

NinitializedFields

Mceompleteness — N (46)
mandatoryFields

51

Chapter 4. MoniQ: A Data Flow Quality Monitoring System

For example, a process metrics can extract the execution time of a given call of F,
its heartbeat (meaning just the event of the call itself) or the normalized execution time
evaluated for example as

tend — T
MpormEzec = = start (47)

Zfil size(data;,)

or how the F performs w.r.t. the input and the output, e.g.

Menhancement = g(dataout) - g(datazn) (48)

Hence, although the semantic of a metrics is described by its type (i.e. data, sub-
process, process, and compound), the implementation of a metrics must respect the
specification of its type and is left to the quality manager so that he can fit the specific
use case and context of application.

A metrics is peculiar to the data type of the data under exam, hence a metrics
measuring a certain feature has different implementations for each data type it has to
work on. For example, the implementation of the metrics completeness working on an
XML record is different from the implementation of completeness for a row from a CSV
file. An extensive literature review about the plethora of different techniques for data
quality metrics evaluation in different fields can be found in [14, 15].

As a rule of thumb, a metrics “core business logic” should be “self-contained” and
never rely on access to external data or invocation of remote services, as it is advisable
to perform evaluations that return as quick as possible. However, it is always allowed to
rely on remote invocation in order to externalize part of the business logic to third-party
services. Furthermore, whenever possible, it is advisable not to repeat part of the job
already done by the DI “main business logic”. For example, if a file is already open and
loaded into memory by the infrastructure, it is advisable not to repeat the same within
the metrics implementation.

4.4.2 Sensors

Metrics are the means for tracking observations of features relative to the DI data flows.
For this reason, they are associated to a block, which is a placeholder for observing data
and process in the DI. MoniQ introduces the concept of sensor intended as a “related"
set of metrics, together responding to the same set of controls.

Definition 4.7. Given a block of reference B, be it a data processing or a data storage
block, a sensor s for B specifies one set of metrics for B, together with the set of
controls to be applied over these metrics. In particular:

e A sensor s anchored to a data storage block is constituted by a set of data metrics
DM, a set of compound metrics C'M derived from metrics in DM, and a set of
controls C":

sp = (DM, CM, C) 4.9)

e A sensor s anchored to a processing block is constituted by a set of sub-process
metrics SPM, a set of process metrics PM obtained from metrics in SPM, a set
of compound metrics CM derived from metrics in PM, and a set of controls C":

sp = (SPM, PM, CM, C) (4.10)

52

4.4. The MoniQ Monitoring Intent Description Language

X

Figure 4.8: Graphic representation of a sensor

e A sensor s anchored to a compound block including By, . .., By is constituted by
a set of sensor metrics SM selected from the sensors of B;, a set of compound
metrics CM derived from metrics in SM, and a set of controls C"

sp = (SM, CM, C) 4.11)

One block B may have one or more sensors s g, which are graphically represented as
the circles reported in Figure 4.8. U

On the DI data flow side, the implementation of basic metrics m relative to a sensor
sp must therefore mark its measure v with sp, in order to define the precise scope of the
measurement. To this aim, during a block session, a metrics m generates observations o,
defined as follows:

Definition 4.8. An observation o for m is an object that contains the value v returned
at time ¢ by the metrics m from the sensor sg, plus some contextual metadata map
about the measurement, derived from the DI context of the metrics. An observation is
described as a tuple of the form:

o= (t,m,v, sg, map) (4.12)

where map contains a set of observation attributes, represented as set of label-value
pairs map = {(l1,v1), ..., {lg, vr)}. We define:

e (O,, as the set of observations relative to m;

® 0,5, m as the (only) observation generated for metrics m in the session ss of block
B; metrics can generate only one observation in each session.

0

The attributes in map are introduced to instrument an observation with metadata
about the context of involved block, to be used for metrics investigations, define accurate
controls, and introduce different monitoring axes. For example, let us consider the
aggregation data flow described in Figure 4.5 and the relative m-flow. Its formal
definition, after the introduction of sensors, would be the one in Figure 4.9. Let us
suppose that the data flow executes weekly the same processing steps, possibly in
parallel, over around 700 data sources D.S;. Each execution regards a different data
source, where metrics implementations will calculate observations like:

(t, collectionConformance, 0.5, collectionSensorcopectionBiock, 1) 4.13)

Such measurements are ambiguous and regard different DI scopes, identified by
different execution instances of the same data flow. An optimal strategy is to use labels
in map in order to characterize observations by the data source of interest. In this case

53

Chapter 4. MoniQ: A Data Flow Quality Monitoring System

rreee—e—_-—_-——---- - - —_—_—————————— — — — — — — — — — — — ——— — ———

CompoundBlock

Collection Transformation

|
| \

! ___________________________________7,_.__-;—_-;‘_'___'_"_':_:4@,J overalllmpact =

B S -\ AVG{recordimpact)

‘~._ coliectionConformance = mmmmmT - % i

AV G(originalRecordConformance) m-flow contm!s: S

Figure 4.9: Aggregation data flow with sensors

the metrics function, taking into account its current execution context, can enrich the
observation it produces with disambiguating information, for example a unique reference
to the data source target of the data flow execution:

<t, collectionConformance, 0.5, collectionSensorcoyectionBlock {<50urce, DSZ->}>

(4.14)

Thanks to the labels, the set of observations relative to collectionConformance can

be filtered based in the data source and therefore be properly subject of controls relative
to the data source in isolation.

4.4.3 Sessions and observations

Metrics, be them basic or derived, are generated in the context of a block session, be it a
data, process, or compound block. Typically, basic metrics deliver one observation for
each session they participate to, while derived metrics are calculated at the end of the
session. Sub-process metrics may instead generate an arbitrary number of observations
during a sub-process block session, to be the input of derived process metrics. To better
understand, we consider two examples m-flows:

e Figure 4.10a shows an m-flow with a sequence of two processing blocks and a
compound block enclosing them; the processing blocks have sensors:

sipp, = ({spmi}, {pm1 = g1(spm1)},0,Ch) (4.15)

S2pPB, = <{Spm2}7 {pmy = 92(3297712)}7(2), C2> (4.16)
while the compound block enclosing them has a sensor

ScB = <{pmlapm2}7 {em = f(pmy,pma)}, C> 4.17)

As shown by the time distribution of sessions, reported in Figure 4.10b, the obser-
vations relative to the compound metrics cm of CB are aligned with the closing
time of the sessions relative to P55, which comes last in the ordering of monitor-
ing. Controls, which are monitoring checks on specific time-predicate features of
metrics observations, can be applied as follows: controls in C' over Oy, Oppy,
and O,,,,, while controls in C to O,,, and controls in C to Op,,,. Observations
relative to the basic sub-process metrics are instead “scattered” across different
sessions, serve the generation of derived (process) metrics, and cannot be fed as
input to the control engine.

54

4.4. The MoniQ Monitoring Intent Description Language

(a)

(b)

| |
| |
| |
[|
SB — PB S, PB &3 —|SB
1 @ | 1 ®.‘\; 2 ®, i 2 ®
| pm,=g,(spm,) ---- pm,=g,(spm,) -~ |
| R ; |
| : i |
| e S |
| : |
c %,
cm =f(pm,,pm,)--- }
b Bl Lo (SPTRPIT Lo b oo,
oMl U o b
1 1 1 1 | I 1 [}
cihrsssssinaa | IR R Beosonnss kovivanananaadl | I | P bovaaa,
pm2 i P X i | | X
talissrssnnnns Dessedessarasnnsnnnnnas Traasaans : Il :. JI
O : : ’: :,: : : S : JI
spm2 1 pol HOCHAKK I ! L JXX P
e A SO Lo e,
Oomt L4 K e I
spmti X< X A R o orati BN A
TN Lo ! RPN ! ! !
i . i i R i t
1 1 1 1 I I 1 1
se"s‘sionkof;B, .sessionkof PB; session k+10of PB, session k+1 of PB,
Session k of CB Session k+1 of CB

Figure 4.10: M-flow with sequence processing blocks in a compound block and derived metrics

e Figure 4.11a shows an m-flow with two storage blocks wrapped into a compound

block. The storage blocks do not have dependencies, meaning their block sessions
are not necessarily sorted, i.e. their observation are not expected to reach MoniQ in
a specific order, and have sensors producing different metrics:

S15B;, = <{dm1},®,02> (4.18)

Sasp, = ({dma},0,Ch) 4.19)

The compound block CB serves the need of monitoring SB; and SB; in the
same scope and at the end of the same compound block session. As shown in
Figure 4.11b, observations relative to the dm;’s may arrive in any order as long as
their respect the m-flow semantics, which requires one measurement for each data
metrics in a block session. The compound metrics c¢m is calculated whenever both
session blocks for SB; and SB, have correctly terminated, again in any ordering.
As we shall illustrate in the following sections, monitoring controls can be applied
over all metrics involved and the relative history of observations O, Ogp,,, and
Odms, -

55

Chapter 4. MoniQ: A Data Flow Quality Monitoring System

f(dm,,dm,)

cm=

.
dm1
X

PB,

(a)

o
||||||| 7]
N
o
™~
z

o~
Q |
» |8
- 13
S-tg

o
F W

=

<

9

w

1]

-0

w

~

Q
S -
S o
=3 -0
t] &
= o

o
S| %

w
<
-3 s
%1 @
IIIII -
1]
w

o

%
S o
A X
s I3
8 |2
o S
[7] B
%]
5]
||||||| o

Session k+1 of CB Session k+2 of CB

Session k of CB

(b)

Figure 4.11: M-flow with parallel processing blocks in a compound block and derived metrics

56

4.4. The MoniQ Monitoring Intent Description Language

4.4.4 Data-flow aware monitoring

As mentioned above, DI quality managers first create an MoniQ m-flow, then need to
ensure on the DI side that: (i) metrics are calculated and sent following the ordering
encoded by blocks and relationship in the m-flow, and that (ii) closing notifications are
sent when individual processing blocks should interrupt their operation. On the other
hand, for the MoniQ framework presented so far, there are classes of m-flows for which
such assumptions are not easy to enforce. For example, consider the m-flow relative to
the literature aggregation data flow, presented in Figure 4.9. As mentioned above “the
data flow executes weekly the same processing steps, possibly in parallel, over around
700 data sources D.S;”. The m-flow collects labeled observations similar to the one
reported in Equation 4.14.

The problem with these observations comes when the aggregation data flow is run
in parallel, for example over different data sources, and several m-flow sessions have
started contemporary. The sessions relative to different m-flow sessions of the data flow
may overlap (e.g. several sessions relative to collectionBlock, one for each data source
involved), hence metrics and closing notifications sent to MoniQ by such independent
m-flows sessions may conflict and create inconsistencies. Parallelism is solved by
introducing the notion of data flow identifier, data flow-aware observation, and data
flow-aware sessions. As we shall see, the introduction of data flow-awareness propagates
across all concepts of the framework.

Definition 4.9. A data flow identifier DF'I is a unique reference generated by the DI to
identify a set of measurements, i.e. observations, relative to the same data flow run. [

The implementation of metrics and closing notifications must be data flow-aware,
that is using the same DFI to mark the messages they send to MoniQ are relative to the
same data flow execution. DF'I’s are DI and application dependent. For example, in the
literature aggregation example the DI quality manager could use the data source unique
reference provided by the data infrastructure, under the assumption that the data flow
will never run in parallel over the same data source. In all the cases where the DI data
flows are implemented using workflow engines, DFI could directly be the identifier of
the workflow instance spawned by the engine, which always exist in these scenarios.

Definition 4.10. A data flow-aware observation (df-observation) is an observation
described by a tuple of the form:

o= (t,m, v, Sg, map) prr (4.20)
]

To cope with this notion MoniQ supports the notion of data flow-aware sessions. The
introduction of df-sessions has several implications in the semantics of the sessions.

Definition 4.11. An data flow-aware session (df-session) is a session sspg; character-
ized by a specific DFT:

e Storage block df-sessions:

— A storage block df-session sspg; starts when the first df-observation oppy
relative to a data metrics of one of its sensors reaches MoniQ);

57

Chapter 4. MoniQ: A Data Flow Quality Monitoring System

— A storage block df-session ends correctly when all metrics of its sensors have
sent df-observations oppy;

— The block session terminates incorrectly when a df-observation opp; relative
to the metrics of the block is received twice before the correct termination of
the session;

— When the block session terminates, all compound metrics observations are
calculated by MoniQ and tagged with DF'I, obtained from the last and session
closing observation received;

e Processing block df-sessions:

— A processing block df-session sspp; starts when the first df-observation oppy
relative to a sub-process metrics reaches MoniQ;

— A processing block df-session ends correctly with a closing notification speci-
fying block and data flow identifier DFT;

— If a closing notification for block session sspp; is not sent, the session may
remain “idle””; the MoniQ framework allows to set time-to-wait thresholds,
after which the session is terminated incorrectly;

— When the block session terminates, all process metrics and compound metrics
of the sensors are calculated by MoniQ and tagged with DF'I, obtained from
the closing session notification;

e Compound block df-sessions:

— A compound block df-session ssppg; starts when the first df-session relative to
DFI of one of the blocks it wraps starts;

— A compound block df-session terminates correctly if the df-sessions relative
to the blocks it wraps and tagged as DFI correctly terminate;

— A compound block df-session incorrectly terminates if any of the df-sessions
relative to the blocks it wraps incorrectly terminates;

— When the block session terminates, all process and compound metrics obser-
vations are calculated by MoniQ and tagged with DFI, obtained from last
sessions closed.

O

The semantics above, if supported by proper implementation of metrics and closing
notifications, ensures a smooth, cascade-structured, monitoring of multiple parallel
sessions relative to different executions of the same data flow. With respect to our
requirements of generality, where we assumed that DI components and data flows
may be of any kind, involving machine-driven workflow executions as well as humans
executing different data processing phases by performing manual executions of scripts or
applications, MoniQ can guarantee consistent monitoring of parallel data flow executions
only under the conditions that the agents executing the workflows can provide an identity
for the execution and make all metrics implementations and processing block closing
notifications aware of it.

58

4.4. The MoniQ Monitoring Intent Description Language

4.4.5 Controls

Having defined m-flows, relative sensors, and metrics, the last step for the DI quality
manager is to configure the controls to be enforced by MoniQ. Controls are checks to
be run over metrics observations in the context of a given sensor and relative block.
Controls are performed when the session of the including block is terminated, that is
when an observation for each of the sensor metrics is available, and can refer only
to the metrics relative to their scope, identified by the sensor. Since controls are in
principle applicable to all observations relative to all metrics of a sensor, in order to
define controls we need first to introduce the notion of sensor observation set, then define
metrics selectors and sensor selectors which allow to select the subset of observations of
interest, and finally sensor analyzers, responsible to run the check over the observations
returned by the selectors.

Definition 4.12. Let SS; be the set of sessions relative to sensor s, and oy, ,,,, be the
only observation generated for the metrics m; in the session ss € S.S (metrics produce
one observation per session). Given a sensor s with a set of basic and derived metrics

M = {m,, ..., my}, we can define the sensor observation set as
O, = U {<055,m1, .. ,oss’mk>} 4.21)
Vss€SSs
Oy contains one “observation tuple” for each m-flow session so far terminated. ([l

Oy is the set of observation tuples obtained by sampling observations from all metrics
from each session in the history of the sensor s (not to be confused with the concept of
data provenance, which is the linage of data through the data flow). Figure 4.12 shows
the last three tuples of Oy for the sensor s¢p in Figure 4.11a. Such a sampling somehow
“puts in synch” all observations collected for s so far and allows the definition of controls
which take into account the overall behaviour of the blocks SB; and SB, as modeled by
the relative metrics.

Definition 4.13. Given a set (the history) of observations
O = U {(ti,m, v;, 8, B,map}} (4.22)
i=1

generated by a metrics m and the predicates p, and p;, a metrics selector mSel
returns a subset of O,,, defined as:

mS@l(Om,pv,pl) = {0 € Om’pv(o'v) /\pl(m&p)} (423)

where p, is a predicate over the value v (e.g. less, equal or greater to a given value) and
p; defines a first order logic predicate over the set of attributes defined in map. ([l

Definition 4.14. A sensor selector is a component that allows to filter the tuples of a
sensor observation set O, in terms of time, in order to confine the tuples to:

e A given time range, i.e. select observation tuples such that their session closing
time is between t:,,+ and tonq;

59

Chapter 4. MoniQ: A Data Flow Quality Monitoring System

\ .
S Observations

I 1 I I [I L
N b —o—o==E===T 07 ks
b LT T AT I AL
o iy : i ¥ { :
cm [1 [X’ om 1 1 :
P I | P P O disdiviasanaas N < bevsanansns | I I | D
] 1]] 1 1 [}] 11 [}
1 1] [} 1 1 [1
1 1 1 [} [} 1 11 [}
O, , cdweoeeeeecd JllL A Qhane | JL...... e, b .
dm2 P synoht st e syneh L VA L N
e b e L S TRTTRTY 1- [R I SR |
o il A% fHl b
dm1 . I synch | » synch |\ : 1) synch
p LR e TR > (R ChA'd
salaaaad hosasans [QP) PO | BN e | I | I [| D S
I 1 I 1 I 1 1 1 (] 1
1 1 1] 1 1 11 1 11] -
1 1 1 1 1 1 i 1 [1 =
I 1 I I [| 11 1 (] 1 t
I 1 [e — I
\ session kiof SB, | session k+Tiof SB, session k+2iof SB, :
e
: : ssion k+1 of $B < k+2 fé‘B
n n
sossion k of SB, sessio of SB, sessio of SB,
-— -
Session k of CB Session k+1 of CB Session k+2 of CB

Figure 4.12: Set of observations tuples

e Number of sessions, i.e. select observation tuples from k& sessions in the past (note
that the number of sessions corresponds to the number of runs of underlying data
flow).

and in terms of metrics selectors, one for each of the metrics involved:
sSel(Og, pt,mSely,,,...,mSely,) (4.24)

The application of metrics selectors has a semantics that depends on the implementation,
but in general we may assume that selectors may be applied according to a first order
logic in order to make some of them mandatory for all observations in a tuple or at least
one. U

Definition 4.15. Given a sensor sp with a set of basic and derived metrics M =
{my, ..., my}, an analyzer is a function analyze that operates over a set of observation
tuples O and returns a Boolean result {true/ false} if such a set meets given conditions,
encoding the quality of block B. An analyzer can perform controls at different levels
and not exclusively:

e Perform a control at the level of individual observations of one metrics m;: a
predicate p is applied to the observations o; for all tuples in O, e.g. in order to
ensure whether observations’ values produced by m; are below a certain threshold
or not;

e Perform a control at the level of all observations of a metrics m;: an aggregation
function f is applied to the observations o; for all tuples in O and then a predicate
p is applied to the result, e.g. in order to ensure that the average of the observations’
values produced by m; is below a certain threshold;

e Perform a control at the level of individual tuples in O and involving a subset of
metrics M' C M: a predicate p is applied to all tuples, which involves only the 0;’s

60

4.4. The MoniQ Monitoring Intent Description Language

relative to the metrics m; € M’, e.g. in order to ensure whether the observations’
values produced by metrics m; are always below the observations’ values produced
by metrics mo;

e Perform a control at the level of all tuples in O and involving a subset of metrics
M'" C M: an aggregation function f is applied to all tuples, which involves only
the o;’s relative to the metrics m; € M’, then a predicate p is applied to the result,
e.g. in order to check whether the average of observations’ values produced by m4
is below the average of observations’ values produced by m.

An analyzer analyze (O, {(fi.p1), o (fm, pm>}> returns true only if all its predi-
cates p;’s return true. 0

Finally, we can define a control as follows:

Definition 4.16. Given a sensor s with a set of basic and derived metrics M =
{m,, ..., my}, the set of observations O, a sensor selector sSel(Os, pr, mSely,,, . .., mSely,,),
a control for s is defined as

c= analyze(sSel(Os,pt, mSely,, ... ,mSelmk), {(fl,p1>, ce <fm,pm>}> (4.25)

O

4.4.6 Actuators

The monitoring framework can provide feedback to the infrastructure thanks to an
actuator component.

Definition 4.17. The actuator is a triggering mechanism that can be used for driving
the DI data flow behavior in order to correct automatically or at least compensate one or
more issues revealed by failing controls. The actuator is just an hook deployed within
the DI which waits for “stimuli” from the monitoring framework in order to take specific
countermeasures. For reasons concerning DI specificity, the business logic of such
countermeasures must be provided by the user of the framework. U

The actuator can be leveraged in order to call dynamically a routine on the DI. In
this case the actuator does not “reside” within the monitoring flow described in the
monitoring scenario, but is deployed somewhere else in the DI data flow superintending,
for example, management tasks or triggering other data flows. As an example, a data
source could be automatically graylisted when the quality of the collected data drops
down a certain level and whitelisted when the quality rises back to an expected value.

An actuator can also be used in order to perform dynamic dynamic steering of the
data flow. Interesting works in this direction can be found in [66,89,91]. In this case the
actuator resides within the data flow described by the monitoring and is used in order to
select the most appropriate workflow path for execution. Consider for example the data
flow reported in Figure 4.13. The DI consumes data from data source, prepares data
by applying a pre-processing algorithm represented by pre processing, then applies one
main algorithm out of algorithm1 and algorithm2, and finally stores results obtained
in data sink. However, the designer of the data flow is aware that data provided by

61

Chapter 4. MoniQ: A Data Flow Quality Monitoring System

control

source processing s, sink
&

m1'

control(m,) ?

pre
processing

data sink

Figure 4.13: An example showing how an actuator can be used in order to steer the data flow routing

data source may carry unwanted features over time which can degrade the quality of
the results produced by the algorithms; in particular, he is aware that one algorithm
outperforms the other when data exhibit certain data flaws captured by metrics my;
however this algorithm is much more CPU-intensive than the other and thus should
be used only when strictly necessary. Hence, he takes advantage of MoniQ actuators
in order to deploy a conditional data flow route which enables the choice of the two
processing blocks algorithm 1 and algorithm 2 according to the control performed
over metrics my.

As pointed out in [91], the presence of dynamic steering® and dynamic routine
invocation introduced by actuators can make the data flow behavior non-deterministic
and hence can introduce non-reproducibility of a particular data flow instance.

4.5 Integration effort required by MoniQ

The experienced effort in integrating MoniQ in the two DIs described in Section 5.1
and Section 5.2 is here reported by providing a rough estimation of the relevant time
factors and impact of the distinct integration activities. Mainly, the integration effort of
MoniQ is articulated over three phases: (i) m-flow definition to specify in which order,
and of which type, the observations will flow from the monitored data flow to MoniQ;
(i1) monitoring intent definition in order to specify which metrics, sensors and controls
come into play within the given m-flow; and (ii1) data flow instrumentation in order
to put the metrics evaluations in place. For the three phases described, the relevant
considerations in terms of complexity and integration effort are summarized as follows:

m-flow definition: the effort in terms of time spent for this phase is proportional to
the complexity of the monitoring scenario. Since, as previously mentioned, there is no
one-to-one correspondence between the DI data flow and the MoniQ monitoring flow,

3In literature the term “workflow navigation” can be found too

62

4.5. Integration effort required by MoniQ

complex monitored data flows map, on average, to much simpler m-flows in MoniQ, as
seen for example in our case studies. In the worst case scenario, a monitoring flow can
be as complex as the relative data flow in terms of processing blocks and data storage
blocks —i.e. one for each data flow component, either data or processing.

monitoring intent definition: for this phase stands the same evaluation discussed for
the previous one. The more articulated is the monitoring intent, the bigger is the effort
for defining sensors, metrics and controls over the specified m-flow.

data flow instrumentation: the complexity of this phase is intrinsic to the monitor-
ing activity itself, as, if a certain observation needs to be extracted by a metrics and
monitored, someone must provide the business logic for the extraction. However, the
complexity of this task is independent from MoniQ and directly related to how easily
the metrics can be implemented, and to the complexity of the monitoring intent as, in
general, the more metrics need to be controlled, the more implementations must be pro-
vided. Regarding the complexity of metrics implementation, for example, the evaluation
of the number of items pertaining to a given class of interest within a full-text index
results into running a query over the index itself; while evaluating the same property
for a raw dataset partitioned in multiple chunks stored in a distributed filesystem and
not fitting into memory incurs a more “‘complex” implementation coping with typical
“big data” issues. As another example, the evaluation of the completeness of a dataset
element toward a fixed set of fields can be easily implemented (e.g. by running a batch of
xQueries), while the evaluation of the compliance of the same record toward externally
defined vocabularies/ontologies results in a slightly more complex implementation as
access to external resources — i.e. the vocabulary/ontology definition — is involved. In
Chapter 6, we will see how the proposed MoniQ-di-client simplifies further, in Java-
based DI’s data flows, the effort for the integration of the monitoring framework by
factorising common aspects such as communication and metrics template evaluation.

63

CHAPTER

Experimentation and evaluation

In this chapter we validate the MoniQ framework proposed in Chapter 4 by going
through the use cases presented in Chapter 2, namely the OpenAIRE and the CORE
data infrastructures, and describing, for each one of them, the relative m-flows and
monitoring intents using the proposed approach.

5.1 The OpenAIRE use case

MoniQ has been used to realize a monitoring system for the production environment of
the OpenAIRE infrastructure. Taking as input the case study carried on in Section 2.1,
in this section we outline the monitoring intents for our use cases — the aggregation,
deduplication, inference and publishing data flows — using the formalism introduced
in Chapter 4. For each one of them, we first briefly summarize the use case and then
we describe how such monitoring intent can be realized with MoniQ by discussing the
monitoring flow, the sensors, metrics and controls defined.

5.1.1 Monitoring the aggregation data flows

In this section we will cover the monitoring concerns outlined in Section 2.1.1. As antic-
ipated, the OpenAIRE aggregation data flows deal with different types of data sources;
the two being currently monitored are literature data sources and entity registries. The
remainder of this section will follow the same structure.

Literature data sources The aggregation data flow operating with literature data sources
collects XML records about publications exposed by data sources via an OAI-PMH
endpoint, transforms the collected XML records, cleanses them, downloads the pointed
PDFs and ultimately stores the resulting records, finally cleaned, into a document store

64

5.1. The OpenAIRE use case

implemented with a MongoDB instance. The respective data flow is represented in
Figure 5.1, which reports also the monitoring intent for the scenario.

transform & cleaned
clean ® store @

1&c Sc\eaned

5 5
OAl cleaned
endpoint

Figure 5.1: Monitoring intents for the OpenAIRE literature aggregation data flow

A first sensor s is defined in order to monitor the processing block Transformé&clean
and declares a sub-process metrics, called sub OA compliance, to be evaluated for each
XML record (i.e. publication) processed in the data flow. Since the data flow can be
instantiated for any of the data sources registered in OpenAIRE, we decided to leverage
the observation’s label mechanism when the Data Infrastructure (DI) data flow evaluates
the metrics sub OA compliance in order to mark observations produced by the respec-
tive sensor hook with a label <sourceId, id>. The metrics produces an observation
stating how well an XML record “scores” in accordance to OpenAIRE guidelines', and
it is implemented as a weighted composition of different scores associated to rules taking
into account the presence/absence of certain fields (i.e. controlling if mandatory fields are
non empty) and the corrected of values for vocabulary-controlled fields (i.e. controlling
if the value respects the relative vocabulary; e.g. the Access level field?). It is important
to ensure that at the end of the block session the process metrics OA compliance —
evaluated by averaging values of observations produced by sub OA compliance for all
records provided in the same aggregation round (i.e. in the same block session) — is at
least 90% compliant to OpenAIRE guidelines, for any literature data source. Also, the
trend of the average OA compliance should be monotonic increasing for the last three
sessions of aggregation, thus enforcing that the global perceived quality of the content
provided by data sources is increasing over time.

Other two sub-process metrics are declared by sensor s;g. in order to count, for
every XML record, the number of fields the cleaning process successfully cleaned,
sub fields fized, and the number of fields that instead are skipped (i.e. when the cleaning
process does not know how to reconcile the value), sub fields skipped. In this case, it is
interesting to check whether the cleaning process yields (on average) more fixed fields
than skipped ones in the cases when the average OA compliance is less than 0.6; the

IThe OpenAIRE guidelines, http://guidelines.openaire.eu

2The Access level field documentation can be found here: https://guidelines.openaire.eu/en/latest/
literature/field_accesslevel.html. The field is controlled by the vocabulary described in https://wiki.
surfnet.nl/display/standards/info-eu-repo/#info-eu-repo-AccessRights

65

http://guidelines.openaire.eu
https://guidelines.openaire.eu/en/latest/literature/field_accesslevel.html
https://guidelines.openaire.eu/en/latest/literature/field_accesslevel.html
https://wiki.surfnet.nl/display/standards/info-eu-repo/#info-eu-repo-AccessRights
https://wiki.surfnet.nl/display/standards/info-eu-repo/#info-eu-repo-AccessRights

Chapter 5. Experimentation and evaluation

contrary would mean the the cleaning rule is poorly configured and it is not effective.
For this purpose, at the end of the block session the observations produced by the two
sub-process metrics are averaged respectively into process metrics sub fields fized and
sub fields skipped. The metrics and controls defined by sensor s;g. are summarized in
Table 5.1 and Table 5.2. In the tables presented hereafter, the following convention is
adopted: the code spm indicate sub-process metrics, pm indicates process metrics, dm
indicates data metrics and c¢m indicates compound metrics.

Table 5.1: Metrics defined by sensor s;¢. over processing block transformd&clean

Sensor s;¢ .

Metrics Type Description Labels

sub OA compliance spm compliance of an XML record about a publication to- sourceld=id
wards OpenAIRE guidelines

OA compliance pm avg(sub OA compliance) for the block session sourceld=id
sub fields fixed spm number of fields the cleaning process has corrected sourceld=id
fields fixed pm avg(sub fields fized) for the block session sourceld=id
sub fields skipped spm number of fields the cleaning process has skipped sourceld=id
fields skipped pm avg(sub fields skipped) for the block session sourceld=id

Table 5.2: Controls defined by sensor sig.

Sensor s;g ..

Selector(s) Analyzer
Metrics Dt i
OA compliance last session sourceld=* Check whether the average OA compliance is above
90%

OA compliance last 3 sessions sourceld=* Check if the average of OA compliance is mono-
tonic increasing in the last 3 sessions

OA compliance last session sourceld=* Check that when the average OA compliance is less
fields fixed last session sourceld=* than 0.6, the average number of fields fixed is
fields skipped last session sourceld=* greater than the average number of fields skipped

A second sensor, S eqned, 1 anchored to the storage block cleaned store instead. The
sensor declares the data metrics total publications (see Table 5.3) which is evaluated
by the DI data flow by simply running a query over the document collection persisted
by MongoDb and returns the number of publications stored for a given data source.
Again, the sensor hook (i.e. metrics implementation) shall take care of pushing the data
source identifier characterizing the data flow execution into the labels of the generated
observation. From a controls perspective, the metrics total publications, for every
literature data source, should be monotonically increasing across subsequent data flow
executions, thus enforcing that no content is actually being lost or accidentally no more
provided. This control is reported in Table 5.4.

As can be noted, the usage of labels, used in these cases in order to track the identifier
of the data source at hand, enables to reuse the same metrics name/implementation for
every data source.

66

5.1. The OpenAIRE use case

Table 5.3: Metrics defined by sensor s jeaned 0ver the storage block CleanedStore

Sensor s .jcaned

Metrics Type Description Labels

total publications dm total number of publications sourceld=id

Table 5.4: Controls defined by sensor s icaned

Sensor s icaned

Selector(s) Analyzer
Metrics Pt D
total publications last 3 sessions sourceld=* Check whether total publications is monotonic
increasing

Entity registries The entity registry aggregation data flow collects records provided by
an entity registry, transforms and cleans such records, and persists the aggregated results
into a database realized with Postgres. The data flow is represented in Figure 5.2; the
figure also shows the monitoring flow and the monitoring intent defined over the data
flow of interest.

clean ostgres
posig ®

clean Scleaned

postgres
registry database

Figure 5.2: Monitoring intents for the OpenAIRE entity registry aggregation data flow

A first sensor s, is defined over processing block clean and declares a sub-process
metrics sub compliance (to defined vocabularies) to be evaluated for each record exiting
the cleaning process as follows:

. NcompliantFields
sub compliance =

S.D

N, vocabularyControlledFields

We expect that, when the block session of clean is closed, the process metrics compliance
— evaluated by averaging the observations generated by metrics sub compliance over
the block session — is greater than 0.8 for the entity registry at hand. As seen already,
observation’s labels are used in order to discriminate among different entity registries.
The metrics and controls for the sensor s, are summarized in Tables 5.5 and 5.6.
Moving forward, we defined a sensor s,,s;4s attached to storage block postgres
and declaring two data metrics about the completeness of two tables of interest in
the database which are populated by the entity registry aggregation data flow: the
organizations and the projects tables. An intuitive implementation for evaluating the

67

Chapter 5. Experimentation and evaluation

Table 5.5: Metrics defined by sensor S jeqn 0ver the processing block clean

Sensor s jcqn

Metrics Type Description Labels

sub compliance spm compliance of an XML record toward defined controlled sourceld=id
vocabularies

compliance pm avg(sub compliance) for the block session sourceld=id

Table 5.6: Controls defined by sensors sciean

Sensor s.jcqn

Selector(s) Analyzer

Metrics Dt D
compliance last session sourceld=* the average compliance of XML should be greater than 0.8

completeness of a database table of V. columns and /V; tuples could be, for example, to
compute the average of each columns completeness, this being defined as the ratio of
tuples having a NULL value in that column over the number of tuples.

Z]\i , completeness commn, Zi\gz CountNuzl\l/E v
completeness pe = = = (5.2)
Ne Ne
Other available (possibly more sophisticated) implementations for assessing complete-
ness in relational databases can be found in literature [15]. In our case, we want to
ensure that organizations completeness and projects completeness metrics are both
monotonic increasing and above the 70% throughout the last three data flow executions.
Since in this case we are not interested into monitoring the metrics on a per-entity-registry
criteria, no label marking the observations produced is needed.

Another metrics declared by sensor s,s¢gres takes into account the number of misdated
projects stored in the projects table of the database. The metrics implementation cor-
responds to a SQL query that counts the number of projects with impossible dating
w.r.t. the relative funding stream; for example, FP7 projects declaring date ranges out
of the range 2007-2015 are clearly a mistake. Such anomaly is expected to decrease
monotonically over time as we hope that records will be cleaned and fixed right at the
source by entity registries. The metrics and controls declared by the sensor sp,s:gres are
summarized in Tables 5.7 and 5.8.

Table 5.7: Metrics defined by sensor sposigres 0ver the storage block postgres

Sensor s,,stgres

Metrics Type Description Labels
organizations completeness dm degree of completeness of the table organizations —
persisted on Postgres
project completeness dm degree of completeness of the table projects persisted —
on Postgres
misdated projects dm number of projects with impossible date range w.r.t. —

the funding stream

68

5.1. The OpenAIRE use case

Table 5.8: Controls defined by sensors spostgres

Sensor s,,stgres

Selector(s) Analyzer
Metrics Dt 4
organizations completeness last 3 sessions — the completeness of organizations table must be
monotonic increasing and in any case above 70%
projects completeness last 3 sessions — the completeness of projects table must be mono-

tonic increasing and in any case above 70%
the metrics is expected to be monotonic decreas-
ing

misdated projects last 3 sessions

5.1.2 Monitoring the deduplication data flow

In this section we will cover the monitoring concerns outlined in Section 2.1.2 for
the deduplication data flow. The deduplication data flow reads all the cleaned content
present in MongoDb (as produced from the literature aggregation data flow), stores
it in a column store based on HBase and runs deduplication algorithms (more details
about the deduplication system can be found in [5]) over two main entities of interest
— organizations and publications — after a clique (i.e. a cluster of similar objects)
has been discovered. The equivalence relationships among distinct objects that are
found by the deduplication algorithms are then persisted in an actionset for later use.
In particular, whenever a clique is discovered a representative record is elected and
metadata information of clustered records is merged. The monitoring flow and the
monitoring intent defined over it are depicted in Figure 5.3.

dedup

sdEduD

prepare
cleaned native

store graph

Figure 5.3: Monitoring intents for the OpenAIRE deduplication data flow

From a monitoring perspective, it is interesting to monitor the deduplication factor,
i.e. the number of publications (organizations) that are merged into one representative
publication (organization).

For this purpose, one sensor s 4.4, 1s defined and anchored to the processing block
dedup; the sensor declares one sub-process metrics, sub dedup factor, as reported in
Table 5.9. The sensor receives an observation whenever the deduplication process
generates a new representative record (either publications or organization) and tracks
the number of records merged of both types. As can be seen, the usage of labels, in this
case tracking whether the type of the generated representative record is a publication or
an organization, permits to reuse the metrics’ name and definition and adapt them to

69

Chapter 5. Experimentation and evaluation

both cases.

At the end of the block session, the process metrics dedup factor is evaluated by
averaging observations generated by metrics sub dedup factor for organizations and
publications, and then checked against the controls reported in Table 5.10 in order to
ensure whether the average deduplication factors are in a bounded neighbourhood of the
thresholds evaluated experimentally in [5].

Table 5.9: Metrics defined by sensor s qequy over the processing block dedup

Sensor s gequp

Metrics Type Description Labels

sub dedup factor spm number of publications (organizations) merged ina type={pubs | orgs}
generated representative record
dedup factor pm avg(sub dedup factor) for the current session type={pubs | orgs}

Table 5.10: Controls defined by sensor s gegup

Sensor s gequp

Selector(s) Analyzer

Metrics i |7

dedup factor last session type=pubs check if the average deduplication factor is within the +5%
variation of the experimental threshold set to 2.40

dedup factor last session type=orgs check if the average deduplication factor is within the +5%
variation of the experimental threshold set to 2.14

5.1.3 Monitoring the inference data flow

In this section we will cover the monitoring concerns outlined in Section 2.1.3. The
inference data flow processes PDFs collected by the aggregation subsystem (see Sec-
tion 2.1.1) in the attempt of extracting full-texts of publications from them. Once the
extraction process has terminated, the extracted full-texts and the deduplicated graph
(produced by the provision subsystem) are taken as input for inference algorithms (more
details about the inference subsystem can be found in [52]) that ultimately produces in-
ferred relationships in an actionset. The inference data flow is represented in Figure 5.4,
which shows also the monitoring flow and the monitoring intent defined on top of it.
As anticipated in Chapter 2, in this scenario we want to monitor some metrics
extracted from the PDFs processed and from the inferred knowledge ultimately produced
by the inference data flow. For this purpose two sensor are defined: S.;;qction and
Sactionset- LN SENSOL Septraction declares two dichotomous (i.e. binary) metrics evaluated
for each PDF processed, namely the sub pdfs corruption and sub fulltext retrievability,
summarized in Table 5.11; the observations produced by the two sub-process metrics are
then aggregated at the end of the block session into the process metrics pdfs corruption
and fulltext retrievability respectively. On these two latter metrics, we want to check
whether the number of valid PDFs and the number of full-texts actually retrievable are
above a certain threshold in order to guarantee that the inference process is working
under the correct assumptions. In particular, the number of invalid pdfs must be less

70

5.1. The OpenAIRE use case

extraction actionset
®

®
S, B

extraction actionset

deduplicated
graph

full-text
store

Figure 5.4: Monitoring intents for the OpenAIRE inference data flow

than 10% and monotonically decreasing throughout time, while a fulltext should be
successfully extracted at least in the 90% of the cases. A summary of the controls
defined is reported in Table 5.12.

Table 5.11: Metrics defined by sensor segztraction 0N processing block extraction

Sensor scztraction

Metrics Type Description Labels
sub pdfs corruption spm generates 1 if the PDF is broken (i.e. it is not possible —

to open the file), 0 otherwise
pdfs corruption pm summation of sub pdfs corruption over the current ses- —

sion

sub fulltext retrievability spm generates 1 if a valid full-text can be extracted form the —
PDF, 0 otherwise

fulltext retrievability pm summation of sub fulltext retrievability over the cur- —
rent session

Table 5.12: Controls defined by sensor Scziraction

Sensor s extraction

Selector(s) Analyzer

Metrics Pt DL

pdfs corruption last session — the number of corrupted PDFs processed must be less
than the 10% of the total number of PDFs processed

pdfs corruption last 3 sessions — the number of corrupted PDFs processed should de-
crease monotonically over time

fulltext retrievability last session — the number of valid full-texts extracted from valid PDFs
must be above 90% of the total number of valid PDFs
processed

Another sensor $,.sonse: 1 instead anchored to the storage block actionset in order
to monitor the final product of the entire inference process. The sensor declares several

71

Chapter 5. Experimentation and evaluation

data metrics about the actionset produced by the last execution of inference data flow.
These metrics mainly are about the numbers of different relationships that the inference
process has generated, e.g. links from publications to projects, publication similarity,
citations among publications, links among publications and datasets, affiliations between
publications and organizations. A summary of the metrics declared by S,ctionser 1S
reported in Table 5.13. Against such defined data metrics, controls should ensure a
monotonically increasing trend with a max 5% percent variation among subsequent
inference data flow executions (i.e. data flow sessions), as reported in Table 5.14.

Table 5.13: Metrics defined by sensor s gctionset On storage block actionset

Sensor s,ctionset

Metrics Type Description Labels

inferred pub2proj dm number of inferred relationships among publications and -
projects funding the research efforts

inferred simrels dm number of inferred similarity relationships among publica- -
tions

inferred citations dm number of inferred citations among publications -

inferred pub2data dm number of inferred relationships between publications and -
datasets

inferred affiliations dm number of inferred affiliation among publications and organi- —
zations

Table 5.14: Controls defined by sensor s uctionset

Sensor s actionset

Selector(s) Analyzer
Metrics Pt 12
inferred pub2proj last 2 sessions — the number of inferred relationships between publications

and projects should be monotonic increasing in last two
inference executions, but it should not increase more than
5%

inferred simrels last 2 sessions — the number of inferred similarity relationships among
publications should be monotonic increasing in last two
inference executions, but it should not increase more than
5%

inferred citations last 2 sessions — the number of inferred citations among publications
should be monotonic increasing in last two inference exe-
cutions, but it should not increase more than 5%

inferred pub2data last 2 sessions — the number of inferred relationships between publications
and datasets should be monotonic increasing in last two
inference executions, but it should not increase more than
5%

inferred affiliations last 2 sessions — the number of inferred affiliations between publications
and organizations should be monotonic increasing in last
two inference executions, but it should not increase more
than 5%

72

5.1. The OpenAIRE use case

5.1.4 Monitoring the publishing data flow

In this section we will cover the monitoring concerns previously outlined in Section 2.1.4.
The publishing data flow takes care of the materialization of the “deduplicated and
enriched information graph” produced by the provision subsystem (see Section 2.1) into
four different data components serving separated use cases. The publishing data flow, as
well as the monitoring intent defined over it, are reported in Figure 5.5.

r—— """ ">">">"”/"”"”/"“"“""”"/"7"—/-"/”"” "i
|
| |
| |
| index stats |
| ® |
toOai | sindex sstats I
|
® | |
5 |
Oai | a
oo | oai lod |
| ® ®) |
| Soai Sia |
| ®|

stats
database

graph
database

Figure 5.5: Data flow and monitoring intents defined for the OpenAIRE publishing data flow scenario

The only processing component being monitored is toOai, which takes care of
transforming publications stored in the information graph into XML records compliant
to Dublin Core to be exported via OpenAIRE’s OAI-PMH endpoint®. The relative sensor,
Sto0ai» 18 implemented according to the specifications reported in Table 5.15. Whenever
the data flow has a record ready to be stored into the OAI storage component, the sensor

30penAIRE API documentation, http://api.openaire.eu/#cha_oai_pmh

73

http://api.openaire.eu/#cha_oai_pmh

Chapter 5. Experimentation and evaluation

hook will assess the two declared sub-process metrics over the XML record and then send
the relative observations to MoniQ. The implementation of metrics sub completeness
runs a batch of ngegirearicias XQueries over a set of xpaths defined by the user, counts
the number of non-empty fields found 7;,ti41izedrields @nd generates an observation
containing the ratio

NinitializedFields
sub completeness = (5.3)

NdesiredFields

Regarding the metrics sub compliance, its implementation checks n.yocabuiary ControlicdFiclds
fields via xpaths and checks whether the content of each field is compliant to the vocab-
ularies intended to control the fields. It finally emits the ratio

NcompliantFields

(5.4)

sub compliance =
vocabularyControlledFields

where 1compiiantFicids 15 the number of fields whose content conforms to what is specified
by the relevant controlled vocabulary. As can be noted, the metrics implementation in
this case needs external resources (i.e. the vocabularies), hence it is necessary to load
them into memory in order to access them during metrics evaluation; in our current
implementation, the metrics implementation retrieves the vocabularies at runtime from
the D-NET Registry [57]. Also, notice that these two metrics remind of the metrics
sub OA compliance introduced in Section 5.1.1; in this case the same qualitative indica-
tion about records is extracted by “promoting” the two factors, i.e. field completeness
and vocabulary compliance, to metrics on their own, while previously were implicitly
“hidden” into the implementation of the metrics sub OA compliance. Since we desire
to monitor these two metrics for a specific group of OAI sets out of the many exposed
by the OpenAIRE OAI-PMH endpoint, we decided to leverage observation’s labels
in order to store along observations the contextual information about the OAI sets the
measurement is about. The OAI sets of interest for this use case are the following:

e FP7Publications: an OAI set containing all FP7 publications;
e H2020Publications: an OAI set containing all H2020 publications;
e Open Access: an OAI set containing all Open Access (OA) publications;

e per-data-source sets: a dedicated OAI set is created in OpenAIRE for each data
source. Each set exposes publications belonging to one data source only.

When the block session has ended, observations produced by the two metrics are
averaged into the process metrics completeness and compliance respectively. Over these
two declared process metrics, s,04; defines the following controls. As for completeness,
the average completeness of records should be above 70% for each one of the sets listed
above; while regarding the metrics compliance, we want to ensure that the average
compliance of records prepared to be exported via OAI-PMH is above 90% for each
OALI set. Summarizing, the controls defined over s;,0,; are reported in Table 5.16.

The other sensors pictured in the monitoring scenario are collection sensors, one
for each final storage block of the monitoring flow. The first two data components
targeted for the integration of the monitoring function have been the full-text index
and the database for statistics. The monitoring intents over OpenAIRE OAI and LOD

74

5.1. The OpenAIRE use case

Table 5.15: Metrics defined by sensor sy,04; 0ver processing block toOai

Sensor s;,04i

Metrics Type Description Labels

sub completeness spm the percentage of initialized (non set={FP7 | H2020 | OA | sourceld}
empty) fields in an XML record
advertised by OpenAIRE via OAI-
PMH w.r.t a set of desired ones

completeness pm avg(sub completeness) for the set={FP7 | H2020 | OA | sourceld}
current session

sub compliance spm the percentage of vocabulary- set={FP7|H2020 |OA | sourceld}
controlled fields in an XML record
advertised by OpenAIRE via OAI-
PMH which are compliant to the
relevant vocabulary

compliance pm avg(sub compliance) for the cur- set={FP7 | H2020 | OA | sourceld}
rent session

Table 5.16: Controls defined by sensor Sio0q;

Sensor s;,04i

Selector(s) Analyzer

Metrics o DI

completeness last session set=* Check whether the average completeness of records exported
via OAI-PMH is above 70%

compliance last session set=* Check whether the average compliance of records exported via
OAI-PMH towards vocabularies is above 90%

endpoints are currently under integration; nonetheless, monitoring requirements are
clearly outlined.

The sensor s;,4¢; declares data metrics (for the sake of space, a subset of the metrics
declared is reported in Table 5.17) over the collection of records indexed by Solr backend;
each metrics is implemented by running a query expressed with Solr syntax that essen-
tially returns a count over the records matching the clauses expressed. As an example, the
query deletedbyinference:false AND resulttypeid:publication
retrieves the total number of publications indexed by OpenAIRE. The controls defined
over these metrics are reported in Table 5.18. As can be noted, the controls defined
by sinder €ither check that any of the metrics generated is monotonic increasing or
monotonic decreasing over time (i.e. across last n data flow sessions).

Similarly, s declares data metrics about statistics computed and advertised by
OpenAIRE. The implementation of these metrics simply runs a query by key over a
key-value collection persisted on Redis and returns the associated value (i.e a single
stats number). For the sake of space, a selected subset of the metrics defined by the
SeNsOr Sy are reported in Table 5.19. As we will point out later in this section, some
metrics declared by s, are mainly intended for inter-backend alignment purposes (see
SENSOT Scompound defined later). Over the metrics peculiar to s (i.€. statistics about
interlinking results) we want to ensure that the relative trends are monotonic increasing,
as shown in Table 5.20.

75

Chapter 5. Experimentation and evaluation

The sensor s;,;, whose data metrics are reported in Table 5.21, declares metrics
that need to be evaluated over the LOD graph stored in Virtuoso by querying the data
component (i.e. SPARQL queries). At the time of writing, we are in particular interested
in metrics related to the main entities projects, datasets, publications and their monotonic
increasing trend, as reflected by the controls defined over them reported in Table 5.22.
In the future, other meaningful metrics will be added along these ones in order to assess
and track the “goodness” of the reasoning and interlinking algorithms producing and
enriching the LOD graph throughout time.

The s,,; declares data metrics to be evaluated against the collections of documents
exported by OAI-PMH. The metrics exported are defined as reported in Table 5.23. In
particular, each metrics returns the total number of publications exported by the OAI
sets already mentioned above in this section. Over such metrics, the controls reported in
Table 5.24 are defined, mainly checking their trends for increasing monotonicity.

As can be seen, several of the metrics declared by these last four sensors deal with
different funders and funding streams, namely: FP7, H2020, Wellcome Trust* (WT),
the Fundacdo para a Ciéncia e a Tecnologia® (FCT), the Australian Research Council®
(ARC) and the Australian National Health and Medical Research Council’ (NHMRC).
This is done in order to provide accountability to funders w.r.t the content provided to
the general public.

As anticipated, the four different materialization processes tolndezx, toQOai, toStats,
toLod are supposedly going to finish at distinct times; however, we want to ensure that the
distinct data components they populate are mutually aligned at the end of the data flow
(i.e. consistency, and thus quality, of the data components and of the processes feeding
data into them). For this reason, we defined a compound block enclosing the four storage
blocks index, stats, oai and lod, and thus inheriting the scope of their sensors s;,4ez»
Sstats> Slod and So4;. This enables us to define the compound sensor s compound declaring
the compound metrics misleading FP7 pubs, reported in Table 5.25, accounting for
the number of publications whose publication date in prior to FP7 time extension (i.e.
2007-2015), but whose link-to-project points to a project funded by FP7. The controls
to be ensured in this monitoring scenario are defined on s.mpound and are reported in
Table 5.26 and mainly deal with the alignment of the four data components, while the
compound metrics misleading FP7 pubs is checked for a monotonic decreasing trend
throughout time.

4Wellcom Trust, ht tps://wellcome.ac.uk/funding

SFCT, https://www.fct.pt/apoios

SARC, http://www.arc.gov.au/grants

"NHMRC, https://www.nhmrc.gov.au/grants-funding

76

https://wellcome.ac.uk/funding
https://www.fct.pt/apoios
http://www.arc.gov.au/grants
https://www.nhmrc.gov.au/grants-funding

5.1. The OpenAIRE use case

Table 5.17: Metrics defined by sensor sipges Over the storage block index

Sensor s;,dcs

Metrics Type Description Labels
projects dm number of projects block=index
results dm number of research outputs (datasets or publica- block=index
tions)
datasets dm number of datasets block=index
publications dm number of publications block=index
OA publications dm number of open access publication block=index
closed access pubs dm number of publications with closed access restric- block=index
tion
FP7 publications dm number of publications funded by FP7 projects block=index
FP7 OA publications dm number of OA publications funded by FP7 projects block=index
FP7 projects dm number of projects belonging to FP7 block=index
FP7 projects SC39 dm number of projects belonging to FP7 and declaring block=index
Special Clause 39
FP7 ongoing projects dm number of FP7 projects which are still ongoing block=index
FP7 proj no end date dm number of FP7 projects whose end date is unknown block=index
FP7 pubs in 2007-2015 dm number of FP7 publications funded by FP7 block=index
projects, whose publication date (correctly) falls
within FP7 time extension
old pubs w\FP7 projects dm number of publications whose publication date is block=index
prior to FP7 time extension, but that are claimed to
be funded by an FP7 project
H2020 publications dm number of publications funded by H2020 projects block=index
H2020 OA publications dm number of OA publications funded by H2020 block=index
projects
H2020 projects dm number of projects funded by H2020 block=index
H2020 ongoing projects dm number of H2020 projects that are still ongoing block=index
H2020 proj no end date dm number of H2020 projects whose end date is un- block=index
known
old pubs w\H2020 proj dm number of publications whose publication date is block=index
prior to H2020 time extension, but that are claimed
to be funded by an H2020 project
WT projects dm number of Wellcome Trust (WT) projects block=index
WT publications dm number of publications funded by WT projects block=index
WT open access pubs dm number of open access publications funded by WT block=index
ERC projects dm number of projects funded by ERC block=index
ERC publications dm number of publications funded by ERC projects block=index
ERC open access pubs dm number of open access publications funded by ERC block=index
EGI publications dm number of publications funded by EGI projects block=index
EGI open access pubs dm number of open access publications funded by EGI block=index
FET publications dm number of publications funded by FET projects block=index
FET open access pubs dm number of open access publications funded by FET block=index
FCT projects dm number of projects funded by FCT block=index
FCT publications dm number of publications funded by FCT projects block=index
FCT open access pubs dm number of open access publications funded by FCT block=index
ARC projects dm number of projects funded by ARC block=index
ARC publications dm number of publications funded by ARC block=index
NHMRC projects dm number of projects funded by NHMRC block=index
NHMRC publications dm number of publications funded by NHMRC block=index
missing titles dm number of publications whose title is unknown block=index

Tl

Chapter 5. Experimentation and evaluation

Table 5.18: Controls defined by sensor s;pdes

Sensor s;,,4cs

Selector(s) Analyzer

Metrics Dy |7}

projects last 3 sessions block=index the number of projects must be increas-
ing over time

results last 3 sessions block=index the number of research products must
be increasing over time

datasets last 3 sessions block=index the number of datasets must be mono-
tonic increasing over time

publications last 3 sessions block=index the number of publications must be
monotonic increasing over time

OA publications last 3 sessions block=index the number of OA publications must
be increasing over time

FP7 projects last 3 sessions block=index the number of FP7 projects should be
monotonic increasing over time

FP7 publications last 3 sessions block=index the number of publications funded by

FP7 OA publications

FP7 ongoing projects

FP7 proj no end date

old pubs w\FP7 projects
H2020 projects
H2020 publications

H2020 OA publications

H2020 ongoing projects

H2020 proj no end date

old pubs w\H2020 projects

missing titles

last 3 sessions

last 3 sessions

last 3 sessions

last 3 sessions
last 3 sessions
last 3 sessions

last 3 sessions

last 3 sessions
last 3 sessions

last 3 sessions

last 3 sessions

block=index

block=index

block=index

block=index
block=index
block=index

block=index

block=index
block=index

block=index

block=index

FP7 should be monotonic increasing
over time

the number of OA publications funded
by FP7 should be monotonic increasing
over time

the number of ongoing FP7 project
should decrease over time

the number of FP7 projects with un-
known end date should decrease mono-
tonically over time

the number of these publication should
decrease over time
H2020 projects
throughout time
H2020 publication should increase
over time

the number of H2020 OA publication
should monotonically increase over
time

the number of onjoing H2020 project
should increase over time

the number of project with missing end
date should decrease over time

the number of these publication should
monotonically decrease over time

should increase

the number of publications with miss-
ing title should be monotonic decreas-
ing

78

5.1. The OpenAIRE use case

Table 5.19: Metrics defined by sensor ssiq15 Over the storage block stats

Sensor s,;q:s

Metrics Type Description Labels

projects dm number of projects block=stats

results dm number of research outputs (datasets or publica- block=stats
tions)

datasets dm number of datasets block=stats

publications dm number of publications block=stats

OA publications dm number of open access publications block=stats

closed access pubs dm number of closed access publications block=stats

FP7 publications dm number of publications funded by FP7 block=stats

FP7 OA publications dm number of OA publications funded by FP7 block=stats

FP7 projects w\pubs dm number of projects funded by FP7 with linked block=stats
publications

FP7 projects dm number of projects funded by FP7 block=stats

FP7 projects SC39 dm number of projects funded by FP7 with Special = block=stats
Clause 39 (SC39)

FP7 projects SC39 w\pubs dm number of projects funded by FP7 with SC39 with block=stats
linked publications

H2020 publications dm number of publications funded by H2020 block=stats

H2020 OA publications dm number of OA publications funded by H2020 block=stats

H2020 projects dm number of projects funded by H2020 block=stats

H2020 projects w\pubs dm number of projects funded by H2020 with linked = block=stats
publications

WT projects dm number of projects funded by Wellcome Trust block=stats

WT projects w\pubs dm number of projects funded by Wellcome Trust block=stats
with linked publications

WT publications dm number of publications funded by Wellcome Trust block=stats

WT open access pubs dm number of open access publications funded by block=stats
Wellcome Trust

ERC projects dm number of projects funded by ERC block=stats

ERC projects w\pubs dm number of projects funded by ERC with linked block=stats
publications

ERC open access pubs dm number of OA publication funded by ERC block=stats

ERC publications dm number of publication funded by ERC block=stats

datasources w\pubs dm number of datasource with linked publication block=stats

EGI projects dm number of projects funded by EGI block=stats

EGI projects w\pubs dm number of projects funded by EGI with linked block=stats
publications

EGI publications dm number of publications funded by EGI block=stats

EGI open access pubs dm number of OA publications funded by EGI block=stats

FCT publications dm number of publications funded by FCT block=stats

FCT projects dm number of projects funded by FCT block=stats

FCT projects w\pubs dm number of projects funded by FCT with linked block=stats
publications

FCT open access pubs dm number of open access publications funded by block=stats
FCT

FET publications dm number of publications funded by FET block=stats

FET open access pubs dm number of open access publications funded by block=stats
FET

datasets linked to projects dm number of datasets linked to projects block=stats

pubs linked to datasets dm number of publications linked to datasets block=stats

79

Chapter 5. Experimentation and evaluation

Table 5.20: Controls defined by sensor Sstq1s

Sensor s,;4s

Selector(s)

Analyzer

Metrics

Pt

Y2

datasets linked to projects

pubs linked to datasets

datasources w\pubs

FP7 projects SC39 w\pubs

EGI projects w\pubs
ERC projects w\pubs
FCT projects w\pubs

WT projects w\pubs

last 3 sessions

last 3 sessions

last 3 sessions

last 3 sessions

last 3 sessions

last 3 sessions

last 3 sessions

last 3 sessions

block=stats

block=stats

block=stats

block=stats

block=stats

block=stats

block=stats

block=stats

the number of datasets linked to projects
should be monotonically increasing

the number of publications linked to
datasets should be monotonically in-
creasing

the number of data sources with publi-
cations should be monotonically increas-
ing

the number of projects funded by FP7
with special clause 39 should be mono-
tonic increasing

the number of projects funded by EGI
should be monotonic increasing

the number of projects funded by ERC
should be monotonic increasing

the number of projects funded by FCT
should be monotonic increasing

the number of projects funded by WT
should be monotonic increasing

Table 5.21: Metrics defined by sensor s;,q over the storage block LOD

Sensor 3,4
Metrics Type Description Labels
projects dm the number of projects exported as LOD graph block=lod
datasets dm the number of datasets exported as LOD graph block=lod
publications dm the number of publication exported as LOD graph block=lod

Table 5.22: Controls defined by sensor sj,q
Sensor s;,4
Selector(s) Analyzer

Metrics | |7
projects last 2 sessions block=lod the number of projects should be monotonic increasing
datasets last 2 sessions block=lod the number of datasets should be monotonic increasing
publications last 2 sessions block=lod the number of publications should be monotonic increas-

ing

80

5.1. The OpenAIRE use case

Table 5.23: Metrics defined by sensor s,q; over storage block OAI

Sensor s,,;

Metrics Type Description Labels
FP7 publications dm total number of publications funded by FP7 block=o0ai
H2020 publications dm total number of publications funded by H2020 block=o0ai
OA publications dm total number of OA publications block=o0ai
publications dm total number of publications block=o0ai
set=td

Table 5.24: Controls defined by sensor s q;

Sensor s,,;

Selector(s) Analyzer

Metrics Pt 1)

FP7 publications last 2 sessions block=oai the number of FP7 funded publication
should be monotonic increasing

H2020 publications last 2 sessions block=o0ai the number of H2020 funded publication
should be monotonic increasing

OA publications last 2 sessions block=o0ai the number of open access publication
should be monotonic increasing

publications last 2 sessions block=o0ai; set=* the number of publication (per repository)

should be monotonically increasing

Table 5.25: Metrics defined by sensor s compound

Sensor s compound

Metrics

Type Description

Labels

misleading FP7 pubs

cm number of publications whose publication date in prior —
to FP7 time extension (2007-2015), but whose link-to-
project points to a project funded by FP7. Evaluated as:
FP7 publications — FP7 publications in 2007 2015

81

Chapter 5. Experimentation and evaluation

Table 5.26: Controls defined by S compound

Sensor s ompound

Selector(s) Analyzer
Metrics j P
misleading FP7 pubs last session — check that the number of misleading FP7 pub-

lications is monotonic decreasing

projects last session block=index
projects last session block=stats check that the three numbers are aligned
projects last session block=lod
datasets last session block=index
datasets last session block=stats check that the three numbers are aligned
datasets last session block=lod
publications last session block=index
publications last session block=stats check that the three numbers are aligned
publications last session block=lod
OA publications last session block=index
OA publications last session block=stats check that the three numbers are aligned
OA publications last session block=o0ai
FP7 publications last session block=index
FP7 publications last session block=stats check that the three numbers are aligned
FP7 publications last session block=o0ai

FP7 OA publications
FP7 OA publications

last session
last session

block=index
block=stats

check that the two numbers are aligned

H2020 publications
H2020 publications
H2020 publications

last session
last session
last session

block=index
block=stats
block=oai

check that the three numbers are aligned

H2020 OA publications
H2020 OA publications

last session
last session

block=index
block=stats

check that the two numbers are aligned

WT publications
WT publications

last session
last session

block=index
block=stats

check that the two numbers are aligned

ERC publications
ERC publications

last session
last session

block=index
block=stats

check that the two numbers are aligned

82

5.2. The CORE use case

5.2 The CORE use case

MoniQ has been used to realize an experimental case study for monitoring the production
environment of the CORE infrastructure. Taking as input the preliminary analysis
exposed in Section 2.2, in this section we outline the monitoring intents for the case
study using the formalism introduced in Chapter 4.

CORE data flow has been reported in Figure 2.9 in terms of processing component and
data components; to the data flow corresponds the monitoring flow and the monitoring
intents represented in Figure 5.6. As a recap, for each repository registered in the CORE

|

|

|

|

OAld tract saL PDF dump fulltext "y !
|

ump@ exirac ® my ® 1 ® dump @ index @ |

|

’ |

|

|

|

Stuiiexts | index

< —
OAIl metadata OAIl metadata
repository download dump extraction
o "
i
PDF PDF full-text full-text
download dump extraction dump

Figure 5.6: Monitoring intent for CORE scenario

infrastructure, the system enacts the data flow which provides to (i) download metadata
from the repository of interest and extract information from the metadata retrieved,
(i1) download PDFs of publications advertised by the repository and try to extract the
full-text from each PDF retrieved, and finally (iii) index everything in a full-text index
service user queries coming from the CORE web portal. Such data flow has to be
monitored in several different ways in order to ensure that the results are consistent
throughout its entirety and over time.

A first sensor Sg,,, is defined over the storage block OAI dump and declares a
metrics, called total articles, which evaluates the number of articles contained in the
OAI dump file stored on the filesystem by the data flow. The number is extracted by
running an xQuery counting the number of <dc: record> elements contained in the
dump. Such number is expected to be monotonic increasing over time, as a negative
variation would indicate that an issue has occurred either at the repository (e.g. records
missing or deleted) or within CORE, in the early phases of aggregation. The metrics
and controls defined by sensor s 4, are reported in Table 5.27 and Table 5.28.

The next sensor, S.;qct, 18 defined over the processing block extract and declares
the sub-process metrics sub article completeness, which is evaluated as follows

NemptyMandatoryFields (5 5)

sub article completeness =
NmandatoryFields

for each XML article processed by the processing component metadata extraction. It
is interesting to monitor whether the process metrics article completeness, evaluated

83

Chapter 5. Experimentation and evaluation

Table 5.27: Metrics defined by sensor s gumy over storage block OAI dump

Sensor s gymp

Metrics Type Description Labels
total articles dm count the number of OAI records contained in the XML repositoryld=id
dump

Table 5.28: Controls defined by sensor s gymyp

Sensor s gyump

Selector(s) Analyzer

Metrics j P
total articles last 3 sessions repositoryld=* the number of total articles is monotonic increasing

at the end of each extraction block session by averaging the observations produced by
sub article completeness, is above the 80%. The metrics and controls defined by sensor
Sextract are summarized in Table 5.29 and Table 5.30.

Table 5.29: Metrics defined by sensor segzirqct Over processing block extract

Sensor s trqct

Metrics Type Description Labels
sub article completeness spm completeness of each article XML record repositoryld=id
article completeness pm avg(sub article completeness) for the current repositoryld=id

session

Table 5.30: Controls defined by sensor Scytract

Sensor s, irqct

Selector(s) Analyzer

Metrics Dt 14
article completeness last session repositoryld=* the average article completeness is above a
80% threshold

A third sensor s,,,s,4 is defined over the storage block mySql and declares the data
metrics total articles, which counts the number of articles persisted in the database for
the repository currently involved in the data flow, as indicated in Table 5.31. As emerged
from the monitoring intentions, this metrics is controlled as specified in Table 5.32
ensuring that the number of articles persisted is increasing monotonically over time.

Moving further, we declared a sensor s,4, over the storage block PDF' dump. The
sensor declares the data metrics total PDFs, which is evaluated by counting the number
of PDF files stored in the filesystem for the repository involved in the data flow. It is
our interest to verify that the values produced by this metrics are monotonic increasing
over time as a negative variation in such a feature indicates that an issue might have
occurred either at a repository level (e.g. broken links advertised, missing or corrupted
files, etc) or in the CORE’s PDF download business logic (e.g. an introduced error in

84

5.2. The CORE use case

Table 5.31: Metrics defined by sensor spysq over storage block mySql

Sensor 5,541

Metrics Type Description Labels

total articles dm count the number of extracted articles repositoryld=id

Table 5.32: Controls defined by sensor s,ysq

Sensor s;,,541

Selector(s) Analyzer
Metrics Pt »
total articles last 3 sessions repositoryld=* the number of total articles extracted is monotonic
increasing

the algorithm configuration or implementation). The metrics and controls defined by
Sensor s, are reported in Table 5.33 and Table 5.34.

Table 5.33: Metrics defined by sensor spqps over storage block PDF dump

Sensor s,y

Metrics Type Description Labels

total PDFs dm count the number of PDF files in a dump folder on the filesys- repositoryld=id
tem

Table 5.34: Controls defined by sensor spqfs

Sensor s,4ys

Selector(s) Analyzer
Metrics Dt DI
total PDFs last 3 sessions repositoryld=* the number of total PDFs downloaded is monotonic
increasing

The storage block fulltext dump defines a sensor speqts, Whose declared data
metrics total fulltexts is reported in Table 5.35. The metrics is evaluated by simply
counting the number of full-texts successfully extracted from PDF files and stored in the
relevant filesystem location for the repository in exam. The values extracted from the
metrics are then controlled in order to ensure that the number of full-texts extracted is
monotonic increasing throughout time, as indicated in Table 5.36.

As outlined in Section 2.2, the monitoring intent includes combined checks of metrics
sampled in different “locations” within the data flow (i.e. executing at different time);
in this case we need to compare observations produced by metrics declared by two
different storage blocks. For this reason, we prepared a compound block enclosing the
two storage blocks PDF' dump and fulltext dump declaring a sensor s ompound €nabling
the generation of compound metrics and their control. In particular, s.4mpouna declares

85

Chapter 5. Experimentation and evaluation

Table 5.35: Metrics defined by sensor Sfuizests 0ver storage block fulltext dump

Sensor Sfulltexts

Metrics Type Description Labels

total fulltexts dm count the number of full-texts repositoryld=id

Table 5.36: Controls defined by sensor spuiiseats

Sensor syyitexrts

Selector(s) Analyzer

Metrics Pt b
total fulltexts last 3 sessions repositoryld=* the number of total full-texts extracted is mono-
tonic increasing

the compound metrics fulltexts VSpdfs evaluated as the ratio

total fulltexts
total PDF's

and summarised in Table 5.37. The observations extracted from this metrics are then
analyzed in order to check whether the number of full-texts extracted is at least 98% of
the number of PDFs successfully downloaded and monotonic increasing over time, as
indicated in Table 5.38.

Finally, we want to ensure some controls at data flow session level, combining and
comparing observations extracted from different metrics in different parts of the data
flow and ensuring that the entire processing has been carried out as expected. First of
all, we prepared one last sensor s;,4., over the last storage block indezx. s;,q., declares
the metrics reported in Table 5.39 measuring again, by means of queries, the number of
articles, articles with PDFs and articles with full-text, this time from the index. As we
will see shortly, these metrics serve only for controls at data flow level (e.g. alignment
of different backends), hence no control is defined at this moment on this sensor. Then
a compound block enclosing all the monitoring flow is defined; over such a block we
define a sensor sg,,,, declaring one compound metrics pdfs VSarticles evaluated as the
ratio

fulltexts VSpdfs = (5.6)

total PDFS(yiock=pPDF dump)

pdfsVSarticles = (5.7)

total articles(piock=index)

as indicated in Table 5.40. Please notice that sg,,, has visibility on all the metrics
declared so far as it inherits the scopes from the blocks enclosed by the compound
block declared at data flow level. Over the declared compound metrics and all the
metrics inherited by enclosed blocks, we define the controls reported in Table 5.41
mainly checking if observations produced by the compound metrics pdfsVSarticles
are monotonic increasing over time and above the 80%, and if the values produced by
metrics total articles, total PDF's and total fulltexts, sampled from different parts of
the data flow, are aligned at the end of a data flow execution.

86

5.2. The CORE use case

Table 5.37: Metrics defined by sensor s compound

Sensor s compound

Metrics Type Description Labels

fulltextsVSpdfs cm the percentage of PDFs for which a full-text can be repositoryld=id
extracted

Table 5.38: Controls defined by s compound

Sensor s ompound

Selector(s) Analyzer

Metrics Pt m
fulltextsVSpdfs last session repositoryld=* the ratio should be at least 98%
fulltextsVSpdfs last 2 sessions repositoryld=* the ratio should monotonic increasing

Table 5.39: Metrics defined by sensor s;pqe Over storage block index

Sensor s;,4cs

Metrics Type Description Labels

total articles dm count the number of indexed articles repositoryld=id
total PDFs dm count the number of indexed articles with PDF repositoryld=id
total fulltexts dm count the number of indexed articles with extracted full-text repositoryld=id

Table 5.40: Metrics defined by sensor sqou

Sensor 57,

Metrics Type Description Labels

pdfsVSarticles cm the percentage of articles for which a PDF can be retrieved repositoryld=id

Table 5.41: Controls defined by sgo.

Sensor 57,

Selector(s) Analyzer
Metrics Dt Di
total articles last session repositoryld=*,block=index
total articles last session repositoryld=*,block=mySQL check alignment
total articles last session repositoryld="*,block=OAI dump
total PDFs last session repositoryld=*,block=index check alienment
total PDFs last session repositoryld=*,block=PDF dump &
total fulltexts last session repositoryld=* block=index check alienment
total fulltexts last session repositoryld=* block=fulltext dump £
pdfsVSarticles last 2 sessions repositoryld=* check whether the ratio is
monotonically increasing
pdfsVSarticles last session repositoryld=* check whether the ratio is

more than 70%

87

CHAPTER

An Implementation of MoniQ

In this chapter, we discuss the current realization of MoniQ and its soundness and
completeness in relation to the reference architecture drawn in Chapter 4. In particular,
Section 6.1 describes the current implementation of MoniQ server, its capabilities
and integration with the target Data Infrastructure (DI). For this purpose, we introduce
MoniQ-java-di, a thin-layer of Java classes developed in order to facilitate the integration
of MoniQ into Java-based DIs as the ones already presented in Chapter 2.

In Section 6.2, we finally conclude with a showcase of system’s main features
via screenshots taken from MoniQ instance monitoring the OpenAIRE production
environment. Also, the access to a live demo (with read-only permissions) is provided
to the reader.

6.1 Implementation details

In this section, we will focus on the current implementation of MoniQ and put it in
relation to the conceptual architecture described in Chapter 4. As already pointed out
in Data Flow Quality Monitoring Systems (DFQMSs) requirements (see Section 4.1),
MoniQ is an autonomous web application developed in Java, which can be deployed on
its own and lives outside the monitored DI. MoniQ) server, discussed in Section 6.1.1,
offers a deck of Web User Interfaces (WebUIs) for interacting, configuring and consulting
the monitoring system. Here, the DI quality manager can define multiple monitoring
scenarios of interest, i.e. the monitoring flows and the monitoring intents expressed on
top of them by means of sensors, metrics and controls.

On the DI side, MoniQ needs to be integrated with the monitored DI in order to
receive observations about the defined metrics. As discussed in Section 6.1.2, MoniQ
currently provides two ways for being integrated with the DI (see Figure 6.1): (i) a
low-level RESTful web API; (ii) an off-the-shelf client-side Java module addressing

88

6.1. Implementation details

Java-developed DIs, called MoniQ-java-di. Once the integration strategy has been
chosen, the DI data flow needs to be instrumented in order to accommodate the code
taking care of evaluating the metrics of interest and, when needed, handle the signaling
coming from MoniQ in order to drive the actuators deployed.

As observations reach MoniQ server, the DI quality manager can inspect their trends
over time from the WebUI via interactive time series charts or tabular data, and check in
a quick glance the status of the controls defined over them and potential issues present
in the infrastructure’s data flows. Given a monitoring scenario and the outcome of the
defined controls, MoniQ takes care of dispatching alerts and notifications (e.g. via
email) to inform the infrastructure quality manager about the status of the infrastructure
and its operation, and driving actuators possibly deployed in the monitored DI.

MoniQ server Quality

managers

Data Third-party
services

sources

Data infrastructure

Figure 6.1: MoniQ implementation

In the following sections, we describe the current implementation status of MoniQ
both on the server side and the DI integration side; the missing features w.r.t. the
architecture discussed in Chapter 4 are under development and will be introduced soon.

6.1.1 MoniQ server

The current implementation of MoniQ is not complete with respect to the specification
provided in Chapter 4, but includes core elements of the monitoring framework such as
m-flows definition, metrics, sensors, and controls, and a WebUI capable of covering a
large pool of DI monitoring use-cases. MoniQ’s WebUI allows the DI quality manager
to design and configure multiple m-flows, which coexist autonomously and in isolation,
in terms of storage blocks, processing blocks and monitoring intents defined on top of
them. This operation is performed by editing a JSON-formatted configuration based on
the specifications of the monitoring flow description language. The DI quality manager
configuration preferences are persisted in a relational database (based on PostgreSQL)
whose data model is depicted in Figure 6.2. The database holds relations for other
entities too such as users, access rights, notification policies and so forth; for the sake of

89

Chapter 6. An Implementation of MoniQ

brevity, these relations are not reported in the figure as non central to the main content
of the thesis.

session

id
start
end

block_id
mflow block
id id
name milow_id edge
description name
is_active H description from_block
type to_block
parent_block
VN
metrics sensor compound metrics
id id id
name name name
description description description
type pPO——H block_id H—————O< sensor_id
sensor_id compound_fx
aggregation_fx
control composition
id metrics_id
name compound_id
description

sensor_id
selectors
analyzer

Figure 6.2: MoniQ data model (relational)

Although the model already captures the notion of compound blocks (by means of
foreign key parent_block), the current implementation of MoniQ manages only block-
level and m-flow-level sensors. The next software release of the framework, today under
development, will also include compound block-level sensors and enhance the WebUI
S0 as to support ability to graphically construct m-flows by composition of processing
and storage blocks. The interface will also permit to place sensors over blocks, declare
metrics and controls, create compound blocks from the ones defined and compose the
metrics within their scopes.

In the following we provide the implementation details of MoniQ server, by delving
deeper into the underlying technical choices and rationale.

90

6.1. Implementation details

MoniQ APIs MoniQ server exposes a RESTful API in order to receive observations
from the DI; the REST endpoint is mapped onto

http://moniQ _host:80/<moniQ_context>/rest/observations

where MoniQ awaits for JSON formatted observations as indicated in Listing 6.1.

Listing 6.1: Observation format
{

"time" : <timestamp>,

"scenario": <scenarioId>,

"block": <blockId>,

"sensor": <sensorId>,

"metrics" : <metricsId>,

"dfi" : <dataflowId> // optional

"labels": {
<labell_key> : <labell_value>
VA

b

"value": <value>

The RESTful API exposed by MoniQ also offers an endpoint
http://moniQ_host:80/<moniQ_context>/rest/notifications

where MoniQ awaits for JSON formatted closing notifications as indicated in Listing 6.2.

Listing 6.2: Closing notification
{

"time" : <timestamp>,
"block": <blockId>,
"dfi": <dataflowId> // optional

Finally, MoniQ server also exposes an API for the communication with MoniQ-java-
di module in a reliable and optimized way; such endpoint relies on a binary protocol for
web services communication over HTTP realized with Hessian'.

In relation to the latency overhead consideration discussed when drawing DFQMSs
requirements (see Section 4.1), the t.o;, = tsena + Lreceive 1atency factor is negligible
for both the RESTful and the binary API. We run some tests in order to assess the t ..,
factor considering an average sized observation with a handful of labels (more than we
ever used so far, for safety) and we ended up in promising results with scarce impact
over DI's performances. When the MoniQ-java-di library cannot be used (e.g. when the
DI programming language is other than Java) or usage of the RESTful API is preferred,
the delay introduced by the communication with MoniQ RESTful API is still contained
despite the lack of optimizations provided by Hessian (plain HTTP POST requests).

Hessian binary web service protocol ,http://hessian.caucho.com

91

http://hessian.caucho.com

Chapter 6. An Implementation of MoniQ

Observations persistence At the moment, MoniQ takes care of persisting observations
either on a dedicated table in the same relational database described above or in a time
series database based on InfluxDB?; the backend of choice can be specified by the
quality manager within MoniQ configurations. For the sake of simplicity and agile
prototyping, the first implementation choice for observations persistence fell on the same
relational database in use for persisting m-flows as this permitted in our first MoniQ
realization to manage just one backend for data flow quality monitoring. The relation
storing observations is described as follows:

observation(time, scenario_id, block_id, sensor_id, df i, metrics_id, value, labels)

Later, after a re-engineerization and refactoring of MoniQ, the usage of a separated,
observations-dedicated and optimized backend has been introduced by adopting In-
fluxDB. Being a database specially devised to deal with time series, InfluxDB offers
out-of-the-box tools for querying, aggregating and managing metrics. Also, it can be
easily integrated with off-the-shelf, widely-adopted visualization tools such as Grafana®
enabling the creation of personalized dashboards in a straightforward way. The data
model adopted by InfluxDB for persisting points in time series (i.e. MoniQ observations)
is described on his documentation website* and follows the model describe below:

(uniz_timestamp), (metrics),
[<tagk’1> = <tagv1>7 - ']7
(fieldy,) = (field,,)[, (fieldy,) = {field,,),...]
being tags optional and at least one field required. The difference between values and
tags regards the fact that tags are indexed by InfluxDB while fields are not; namely,
fields are meant to contains data points for the indicated metrics, while tags contain
metadata about the points. As an example for an unrelated use case, a suggested usage
for the data model adopted by InfluxDB would be:
1434067467000000000, temperature,
room = living_room,
season = summer,
internal = 25, external = 31
In our MoniQ implementation, we mapped observations to the InfluxDB model in
the following way:
(timestamp), (metrics_id),
block = (block_id),
sensor = (sensor_id),
dfi = (dataflow_id),
[(labelName;) = (labelValuey), .. .],

value = (value)

2InfluxDB, https://www.influxdata.com

3Grafana, http://grafana.org

4InfluxDB documentation, https://docs.influxdata.com/influxdb/v1.0/introduction/getting_
started

92

https://www.influxdata.com
http://grafana.org
https://docs.influxdata.com/influxdb/v1.0/introduction/getting_started
https://docs.influxdata.com/influxdb/v1.0/introduction/getting_started

6.1. Implementation details

As InfluxDB is able to manage multiple (time series) databases, one different database
is created for each monitoring scenario, and within a scenario each metrics defined
in MoniQ maps to a separate time series on InfluxDB with all due tags capturing the
context of single observations. The only exception is about processing blocks and
sub-process metrics; in this case, whenever a block sessions is spawned, observations
generated by the sub-process metrics declared are persisted in temporary time series.
Once the block session has terminated (i.e. upon reception of the relative closing
notification), MoniQ takes care of aggregating sub-process metrics observations into
process metrics observations following the indications specified in the monitoring
scenario, i.e. aggregating in accordance to the aggregation function specified in the
column metrics.aggregation_fr. Once aggregated, the temporary sub-process metrics
are thrashed by MoniQ and the space occupied freed; the same happens if a block
session does not close correctly (after a configurable timeout). Similarly, when an entire
m-flow session terminates incorrectly (after a timeout) and a new one starts, the collected
observations relative to the (entire) m-flow failed session are thrashed.

In relation to the latency overhead consideration discussed when drawing DFQMSs
requirements (see Section 4.1), the server-side latency factor t,,,4;. generally depends
on the backend of choice for persistence of observations. For our implementation we run
several tests for both the chosen backends and assessed the suitability of two. InfluxDB
claims® “support for hundreds of thousands of writes per second” on its documentation
web pages; this statement has been verified by our tests confirming ¢,,,,4; as a fraction
of a millisecond, a time indeed negligible, at least for our applications. In general, the
throughput sustainable by InfluxDB and by PostgreSQL in the current implementation
of MoniQ has greatly satisfied our needs during the realization of our use cases.

Controls Controls over observations generated by metrics can be defined in terms of
their selectors and analyzer from the WebUTI; the current implementation for selectors
can narrow down the selection of observations from a metrics according to predicates
over labels p; and a predicate over time p;. The predicate imposing conditions over
observations’ values p, has not been yet introduced. The time predicate p; has been
implemented to enable limits on the number of sessions (back in time from the last
available one) to be considered and to be passed to the analyzer. The analyzer of
choice can be selected from a drop-down menu; analyzers used by controls come
with off-the-shelf implementations for most common comparison functions such as
equality/alignment, upper and lower bound, peak/valley detection, threshold, percent
variation, and so forth. The semantic of an analyzer drives the DI quality manager into
defining compatible selectors appropriately via the WebUI: some analyzers require only
one selector, while others require two or more selectors, whose order may or may not be
relevant for the analysis. In any case, the collection of analyzers can be extended at any
time by the DI quality manager requiring more specific behaviours.

As an example, Figure 6.3 describes a control checking whether two metrics generated
observations with the same trend. The control setup selects observations generated by
metrics pdfs_count during last three sessions and having the label block equal to PDF
dump and repositoryld equal to a wildcard expression ?id, meaning that the control has
to be verified for every value of the label repositoryld. The other selector does the same

SInfluxDB, http://influxdata.com/time-series-platform/influxdb

93

http://influxdata.com/time-series-platform/influxdb

Chapter 6. An Implementation of MoniQ

Edit control (id: 7)
Monitoring scenario
KMi

Control name

Fulltexts VS Pdfs

Analyzer class

eu.dnetlib.monitoring.controls.analyzers.impl.SameTrend v

Status Inactive

Selectors (metrics, Hash<labelName, labelValue>, #last_sessions)
pdfs_count v {"block":"PDF dump","repositoryld":"?id"} ® /7 3
fulltexts_count ¢ {"block":"fulltext dump","repositoryld":"?id"} ® 7/ 3

Figure 6.3: Screenshot of a control configuration in MoniQ

for metrics fulltext_count, but selects observations with block set to fulltext_dump and
repositoryld equal to the same wildcard expression ?id. Finally, the control specifies
that the selected observations via the two selectors must be passed to an analyzer that
checks if the two time series have the same trend throughout time, i.e. last 3 sessions,
as specified by the time predicate. Since this analyzer can work with two or more
selectors the interface display a widget that enables the quality manager to specify as
many selectors as he needs. The proposed example also shows the usage of the so called
template control engine offered by MoniQ, which simplifies and reduces the time effort
required during the definition phase of monitoring intents, discussed in Section 4.5.

It is worth mentioning that the implementation of the time predicate has to be
extended in order to select observations from a give date to present or within a provided
date range, as specified by the drawn reference architecture. A possible selection strategy
is about taking into account only the observations belonging to m-flow sessions that
started and completed entirely within the provided time range, i.e. if one of the specified
time boundaries “crosses” an m-flow session not yet terminated, this session is not taken
into consideration.

Reporting MoniQ enables the generation of an exhaustive report about the defined
metrics and controls providing, via the WebU]I, insight in a quick glance about key
features and potential issues present in the DI data flows. In particular, at the time
of writing, MoniQ WebUI enables a by-metrics inspection, i.e. selecting a metrics of
interest first and then visualize its trend and the status of controls in which the metrics is
involved, and a by-control inspection, i.e. selecting a control on interest first and then
visualize the trends of all the trends of the metrics involved in the check. From the

94

6.1. Implementation details

WebUI, the quality manager can plot the trends for the metrics of interest both as time
series charts and as tables, explore and zoom in and out the graph, and visualize punctual
values and metadata of each observation.

Alerts & notifications Given a set of controls, MoniQ also takes care of raising alerts
and notifications informing the DI quality manager about the status of the infrastructure
and its operation. At the time of writing, MoniQ evaluates controls as soon as possible,
i.e. whenever a block session or an m-flow session is closed, and dispatch an alert
whenever the check does not pass.

6.1.2 Data infrastructure integration

In order to ensure the declared monitoring intents, MoniQ requires DI quality managers
to instrument the source code of DI data flows in order to deploy sensor hooks and start
evaluating the selected metrics and export observations to MoniQ server. The source
code instrumentation strategy is a common technique used also by other monitoring
approaches such as Prometheus, which offers client libraries for various languages®, or
any other log-based application monitoring, e.g. applications monitored with ELK or
TICK stacks, where log traces can be exported and parsed in order to extract metrics
useful during troubleshooting.

When the DI quality manager decides to integrate MoniQ using the RESTful web
API provided by MoniQ server, he has to take care of invoking it opportunely in order to
send observations and closing notifications to the right sensor and block declared in the
m-flow. The RESTful endpoint receiving the observations is described in Section 6.1.1
and can be contacted with plain HTTP requests. As already remarked in Section 4.1, the
DI quality manager is in charge of providing the implementation of metrics.

The current implementation of MoniQ also includes an off-the-shelf client-side Java
module addressing Java-based DIs and Java-based sub-parts, services or components
of mixed-technology DIs. Such a module, MoniQ-java-di for short, provides (i) a
pre-canned thin layer of Java classes hiding the complexity due to the communication
towards MoniQ server for sending generated observations and closing notifications, and
(i1) a small catalogue of ready-to-use, prior configuration, basic metrics implementations
capable of working with common situations encountered during the application of
MoniQ in our use cases, which are however general and applicable broad-spectrum in
other contexts too. MoniQ-java-di relies on the binary API based on Hessian exposed
by MoniQ server for its communication.

In the following, we will provide a level of details about MoniQ-java-di suffi-
cient to grasp the rationale behind it without delving into fully-fledged implemen-
tation details’. As a first implementation, MoniQ-java-di would provide two base ab-
stract classes, DataMetrics and ProcessMetrics, providing an abstract method
produceValue () each and embedding the logic and boilerplate code for the com-
munication with MoniQ server (i.e. Hessian protocol client) and creation of observa-
tions from single values obtained by metrics application. In this case, custom metrics
can be realized by deriving in hierarchy such classes and implementing the method

5Prometheus source code instrumentation, http: //prometheus.io/docs/instrumenting/clientlibs
"The source code, however, is available at https://svn.driver.research-infrastructures.eu/driver/
data-flow-monitoring

95

http://prometheus.io/docs/instrumenting/clientlibs
https://svn.driver.research-infrastructures.eu/driver/data-flow-monitoring
https://svn.driver.research-infrastructures.eu/driver/data-flow-monitoring

Chapter 6. An Implementation of MoniQ

Listing 6.3: DataMetrics and ProcessMetrics

abstract class DataMetrics extends AbstractMetrics {
/...
protected abstract Double produceValue();

}

abstract class ProcessMetrics extends AbstractMetrics {
/).
protected abstract Double produceValue (Class<? extends

Object>... data);

produceValue () containing the business logic for metrics evaluation. In the case
of data metrics, the method computes the evaluation over a collection persisted on a
backend of reference, e.g. by lunching a count query and returning the numeric result;
in the case of a process metrics, the metrics is instead evaluated on data objects passed
to the method. The developer completes the customization of the metrics by referencing
to which block/sensor in the m-flow the produced value is relevant.

The implementation just described perfectly fits the requirements drawn by the
MoniQ reference architecture. However, despite the soundness, it carries some tech-
nical suboptimality that can be improved. In the following, we discuss three further
refinements we introduced within MoniQ-client-di.

Metrics behaviour factorization This basic implementation, whenever multiple met-
rics must be evaluated against the same collection (in a storage component) or the same
data (flowing in a processing component), implies that every single metrics implementa-
tion has to repeat portions of code either to access the collection or the data to analyze.
For example, if multiple metrics must be evaluated against a collection stored in Solr,
each one of the metrics would have to instantiate a client for Solr, establish a connection
and run a query; similarly, each metrics to be evaluated over a relational database would
have to embed the connection layer (e.g. JDBC). As another example, if multiple metrics
must be evaluated against an XML file, each one of the metrics would have to include
an XML parser, parse the file and run his xQueries.

It is clear how this implementation suffers from common technical drawbacks (e.g.
boilerplate code, suboptimal resource allocation, etc.) and could benefit from some
factorization. For this reason, MoniQ-java-di lets data metrics executing queries with the
same semantic over the same collection to share the same core business logic by offering
the class DataMet ricsExecutor. The DI quality manager can extend it in hierarchy
and implement the required methods to code the business logic of the executor: a method
initialize () for setting up the executor, a method for closing down and clean-
ing resources shutdown () and a generic method produceValue (Map<String,
String> metricsParams) in charge of performing the measure. The variable
metricsParams contains all the necessary for the metrics to execute its business
logic (e.g. query string, target collection, etc.). Similarly, MoniQ-java-di provides a class
ProcessMetricsExecutor covering the dual use case involving process metrics.

96

6.1. Implementation details

Listing 6.4: DataMetricsExecutor and ProcessMetricsExecutor

class DataMetricsExecutor extends AbstractMetrics {
VA
protected abstract void initialize();
protected abstract void shutdown () ;
protected abstract Double produceValue (Map<String, String>
metricsParams) ;

}

class ProcessMetricsExecutor extends AbstractMetrics{
/]
protected abstract void initialize();
protected abstract void shutdown () ;
protected abstract List<Double> produceValues (Class<?
extends Object>... data);

Metrics behaviour/configuration decoupling Despite the enhancement previously dis-
cussed, with the current solution the behavior and configuration of the metrics are
hard-coded into its implementation. This has however a drawback: even the slightest
modification of its configuration would imply a modification in the metrics implemen-
tation and, subsequently, a stop and redeploy of the component housing the sensor
hook. As an example, take into consideration the already introduced compliance metrics
checking to which extent a set of XML fields complies with defined vocabularies. The

behavior of the metrics is outlined by the operation Nc%’;% Imagine now that the

DI quality manager wants to add to the set a new field to be checked; despite the metrics
implementation is ready to cope with the new requirement, the quality manager would
have to change it in order to accommodate the new field, i.e. a new xPath to check.

In order to avoid such an inconvenient, MoniQ offers a centralized storage service
for metrics configurations and enables the quality manager to store and modify metrics
parameters via WebUI so that the metrics implementation can retrieve the most updated
parametrization at runtime from MoniQ server. Of course, even this mechanism cannot
avoid a modification of the metrics implementation whenever a change in the behaviour
is needed. To introduce such a modification, the schema of the database has been
modified in order to persist metrics configuration parameters expressed as a JSON
object.

sensor(id, name, description, block_id, conf)

metrics(id, name, description, type, sensor_id, aggregation_fx,labels, conf)

Template metrics configuration Even the last proposed enhancement can be further
improved. Consider the CORE use case; the quality manager has to evaluate, for every
repository registered to the DI, the number of total articles on a backend (i.e. Elastic-
search in this case). With the implementation explored so far, the quality manager would
prepare a DataMetricsExecutor capable of running a batch of generic queries
against a Elasticsearch endpoint and initialize it at runtime with an appropriate configu-
ration containing the queries. However, a query contained in the configuration would be

97

Chapter 6. An Implementation of MoniQ

dedicated to the evaluation of the metrics just for one of the thousands repositories in
CORE and the DI quality manager would have to replicate the configuration for each
one of them and alter the query clause selecting over repositories.

As this practice is scarcely maintainable, we enabled the creation of template metrics
configurations in which variables can be declared as placeholders in the configuration —
e.g. Tvariable — and have to be filled out later on, at runtime, by the code invoking the
metrics. In our example, the quality manager has to edit a configuration, write the query
clause as repositoryld = 7id and, at runtime, provide to the template engine a map
resolving all the declared placeholders.

MoniQ-java-di also offers a small catalogue of ready-to-use, prior configuration,
metrics implementations capable to work with the common cases encountered during
the implementation of our use cases, i.e. metrics working with XML records, PDF and
CSV files and metrics executors working over collections persisted in Solr, elasticsearch,
redis and postgres.

Finally, MoniQ-java-di provides an utility class for sending closing notifications
when appropriate.

Listing 6.5: Closing notification
class ClosingNotification {
/]
public static void notify(String blockId, String dataflowId) {
/...
}

6.2 Showcase

The images proposed in this section are taken from the MoniQ instance monitoring
the OpenAIRE production environment. A subset of functionalities (mainly read-only)
offered by MoniQ monitoring system and metrics exported from the DI can be accessed
with the credentials reported in Table 6.1. Here, the guest user can explore the stored
metrics (visible for guest inspection) and visualize the controls defined over such metrics
and their outcomes.

Table 6.1: MoniQ showcase instance

URL https://services.openaire.eu/dfm/dashboard.html
Username guest
Password guest

For the sake of space, we selected for demonstration a representative set of showcases
taken from the publishing data flow monitoring scenario, described in Section 5.1.4
and reported for completeness in Figure 6.4. The integration of $;,04i> Soai aNd g
sensors has been introduced recently into the OpenAIRE development environment

98

https://services.openaire.eu/dfm/dashboard.html

6.2. Showcase

(nightly build, developers access only) for testing and fine tuning before being ported
to OpenAIRE production environment (accessible to general public). Thus in this
showcase, the data displayed is limited to S;;,4e,; and Sgq Only.

|— _____________________ 1

| |

| |

| |

| index stats |

| e |

tOOai | Sindr\-'::'c Sstats :

L

® | |

S |
toQai | .

| oai lod |

| @ @ |

| Soal S0 |

& ®

Scompound

Figure 6.4: OpenAIRE publishing monitoring flow and monitoring intents

Figure 6.5 shows metrics publications declared by sensors s;,ge; and Sy from
indez and stats blocks respectively and controlled with a control defined on s compound-
As we can see the values of the two time series are perfectly matching in the last session,
hence the control checking for alignment of the two metrics passes, as represented
in the green box on the right. However, the past history of the two metrics shows
how these two trends diverged in a couple of occasions; back then MoniQ helped our
team in detecting the issue and promptly recover from the transient issue, before the
data could be switched to public access. Before the adoption of MoniQQ monitoring
system, such a control was performed manually (for all the metrics of interest) with
consequent error-prone tendency. The second control checks whether the last three
observations taken on Redis are monotonic increasing with no “bumps” (meaning the
percent variation between two subsequent observations should not exceed 15%); as this
condition is verified, the other control passes too (the green box on the left).

Figure 6.6 shows the trend throughout time of the metrics F'P7 publications declared
by Sensors S;nqe; and Sgqes from indexr and stats blocks respectively, and controlled
with a control defined on Scympound- This time two controls are show in red, mean-
ing that they have failed to pass. In particular, the first one fails to ensure that the
two metrics are aligned as can be seen from the tooltip in the figure. The second
control checks whether the total number of F'P7 publications matches the number of
FP7 pubs in 2007 — 2015, another metrics counting the number of FP7-funded publi-
cation correctly dated within the date range of pertinence for FP7 funding stream; as the
numbers are not equal, the control is marked in red. This can be noticed as well when
inspecting the metrics F'P7 pubs in 2007 — 2015, as shown in Figure 6.7. A by-control
inspection over the failing control, selected for example from the global report view
shown in Figure 6.8, would show the comparative chart pictured in Figure 6.9.

Figure 6.10, shows the trend of the metrics missing titles, accounting the number of
publication records having no titles. The metrics is expected to be monotonic decreasing

99

Chapter 6. An Implementation of MoniQ

Publications acollectionType | seestianei~

Chart Table

18000000 -{
16000000 -{
14000000

12000000

10000000

8000000

6000000

4000000

2000000

o

e

T
a1 S50 2 25 0%
mﬁ@"‘ @Q@% m\ﬁ@‘b @\5@"3 mﬁ@'ﬁ 2N
o et oot e IRt %

W redis M solr

Tot. publications Pubs Solr/Redis

< Publications > collectionType > redis(3)
</> eu.dnetlib.monitoring.controls.analyzers.impl.isMonotonicl...

4 Publications > collectionType > redis(1)
<4 Publications > collectionType > solr(1)
</> eu.dnetlib.monitoring.controls.analyzers.impl.AreEqual

Figure 6.5: Screenshot of the MoniQ dashboard for the metrics “publications”

FP7 Publications %coliectionType seectiavei -

Chart Table

220000
0o ®
180000
o]] ’_".“_‘_H_"_‘—I::j_’—r_'
140000
]
100000 o o— 804 M redis 195138
soo0a] o solr 195148
p—
e
20000

o

P - e Tt i '

T ST e » m,la«s@ﬁww@«s@";‘W,«s@“ e e st

W redis W solr

FP7 Pubs Solr/Redis Tot. FP7 Publications
> FPT Publications > collectionType > redis(1)
#+ FP7 Publications > collectionType > solr(1)
</> eu.dnetlib.monitoring.controls.analyzers.impl.AreEqual

<+ FP7 Publications > collectionType > redis(3)
<f> au.dnetlib.monitoring_controls.analyzers. impl.lsMonotonicl....

(;) Tot FP7 pubs vs FP7 pubs in 2007-
2015

<+ FP7 pubs in 2007-2015 > collectionType > solr(1)
<+ FP7 Publications > collectionType > solr(1)
</> eu.dnetlib.monitoring.controls.analyzers.impl.AreEqual

Figure 6.6: Screenshot of the MoniQ dashboard for the metrics FP7 publications

100

6.2. Showcase

FP7 pubs in 2007-2015 scoliectionType sesctiavs -

Chart Table

185000 +] '.
180000 -
175000 -
170000
165000 Thu Oct 06 2016 10:26:17 GMT+0200 (CEST)

W solr 184392
160000 -
155000 +

T T — I T T T T T 1
B 50 A0 Yl A
o2y B0 s ot o e
ﬂ;\a@ m’m«s@ Mlma@ m‘j‘ﬁ@ .w“‘ﬁ@ .cr?“ﬁ.
AT ol A6 40 o
M solr

Report

Tot FP7 pubs vs FP7 pubs in 2007-
2015

<+ FP7 pubs in 2007-2015 > collectionType > soir{1)
< FP7 Publications > collectionType > solr(1)
</> eu.dnetlib.monitoring.controls.analyzers.impl.AreEqual

Figure 6.7: Screenshot of the MoniQ dashboard for the metrics FP7 pubs in 2007 — 2015

Data Flow Manager Dashboard a-

Search

Global report

@ Dsrooars
2 Scanario: propublic Fitr by

1ot Explore metrics

View reports by metrc. FP7 Pubs Solr/Redis ERC Pubs Solr/Redis Tot. FP7 Projects
View gobalrport & FPT Publcations > colectionType > o)

& FP7 Publcatons > ype > o)
Stowgrapts < audntit montorng contols anayzers mplAreEcual

Goto deais °

ﬁ Iﬁ lf) Tot. publications
Tot. WT Projects

e
& WI Projects > coectionType > rdis®) iTpe> s0k?) o < o ntis monfoing control anayzers.mplIsbonatonic.
> au dnatl montorn, contols analyzers. mpLshonaloric . > e et monioringcontrols.analyzers mplshonatonic. .

ﬁ Tot. OA Publications

& Open Accass Publcatons > colctonype > redst)
0 et montoring controls ansyzar kmpLshonotori.

ﬂ Tot. ERC Publications

> colectontype > ecefd)

Goto deais

ﬁ Tot. FP7 Publications
Tot. Results

PP Publcations > colectonType > eds()
1> oty montoing contro analyzer.mplIshonatonil s > colctonType > ocef)
it montoring contros.anayzers mplsionctonc...

lﬁ Tot. Projects

& Projects > collctonype > reds(y)
> e el montoring control.anayzers.mpLsborotonicd.

'OA Pubs Solr/Redis

pen Access Publicators > colctorypa > ecs()

 ERC Publcatrs:
< audntii montoring.control.anayzers.kmplshonclonicL.

Tot. FET pubs

ﬁ Tot. Datasets

& Datasets > collectionype > redis®)
> e nel.monforng conrol.aralyzers.mpl.sMonolori..

Datasets Solr/Redis © FET Publications > colectonype > reds(2)
Tot. H2020 pubs < e dneti monioring controls.analyzers mpLisMonotonic.
& Datasets > cllctoype > rede()
- Datset > collctonType > k() & H2020 Publcations > collectrype > s0H)
e dnelsmorioring ook, anlzer. mpLAGE el eu.dnetsmontoring conrol anayzor. mpbonctricl

Goto detas °

ﬁ Tot. FCT pubs
& FOT Publcatons > colactoype > e lfb Tot. FP7 OA pubs FP7 OA Pubs Solr/Redis S SRR
T L e

4 FP7 Open Aces Publcatos > colectype >) . .

Figure 6.8: Screenshot of the MoniQ dashboard visualizing the global report about the status of the
infrastructure w.r.t. the defined controls

Gotodetals °

and hopefully zero, however in last two sessions the value jumped from 5879 yo 5890
and therefore the controls fails.

101

Chapter 6. An Implementation of MoniQ

Explore metrics (graphs)

Select metric v Label name - R e
Ll FP7 pubs in 2007-2015 > collectionType Ll FP7 Publications > collectionType
185000 220000
e
o i
-
e oo
e
— o
o
- =
oo o
155000 °
— — ——— s — —
2 03 48 AN o 46 N 3" B BT (8 O o
I S ™" i e s L
- s o
Figure 6.9: Screenshot of the MoniQ dashboard visualizing the details of a control
Missing titles scoliectionType [ssectiasei+
Chart Table
350003
300004
25000
00|
.
10000+
1
50004 l
o
o S : ‘ — — . ‘
a0 e 82" o 14 ¥
ot 50%° eV e 50" C 5@ 58 5% oa"
o \a—“'ﬂ\ @M.'L\z‘“'\.gm‘ oy P o \aﬁ‘“"m‘ 0% P
I solr

Report + Add control

Results No title

<» Missing titles > collectionType > solr(2)
</> eu.dnetlib.monltoring.controls.analyzers.impl.lsMonotonic. ..

Figure 6.10: Screenshot of the MoniQ dashboard for the metrics missing titles

102

CHAPTER

Conclusions

The motivation driving the research presented in this thesis grounds in the lack of support
by current tools available on the market and in the literature to thoroughly target Data
Flow Quality Monitoring (DFQM) in Data Infrastructures (DlIs), i.e. the assessment
over time of the “expected behaviour” of running workflows in the DI in terms of “data
quality” and “processing quality” against previously established criteria. As we pointed
out in the introduction, such activity is crucial both for the customers served by the
DI, in terms of satisfaction and accountability, and for the DI itself, in terms of better
resource allocation, insight of the internals and sustainability. Yet, it is a challenge
largely unsolved and exacerbated by the intrinsically multi-faceted and subjective nature
of data quality and quality in general [15, 87,88, 120] and by the generally complex
interactions among processing components and data component within data flows in
DIs.

Driven by an extensive literature review in the field of data quality and workflow
monitoring, and by the study of two real-world use cases (i.e. OpenAIRE and CORE Data
Infrastructures) and their related monitoring challenges, we introduced MoniQ, a system
enabling Data Flow Quality Monitoring in DIs. We outlined its desired requirements,
providing a side-by-side comparison with the approaches found in the literature using
the taxonomy introduced, and drawn its architecture in Chapter 4. The specifications of
MoniQ architecture provide a monitoring description language capable of:

e describing monitoring flows: DI quality managers can express the semantic and
the time ordering of their observational intents and capture the essence of the DI
data flows to be monitored, by means of monitoring flow description primitives;

e describing monitoring intents over the monitoring flows: DI quality managers
can specify the metrics and controls required to perform the monitoring using
monitoring intent description primitives.

103

Chapter 7. Conclusions

MoniQ enables the collection and organization of observations extracted by metrics
from DI data flows. Such observations, persisted as time series, can be inspected and
automatically queried in order to ensure used-defined constraints and controls, and
provide insight about the current and past behavior of the infrastructure. The quality
manager can also be provided with alerts and notifications as soon as the monitored
DI data flows encounter anomalies. MoniQ is also equipped with a mechanism for
providing feedback to the monitored infrastructure in order to trigger a prompt reaction
to anomalies, steer DI data flows and attempt, to some extent, an automatic correction of
the misbehaviour.

The monitoring system resulting from the implementation of MoniQ specifications
is currently employed to monitor the production environment of the OpenAIRE in-
frastructure and helps its quality managers to promptly spot anomalies and prevent the
dissemination of erroneous data to the general public as well as imprecise statistics to EU
commission. Prior to the adoption of MoniQ, OpenAIRE production environment took
advantage of a more limited kind of monitoring mainly focused on the aggregation and
publishing workflows only, and on the comparison of counts among different backends,
on which metrics were evaluated manually and thus in a non-systematic, automatic and
integrated way. Despite this, the number of metrics to verify was already substantial
— about twenty over the four distinct backends and a couple of composite ones — and
keeping historical data of the monitored scenarios availing of spreadsheets turned out to
be unfeasible in the long run. First of all such a manual practice was indeed prone to
human errors and hardly maintainable throughout time, and secondly it was limited just
to the exploration of data components participating to the data flow. Our experimental
study carried out for the CORE infrastructure revealed a similar modus operandi affected
by the same flaws and limitations.

With MoniQ instead, given a monitoring flow and its monitoring intent specifications,
the monitoring system takes care of persisting observations extracted from both data
and processing components of a data flow, aggregating them and dealing with their
compositions, and dynamically controlling the resulting time series over time against a
set of constraints defined by the quality manager. The adoption of MoniQQ made possible
to extend the monitoring of data flows also to the other scenarios described in this work
and increase the number of metrics being monitored without significantly undermining
the management costs for data flow quality monitoring and without showing scalability
issues in our real case applications.

7.1 Future work

Our approach can be extended and improved in several directions; in this section we
discuss current areas of improvement for the current approach and propose further
research directions.

7.1.1 Scalability issues: when ‘“monitoring data’ grow big

In general, DIs route and process high loads of data and performing Data Flow Quality
Monitoring over such systems eventually ends up in amassing observations until a “big
monitoring data” condition is reached. Despite the space occupied by single observations
is negligible as the storage engine is optimized and compressed, high-throughput DI

104

7.1. Future work

data flows can easily saturate the disk space dedicated to observation persistence if no
countermeasure is taken.

The possible solutions to this scalability issue are about (1) downsampling the data,
1.e. aggregating/summarizing old observations as time goes by; (ii) operating refention
policies, 1.e. keeping observations for a certain amount of time and then freeing space;
(ii1) a combination of the two strategies, e.g. keeping the high precision raw data only
for a limited time, and storing the lower precision, summarized data for much longer
or indefinitely. In particular, we identified two viable directions for MoniQ in order to
integrate downsampling and retention policies; the two approaches are discussed below.

Quality-manager-driven fine tuning A possible strategy is about exposing mecha-
nisms for the fine tuning of downsampling and retention policies directly to quality
managers from MoniQ Web User Interface (WebUI). Retention policies and downsam-
pling of course are tightly bound to the controls that are intended to be ensured over
observations and should be configured accordingly. If, for example, observations older
than two weeks up to one month get downsampled, then the controls, if any, must be
declared having in mind the retention policy in act within the time frame relevant for
them.

MoniQ-driven optimization Another possible strategy is to let MoniQ drive the con-
figuration of downsampling and retention policies by taking as input the current controls
setup and inferring the optimal configuration in order to guarantee the best storage
occupation given the actual monitoring intents. For example, if no control is set to
work with observation older than n weeks (or older than m data flow sessions), than the
retention policy can be configured automatically in accordance.

7.1.2 Dynamically reconfigured controls

In MoniQ, the configuration of controls is dynamic, i.e. it can be changed from the
WebUI at any time, but once configured the configuration is applied until next reconfigu-
ration occurs, which has to happen manually from the quality manager. For example, if
a threshold in a controls is set to a value, there is no way to change the current value
other than manually via the WebUI. However, in some situations, it could be useful to
dynamically adapt the threshold in a programmatic way. As an example, let us assume
that, in a similar situation to the one described in Section 5.1.2, a control checks whether
the value v of the last observation of the metrics m is within the 5% of a threshold th.
Let us suppose that the last control evaluation resulted in v = th + 1%, thus satisfying
the control. At this point, the control could be reconfigured automatically by MoniQ in
order to adopt v = th' £ 5% = (th 4+ 1%) £ 5% as the logic to use next.

This is just one of the possibilities for dynamic adaptation of MoniQ controls, but
of course other use cases could be found, e.g. adapt to a new threshold in function of
the values of last n observations. This mechanism however could expose the control
framework to unwanted drifts and therefore should be designed and used carefully.

7.1.3 Multi-state controls outcome

In our approach and implementation with opted for controls resulting in a dichotomous
outcome (i.e. either passing or failing). However, in some situations, multi-state out-

105

Chapter 7. Conclusions

comes, i.e. with different “degrees” of success and failure, could be more useful and
provide a better knowledge about the specific control and the situation of DI’s internals.

In the literature review reported in Section 3.3, we have already analyzed some
approaches that take advantage of this aspect. In [74], the Kepler Scientific Workflow
Management System (SWIMS) is instrumented in order to display a three-state visual
clue about the data flowing during a workflow execution. Such a clue is provided via
a visual decoration (i.e. a blinking, coloured indicator) introduced on top of workflow
activities within the workflow execution dashboard. Depending on the color displayed
by the indicators (i.e. green/yellow/red) the related data quality feature assumes an
acceptable/suspicious/unacceptable value for the data ad hand, and the scientist can
judge how the scientific workflow is performing and react consequently. In the approach
proposed in [69-71], quality-aware workflows executed in Taverna are capable of
classifying data into different quality classes (two or more) and executes quality actions
accordingly. This can be used for example for filtering “good data” from “bad ones” (i.e.
good or bad for the intended purpose) or associate to quality classes different corrective
actions or sub-workflows.

In our framework, a control evaluation resulting in a n-state outcome could be
leveraged in order to differentiate the alerting level and notification strategy associated
to an anomaly. A “severe alert”, for example, could be used to send promptly an email
to DI quality managers or alert them on the pager, while a “mild alert” could be stored in
a queue and sent as a aggregated notification once per day. Similarly, an issue classified
as a “warning” could be notified only when observations produced by a metrics persist
out of the admitted range for a configurable time 7. Finally, the modification could
affect positively also the possible actuators deployed in the infrastructure, which could
be triggered with different policies according to the severity of the anomaly.

7.1.4 Real-time control of sub-process metrics

So far, as described in Chapter 4, observations generated by sub-process metrics flow
to MoniQ as the processing component executes and, when the session is closed upon
reception of a closing notification, they are aggregated into a process metrics according
an aggregation function. In the current specification of the framework, controls can be
specified only against observations produced by process metrics, while observations
generated by sub-process metrics do not surface to the control engine offered by MoniQ.

However, in some cases it could be useful to monitor and control observations
produced by a sub-process metrics as the session is still open, i.e. as the observations are
being produced and prior their aggregation. For example, consider a simple data flow
working in the field of image recognition, where images from a dataset are indexed using
the BoF (Bag of Features) approach [100] against a previously computed “dictionary”
of visual local features [16, 54] evaluated from a subset of images of the original dataset.
As indexing millions of images is a time-consuming operation, suppose that, in order to
avoid poor resource allocation, the quality manager wants to ensure that the execution is
aborted (e.g. by triggering an actuator) if the average “distance” between the visual local
features represented in the dictionary and visual local features extracted from images
indexed so far is below a user-defined threshold, meaning that the feature dictionary
created is representative for the dataset at hand. Presently, the control would take place
right after the session is closed and observations produced by the sub-process metrics

106

7.1. Future work

aggregated, hence after the processing component has consumed the entire input dataset.
In this situation it would be impossible to trigger the relevant actuator before the block
session ends and thus save useless computation cycles in a condition being already
proven unsatisfactory.

Hence, extending MoniQ to enable such a real-time control of sub-process metrics is
definitely desirable; the control of partial observations produced by sub-process metrics
could be triggered by MoniQ either every N observations or every period 7" and perform
a partial aggregation as indicated in the monitoring intent. Despite it is possible to
perform such aggregation and control every new observation produced, this could indeed
result in an overkill in some cases.

7.1.5 Data analytics of “monitoring data”

The corpus of “data flow quality monitoring data” (in the following, monitoring data for
short) generated and stored by DFQMSs opens up to new possibilities for data analytics.
It is theoretically possible to analyze and mine such data corpus with different intents. A
possible research direction is about understanding whether the stored monitoring data
can enable proactive monitoring. A number of questions rises. Are there application
contexts in which monitoring data show some seasonality? Are there application
contexts showing some kind of pattern in generated monitoring data? Is it possible
to capture such features in monitoring data? If so, is it possible to take advantage of
such information in order to predict or anticipate future possible anomalies and issues in
the DI data flows? To which extent and under which conditions? All these questions
stimulate our curiosity but, for the time being, remain largely unanswered.

To our knowledge, the only approach that copes with anomaly forecast based on
collected monitoring data is Stampede [47, 112], although in the context of workflow
monitoring. Stampede leverages machine learning algorithms to analyze workflows’
behaviour patterns in order to predict failures'; we envisage that some of these techniques
can be exploited in our application field too.

7.1.6 Off-the-shelf instantiation and customization of MoniQ

The approach discussed in this thesis is generic and adoptable broad-spectrum with
no constraint about underlying technology or type of data/workflows treated by the
monitored DI. Similarly, metrics and controls are on purpose conceived for being
generic and extensible to radically different needs dictated by the application context.

Nonetheless, it would be possible to investigate further the integrability of MoniQ
approach within the Workflow Execution Plan (WEP) [53] — the term “workflow enact-
ment” can also be found in the literature — of a Workflow Management System (WfMS)
(or SWIMYS) of choice such as Taverna, Kepler or Galaxy. Such an integration would
make possible to deliver a ready-to-use instance of MoniQ along with the WfMS as it
happens, for example, to Taverna’s Provenance plugin?.

Similarly, it would be possible to study the target community that a MoniQ instance
shall serve and the type of workflows and data types it shall deal with in order to finally
provide a customized ad-hoc instantiation of MoniQ for a specific context of operation.

Poster. STAMPEDE: A Framework for Monitoring and Troubleshooting of Large-Scale Applications on National Cyberinfras-
tructure. https://scitech.isi.edu/presentations/2011/stampede-tgll-poster—final.pdf
2Taverna provenance plugin, http: //www.taverna.org.uk/documentation/taverna-2-x/provenance

107

https://scitech.isi.edu/presentations/2011/stampede-tg11-poster-final.pdf
http://www.taverna.org.uk/documentation/taverna-2-x/provenance

Chapter 7. Conclusions

The MoniQ customization would have a pre-instantiate metrics catalogue in order to
comply with the most common use cases for the research community and use cases
being served. Typical metrics could be implemented and provided out-of-the-box as well
as most common controls and aggregation operators, resulting in an easily adoptable
and configurable data flow monitoring tool specially devised for one particular context.

108

Bibliography

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

J. Adelman, M. Baak, N. Boelaert, M. D’Onofrio, J. A. Frost, C. Guyot, M. Hauschild, A. Hoecker, K. J. C.
Leney, E. Lytken, M. Martinez-Perez, J. Masik, A. M. Nairz, P. U. E. Onyisi, S. Roe, S. Schaetzel, and M. G.
Wilson. ATLAS offline data quality monitoring. Journal of Physics: Conference Series, 219(4):042018, 2010.

J. Akoka, L. Berti-Equille, 0. Boucelma, M. Bouzeghoub, I. Comyn-Wattiau, M. Cosquer, V. Goasdoué-Thion,
Z. Kedad, S. Nugier, V. Peralta, and S. Sisaid-Cherfi. A framework for quality evaluation in data integration
systems. Proceedings of the 9th International Conference on Enterprise Information Systems, pages 170-175,
2007.

I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher, and S. Mock. Kepler: an extensible system for
design and execution of scientific workflows. In Proceedings on the 16th International Conference on Scientific
and Statistical Database Management, volume 1, pages 423-424, 2004.

Michele Artini, Alessia Bardi, Federico Biagini, Franca Debole, Sandro La Bruzzo, Paolo Manghi, Marko
Mikulicic, Pasquale Savino, and Franco Zoppi. The creation of the European Film Archive : achieving
interoperability and data quality. In 8th Italian Research Conference on digital Libraries, pages 1-12, 2012.

Claudio Atzori. gDup: an integrated and scalable graph deduplication system. PhD thesis, University of Pisa,
2016.

Donald Ballou, Richard Wang, Harold Pazer, and Giri Kumar.Tayi. Modeling information manufacturing
systems to determine information product quality. Management Science, 44(4):462-484, 1998.

Alessia Bardi, Paolo Manghi, and Franco Zoppi. Aggregative Data Infrastructures for the Cultural Heritage.
In Research Conference on Metadata and Semantic Research, pages 239-251, 2012.

Roger Barga, Jared Jackson, Nelson Araujo, Dean Guo, Nitin Gautam, and Yogesh Simmhan. The trident
scientific workflow workbench. In Proceedings - 4th IEEE International Conference on eScience, eScience
2008, pages 317-318, 2008.

Adam Barker and Jano Van Hemert. Scientific Workflow: A Survey and Research Directions. In International
Conference on Parallel Processing and Applied Mathematics, pages 746-753, 2007.

Carlo Batini, Daniele Barone, Federico Cabitza, and Simone Grega. A Data Quality Methodology for
Heterogeneous Data. International Journal of Database Management Systems, 3(1):60-79, 2011.

Carlo Batini, Cinzia Cappiello, Chiara Francalanci, and Andrea Maurino. Methodologies for data quality
assessment and improvement. ACM Computing Surveys, 41(3):16:1-16:52, 2009.

Carlo Batini, Matteo Palmonari, and Gianluigi Viscusi. The Many Faces of Information and their Impact
on Information Quality. In Proceedings of the 17th International Conference on Information Quality, pages
212-228, 2012.

Carlo Batini, Anisa Rula, Monica Scannapieco, and Gianluigi Viscusi. From Data Quality to Big Data Quality.
Journal of Database Management, 26(1):60-82, 2015.

Carlo Batini and Monica Scannapieco. Data Quality: Concepts, Methodologies and Techniques (Data-Centric
Systems and Applications). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

109

Bibliography

[15]
(16]

(17]

(18]
(19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

[33]

(34]

(35]

(36]

(371

Carlo Batini and Monica Scannapieco. Data and Information Quality. Springer International Publishing, 2016.

Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-Up Robust Features (SURF).
Computer Vision and Image Understanding, 110(3):346-359, 2008.

Helen M. Berman, Philip E. Bourne, and John Westbrook. The Protein Data Bank: A case study in management
of community data. Current Proteomics, 1(1):49-57, 2004.

Martin Bichler and Kwei-Jay Lin. Service-Oriented Computing. Computer, 39(3):99—-101, mar 2006.

Moénica Bobrowski, Martina Marré, and Daniel Yankelevich. Measuring data quality. Technical report,
Universidad de Buenos Aires, Buenos Aires, 1999.

Christine L. Borgman. Big data, little data, no data: Scholarship in the networked world. Mit Press, 2015.

F. Boufares and A. Ben Salem. Heterogeneous data-integration and data quality: Overview of conflicts. 2012
6th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications,
SETIT 2012, pages 867-874, 2012.

Thomas R. Bruce and Diane I. Hillmann. The Continuum of Metadata Quality: Defining, Expressing,
Exploiting. In Metadata in Practice, pages 1-18. ALA Editions, 2004.

Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan. Why and Where: A Characterization of Data
Provenance. In International conference on database theory (ICDT), pages 316—-330. Springer-Verlag, 2001.

Li Cai and Yangyong Zhu. The Challenges of Data Quality and Data Quality Assessment in the Big Data Era.
Data Science Journal, 14:2, 2015.

Leonardo Candela, Donatella Castelli, and Pasquale Pagano. Virtual Research Environments: An Overview
and a Research Agenda. Data Science Journal, 12(August):GRDI75-GRDI81, 2013.

Jorge Cardoso, Amit Sheth, and John Miller. Workflow quality of service. In IFIP Advances in Information
and Communication Technology, volume 108, pages 303-311, 2003.

Jorge Cardoso, Amit Sheth, John Miller, Jonathan Arnold, and Krys Kochut. Quality of service for workflows
and web service processes. Web Semantics, 1(3):281-308, 2004.

Marcus Christie and Suresh Marru. The LEAD Portal: a TeraGrid gateway and application service architecture.
Concurrency and Computation: Practice and Experience, 19(6):767-781, apr 2007.

Susan B. Davidson, Sarah Cohen Boulakia, Anat Eyal, Bertram Ludéscher, Timothy M. McPhillips, Shawn
Bowers, Manish Kumar Anand, and Juliana Freire. Provenance in Scientific Workflow Systems. Data
Engineering Bulletin, 30(4):1-7, 2007.

Ewa Deelman, James Blythe, Yolanda Gil, Carl Kesselman, Gaurang Mehta, Sonal Patil, Mei-hui Su, Karan
Vahi, and Miron Livny. Pegasus: Mapping Scientific Workflows onto the Grid. Grid Computing, pages 11-20,
2004.

Rion Dooley, Kent Milfeld, Chona Guiang, Sudhakar Pamidighantam, and Gabrielle Allen. From proposal
to production: Lessons learned developing the computational chemistry Grid cyberinfrastructure. Journal of
Grid Computing, 4(2):195-208, 2006.

Sharanya Eswaran, David Vecchio, Glenn Wasson, and Marty Humphrey. Adapting and Evaluating Commercial
Workflow Engines for e-Science. In 2006 Second IEEE International Conference on e-Science and Grid
Computing (e-Science’06), pages 20-20. IEEE, dec 2006.

Lorena Etcheverry, Verénika Peralta, and Mokrane Bouzeghoub. Qbox-foundation: a metadata platform for
quality measurement. In Proceeding of the 4th Workshop on Data and Knowledge Quality, pages 1-10, 2008.

Thomas Fahringer, Radu Prodan, Rubing Duan, Francesco Nerieri, Stefan Podlipnig, Jun Qin, Mumtaz Siddiqui,
Hong Linh Truong, Alex Villazén, and Marek Wieczorek. ASKALON: A grid application development and
computing environment. In Proceedings - IEEE/ACM International Workshop on Grid Computing, volume
2005, pages 122-131, 2005.

Lemos Fernando, Mohamed Reda Bouadjenek, Mokrane Bouzeghoub, and Zoubida Kedad. Using the QBox
platform to assess quality in data integration systems. Ingenierie des systemes d’information, 15(6):105-124,
2010.

Craig W. Fisher and Bruce R. Kingma. Criticality of data quality as exemplified in two disasters. Information
and Management, 39(2):109-116, 2001.

Jennifer J. Gassman, Walter W. Owen, Timothy E. Kuntz, Jeffrey P. Martin, and William P. Amoroso. Data
quality assurance, monitoring, and reporting. Controlled Clinical Trials, 16(2):104-136, 1995.

110

Bibliography

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

Jonathan J Geiger. Data quality management: the most critical initiative you can implement. In SUGI 29
Proceedings, pages 1-14, 2004.

Michael Gertz, M. Tamer Ozsu, Gunter Saake, and Kai-Uwe Sattler. Report on the Dagstuhl Seminar “Data
Quality on the Web” Results from Working Groups Metadata and Modeling. SIGMOD Record, 33(1):127-132,
2004.

Belinda Giardine, Cathy Riemer, Ross C. Hardison, Richard Burhans, Laura Elnitski, Prachi Shah, Yi Zhang,
Daniel Blankenberg, Istvan Albert, James Taylor, Webb Miller, W. James Kent, and Anton Nekrutenko. Galaxy:
A platform for interactive large-scale genome analysis. Genome Research, 15(10):1451-1455, 2005.

Yolanda Gil, Ewa Deelman, Mark Ellisman, Thomas Fahringer, Geoffrey Fox, Dennis Gannon, Carole Goble,
Miron Livny, Luc Moreau, and Jim Myers. Examining the challenges of scientific workflows. Computer,
40(12):24-32, 2007.

Jeremy Goecks, Anton Nekrutenko, and James Taylor. Galaxy: a comprehensive approach for supporting
accessible, reproducible, and transparent computational research in the life sciences. Genome biology,
11(8):R86, 2010.

Laura Gonzdlez, Verdnika Peralta, Mokrane Bouzeghoub, and Rail Ruggia. Qbox-services: Towards a
service-oriented quality platform. In Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), volume 5833 LNCS, pages 232-242, 2009.

Katharina Gorlach, Mirko Sonntag, Dimka Karastoyanova, Frank Leymann, and Michael Reiter. Conventional
Simulation Workflow Technology for Scientific Conventional Workflow Technology for Scientific Simulation.
Springer-Verlag, 2011.

Jim Gray. Jim Gray on eScience: A transformed scientific method. In The fourth paradigm: data-intensive
scientific discovery, pages 17-31. Microsoft Research, 2009.

Jim Gray, David T. Liu, Maria Nieto-Santisteban, Alex Szalay, David J. DeWitt, and Gerd Heber. Scientific
data management in the coming decade. SIGMOD Rec., 34(4):34-41, 2005.

Dan Gunter, Ewa Deelman, Taghrid Samak, Christopher H. Brooks, Monte Goode, Gideon Juve, Gaurang
Mehta, Priscilla Moraes, Fabio Silva, Martin Swany, and Karan Vahi. Online workflow management and
performance analysis with Stampede. In 7th International Conference on Network and Service Management,
CNSM 2011, pages 1-10, 2011.

Tony Hey, Stewart Tansley, and Kristin Tolle. The fourth paradigm: data-intensive scientific discovery.
Microsoft Research, 2009.

Y.U. Huh, FR. Keller, Thomas C. Redman, and A.R. Watkins. Data quality. Information and Software
Technology, 32(8):559-565, 1990.

Gerhard Klimeck, Michael McLennan, Sean P Brophy, George B Adams, and Mark S Lundstrom. nanohub.
org: Advancing education and research in nanotechnology. Computing in Science & Engineering, 10(5):17-23,
2008.

Petr Knoth and Zdenek Zdrahal. CORE: Three access levels to underpin open access. D-Lib Magazine,
18(11-12), 2012.

Mateusz Kobos, Lukasz Bolikowski, Marek Horst, Paolo Manghi, Natalia Manola, and Jochen Schirrwagen.
Information inference in scholarly communication infrastructures: the OpenAIREplus project experience. In
Proceeedings of the 10th Italian Research Conference on Digital Libraries, volume 38, pages 92-99, 2014.

Ji Liu, Esther Pacitti, Patrick Valduriez, and Marta Mattoso. A Survey of Data-Intensive Scientific Workflow
Management. Journal of Grid Computing, 13(4):457-493, 2015.

David G. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of Computer

Vision, 60(2):91-110, 2004.

Joana E Gonzales Malaverri, André Santanche, and Claudia Bauzer Medeiros. A provenance-based approach
to evaluate data quality in eScience. International Journal of Metadata, Semantics and Ontologies, 9(1):15-28,
2014.

Joana Esther Gonzales Malaverri. Supporting data quality assessment in eScience: a provenance based
approach. PhD thesis, University of Campinas, 2013.

Paolo Manghi, Michele Artini, Claudio Atzori, Alessia Bardi, Andrea Mannocci, Sandro La Bruzzo, Leonardo
Candela, Donatella Castelli, and Pasquale Pagano. The D-NET software toolkit. Program, 48(4):322-354,
2014.

111

Bibliography

(58]

(591

(60]

[61]

[62]

[63]

[64]
[65]

[66]

[67]

[68]

[69]

[70]

[71]

(72]

(73]

[74]

[75]

[76]

(771

Paolo Manghi, Lukasz Bolikowski, Natalia Manola, Jochen Schirrwagen, and Tim Smith. OpenAIREplus:
The European scholarly communication data infrastructure. D-Lib Magazine, 18(9-10), 2012.

Paolo Manghi, Natalia Manola, Wolfram Horstmann, and Dale Peters. An Infrastructure for Managing EC
Funded Research Output-The OpenAIRE Project. International Journal on Grey Literature, 6:31-40, 2010.

Andrea Mannocci, Vittore Casarosa, Paolo Manghi, and Franco Zoppi. The Europeana Network of Ancient
Greek and Latin Epigraphy Data Infrastructure. In Research Conference on Metadata and Semantics Research,
pages 286-300. Springer International Publishing, 2014.

Andrea Mannocci and Paolo Manghi. DataQ: A Data Flow Quality Monitoring System for Aggregative Data
Infrastructures. In International Conference on Theory and Practice of Digital Libraries, pages 357-369.
Springer International Publishing, 2016.

Thomas Margaritopoulos, Merkourios Margaritopoulos, Ioannis Mavridis, and Athanasios Manitsaris. A
conceptual framework for metadata quality assessment. In Proceedings of the 2008 International Conference
on Dublin Core and Metadata Applications, pages 104—113, 2008.

Adriana Marotta, Laura Gonzélez, and Rail Ruggia. A Quality Aware Service-oriented Web Warehouse
Platform. In Proceedings of the 2012 Joint EDBT/ICDT Workshops, volume 565, pages 29-32, 2012.

Adriana Marotta and Ratil Ruggia. Quality Management in Multi-Source Information Systems. Quality, 2002.

Adriana Marotta and Ratil Ruggia. Managing source quality changes in a data integration system. In CEUR
Workshop Proceedings, volume 263, pages 1168—1176, 2006.

Marta Mattoso, Jonas Dias, Kary A C S Ocafia, Eduardo Ogasawara, Flavio Costa, Felipe Horta, Vitor Silva,
and Daniel De Oliveira. Dynamic steering of HPC scientific workflows: A survey. Future Generation
Computer Systems, 46:100-113, 2015.

Michael McLennan and Rick Kennell. HUBzero: A Platform for Dissemination and Collaboration in
Computational Science and Engineering. Computing in Science & Engineering, 12(2):48-53, mar 2010.

Massimo Mecella, Monica Scannapieco, Antonino Virgillito, Roberto Baldoni, Tiziana Catarci, and Carlo
Batini. Managing Data Quality in Cooperative Information Systems. On the Move to Meaningful Internet
Systems, 2002 - DOA/CooplS/ODBASE 2002 Confederated International Conferences DOA, CooplS and
ODBASE 2002, 2519:486-502, 2002.

Paolo Missier. Modelling and Computing the Quality of Information in E-Science. PhD thesis, University of
Manchester, 2008.

Paolo Missier, Suzanne Embury, Mark Greenwood, Alun Preece, and Binling Jin. Quality Views: Capturing
and Exploiting the User Perspective on Data Quality. In Proceedings of the 32Nd International Conference on
Very Large Data Bases, pages 977-988, 2006.

Paolo Missier, Suzanne M. Embury, Mark Greenwood, Alun Preece, and Binling Jin. Managing information
quality in e-science. In Proceedings of the 2007 ACM SIGMOD international conference on Management of
data - SIGMOD 07, page 1150, New York, New York, USA, 2007. ACM Press.

Paolo Missier, Alun Preece, Suzanne Embury, Binling Jin, Mark Greenwood, David Stead, and Al Brown.
Managing information quality in e-Science: A case study in proteomics. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 3770:423—
432, 2005.

Luc Moreau, Ben Clifford, Juliana Freire, Joe Futrelle, Yolanda Gil, Paul Groth, Natalia Kwasnikowska, Simon
Miles, Paolo Missier, Jim Myers, and Others. The open provenance model core specification (v1. 1). Future
generation computer systems, 27(6):743-756, 2011.

Aisa Na’im, Daniel Crawl, Maria Indrawan, Ilkay Altintas, and Shulei Sun. Monitoring Data Quality in Kepler.
In Proceedings of the 19th ACM International Symposium on High Performance Distributed Computing, pages
560-564, 2010.

Felix Naumann, U. Leser, and J.C. Freytag. Quality-driven integration of heterogeneous information systems.
In Proceedings of the International Conference on Very Large Data Bases, pages 447-458, 1999.

Hoang Nguyen and David Abramson. WorkWays: Interactive workflow-based science gateways. 8th Interna-
tional Conference on E-Science, 2012.

Eduardo Ogasawara, Jonas Dias, Vitor Silva, Fernando Chirigati, Daniel De Oliveira, Fabio Porto, Patrick
Valduriez, and Marta Mattoso. Chiron: A parallel engine for algebraic scientific workflows. Concurrency
Computation Practice and Experience, 25(16):2327-2341, 2013.

112

Bibliography

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

Tom Oinn, Matthew Addis, Justin Ferris, Darren Marvin, Martin Senger, Mark Greenwood, Tim Carver, Kevin
Glover, Matthew R. Pocock, Anil Wipat, and Peter Li. Taverna: A tool for the composition and enactment of
bioinformatics workflows. Bioinformatics, 20(17):3045-3054, 2004.

Mike P. Papazoglou. Service-oriented computing: Concepts, characteristics and directions. In Proceedings -
4th International Conference on Web Information Systems Engineering, WISE 2003, pages 3—12, 2003.

Jung-Ran Park. Metadata Quality in Digital Repositories: A Survey of the Current State of the Art. Cataloging
& Classification Quarterly, 47(3-4):213-228, 2009.

Verénika Peralta. Data Freshness and Data Accuracy : A State of the Art. Technical report, Instituto de
Computacion, Facultad de Ingenieria, Universidad de la Repiblica, URUGUAY, 2006.

Verénika Peralta. Data Quality Evaluation in Data Integration Systems. PhD thesis, Université de Versailles
Saint-Quentin-en-Y velines, 2006.

Verénika Peralta, Rail Ruggia, Zoubida Kedad, and Mokrane Bouzeghoub. A Framework for Data Quality
Evaluation in a Data Integration System. In SBBD, pages 134—147, 2004.

Silvio Peroni, Francesca Tomasi, and Fabio Vitali. The aggregation of heterogeneous metadata in web-based
cultural heritage collections: A case study. International Journal of Web Engineering and Technology,
8(4):412-432,2013.

Leo L. Pipino, Yang W. Lee, and Richard Y. Wang. Data quality assessment. Communications of the ACM,
45(4):211, 2002.

Alun Preece, Binling Jin, Edoardo Pignotti, Paolo Missier, Suzanne M. Embury, David Stead, and Al Brown.
Managing Information Quality in e-Science Using Semantic Web Technology. Procs. ESWC, pages 472-486,
2006.

Thomas C. Redman. Data Quality for the Information Age. Artech House, Inc., Norwood, MA, USA, 1st
edition, 1997.

Thomas C. Redman. The Impact of Poor Data Quality on the Typical Enterprise. Communications of the ACM,
41(2):79-82, 1998.

Michael Reiter, Uwe Breitenbiicher, Schahram Dustdar, Dimka Karastoyanova, Frank Leymann, and Hong-
Linh Truong. A novel framework for monitoring and analyzing quality of data in simulation workflows. In
Proceedings of the 7th International Conference on e-Science, pages 105-112. IEEE, 2011.

Michael Reiter, Uwe Breitenbucher, Oliver Kopp, and Dimka Karastoyanova. Quality of data driven simulation
workflows. In 2012 IEEE 8th International Conference on E-Science, pages 1-8. IEEE, 2012.

Michael Reiter, Uwe Breitenbiicher, Oliver Kopp, and Dimka Karastoyanova. Quality of data driven simulation
workflows. Journal of Systems Integration, 5(1):3-29, 2014.

Barna Saha and Divesh Srivastava. Data quality: The other face of Big Data. In 2014 IEEE 30th International
Conference on Data Engineering, pages 1294—1297. IEEE, mar 2014.

Monica Scannapieco, Paolo Missier, and Carlo Batini. Data Quality at a Glance. Datenbank-Spektrum,
14(January):6-14, 2005.

Jochen Schirrwagen, Paolo Manghi, Natalia Manola, Lukasz Bolikowski, Najla Rettberg, and Birgit Schmidt.
Data curation in the openaire scholarly communication infrastructure. Information Standards Quarterly,
25(3):13—-19, 2013.

G. Shankaranarayanan, Richard Y. Wang, and M. Ziad. IP-MAP: Representing the Manufacture of an
Information Product. In Proceedings of the 2000 Conference on Information Quality, pages 1-16, 2000.

Sarah L. Shreeves, Ellen M. Knutson, Besiki Stvilia, Carole L. Palmer, Michael B. Twidale, and Timothy W.
Cole. Is ’quality’ metadata ’shareable’ metadata? The implications of local metadata practices for federated
collections. In Proceedings of the 12th National Conference on Association of College and Research Libraries,
pages 223-237, 2005.

Vitor Silva, Daniel de Oliveira, and Marta Mattoso. Exploratory Analysis of Raw Data Files through Dataflows.
In Proceedings of the International Symposium on Computer Architecture and High Performance Computing
Workshop, pages 114-119, 2014.

Vitor Silva, Daniel de Oliveira, Patrick Valduriez, and Marta Mattoso. Analyzing related raw data files through
dataflows. Concurrency and Computation: Practice and Experience, 2015.

Yogesh L. Simmhan, Beth Plale, and Dennis Gannon. A Survey of Data Provenance in e-Science, 2005.

113

Bibliography

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]
[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

J. Sivic and A. Zisserman. Video Google: a text retrieval approach to object matching in videos. In Proceedings
of the 9th International Conference on Computer Vision, pages 1470-1477, 2003.

Renato Beserra Sousa, Daniel Cintra Cugler, Joana Esther, Gonzales Malaverri, and Claudia Bauzer Medeiros.
A provenance-based approach to manage long term preservation of scientific data. In Data Engineering
Workshops (ICDEW), 2014 IEEE 30th International Conference on, pages 126—-133. IEEE, 2014.

Diane M. Strong, Yang W. Lee, and Richard Y. Wang. Data quality in context. Communications of the ACM,
40(5):103-110, 1997.

Besiki Stvilia, Les Gasser, Michael B. Twidale, Sarah L. Shreeves, and Timothy W. Cole. Metadata quality
for federated collections. In Proceedings of the 9th International Conference on Information Quality, pages
111-125, 2004.

Alice Tani, Leonardo Candela, and Donatella Castelli. Dealing with metadata quality: The legacy of digital
library efforts. Information Processing and Management, 49(6):1194-1205, 2013.

Giri Kumar Tayi and Donald P. Ballou. Examining data quality. Communications of the ACM, 41(2):54-57,
1998.

Ian Taylor, Matthew Shields, Ian Wang, and Andrew Harrison. The Triana Workflow Environment: Architecture
and Applications. In Workflows for e-Science, pages 320-339. Springer London, London, 2007.

Costantino Thanos. A Vision for Open Cyber-Scholarly Infrastructures. Publications, 4(2):13, may 2016.

Ion-george Todoran, Laurent Lecornu, Ali Khenchaf, and Jean-Marc Le Caillec. A Methodology to Evaluate
Important Dimensions of Information. ACM Journal of Data and Information Quality, 6(2 - 3, Article 11):23,
2015.

Hong Linh Truong and Schahram Dustdar. On evaluating and publishing data concerns for data as a service.
In Proceedings of the 2010 IEEE Asia-Pacific Services Computing Conference, pages 363-370, 2010.

James Turnbull. The art of monitoring. James Turnbull, 2016.

Lassi Tuura, A Meyer, I Segoni, and G Della Ricca. CMS data quality monitoring: systems and experiences.
Journal of Physics: Conference Series, 219(7), 2010.

Karan Vahi, Ian Harvey, Taghrid Samak, Daniel Gunter, Kieran Evans, Dave Rogers, Ian Taylor, Monte Goode,
Fabio Silva, Eddie Al-Shkarchi, Gaurang Mehta, Andrew Jones, and Ewa Deelman. A General approach to
real-time workflow monitoring. In High Performance Computing, Networking, Storage and Analysis (SCC),
2012 SC Companion:, pages 108-118, 2012.

Maria Carolina Valverde, Diego Vallespir, Adriana Marotta, and Jose Ignacio Panach. Applying a data quality
model to experiments in software engineering. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8823:168-177, 2014.

Jillian C. Wallis, Elizabeth Rolando, and Christine L. Borgman. If We Share Data, Will Anyone Use Them?
Data Sharing and Reuse in the Long Tail of Science and Technology. PLoS ONE, 8(7), 2013.

Yair Wand and Richard Y. Wang. Anchoring data quality dimensions in ontological foundations. Communica-
tions of the ACM, 39(11):86-95, 1996.

Jianing Wang. A Quality Framework for Data Integration. In Data Security and Security Data. 27th British
National Conference on Databases, BNCOD 27. Revised Selected Papers, pages 131-134. Springer, 2012.

Richard Y. Wang, Henry B. Kon, and Stuart E. Madnick. Data quality requirements analysis and modeling. In
Proceedings of IEEE 9th International Conference on Data Engineering, pages 670-677. IEEE Comput. Soc.
Press, 1993.

Richard Y. Wang, Martin P. Reddy, and Henry B. Kon. Toward quality data: An attribute-based approach.
Decision Support Systems, 13(3-4):349-372, 1995.

Richard Y. Wang, Storey, and C.P. Firth. A framework for analysis of data quality research. IEEE Transactions
on Knowledge and Data Engineering, 7(4):623-640, 1995.

Richard Y. Wang and Diane M. Strong. Beyond Accuracy : What Data Quality Means to Data Consumers.
Management Information Systems, 12(4):5-34, 1996.

Nancy Wilkins-Diehr, Dennis Gannon, Gerhard Klimeck, Scott Oster, and Sudhakar Pamidighantam. TeraGrid
Science Gateways and Their Impact on Science. Computer, 41(11):32-41, nov 2008.

114

	List of Abbreviations
	Introduction
	Data infrastructures
	Monitoring data infrastructures: the challenge
	Thesis contribution
	Outline of the thesis

	Real-world Use Cases
	The OpenAIRE data infrastructure
	Monitoring the aggregation data flows
	Monitoring the deduplication data flow
	Monitoring the inference data flow
	Monitoring the publishing data flow
	Monitoring the provision data flow

	The CORE data infrastructure

	State of the Art
	Workflow quality and monitoring
	Data quality and monitoring
	Use of data quality concepts in workflows monitoring
	A classification taxonomy for monitoring systems

	MoniQ: A Data Flow Quality Monitoring System
	Requirements of Data Flow Quality Monitoring Systems
	MoniQ Architecture
	The MoniQ Monitoring Flow Description Language
	Monitoring flow examples

	The MoniQ Monitoring Intent Description Language
	Metrics
	Sensors
	Sessions and observations
	Data-flow aware monitoring
	Controls
	Actuators

	Integration effort required by MoniQ

	Experimentation and evaluation
	The OpenAIRE use case
	Monitoring the aggregation data flows
	Monitoring the deduplication data flow
	Monitoring the inference data flow
	Monitoring the publishing data flow

	The CORE use case

	An Implementation of MoniQ
	Implementation details
	MoniQ server
	Data infrastructure integration

	Showcase

	Conclusions
	Future work
	Scalability issues: when ``monitoring data'' grow big
	Dynamically reconfigured controls
	Multi-state controls outcome
	Real-time control of sub-process metrics
	Data analytics of ``monitoring data''
	Off-the-shelf instantiation and customization of MoniQ

	Bibliography

