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1 Introduction

During the last 35 years, data management principles such as physical and logi-
cal independence, declarative querying and cost-based optimization have led to
profound pervasiveness of relational databases in any kind of organization. More
importantly, these technical advances have enabled the first round of business
intelligence applications and laid the foundation for managing and analyzing Big
Data today. The 90’s have been exceptional years for the invention and devel-
opment of solid data mining and machine learning algorithms [1,2,56] building
on existing statistical and artificial intelligence theories. Open and proprietary
software libraries and analytical platforms have bloomed in parallel with the
development of a robust methodological approach to the development of analyt-
ical processes capable of extracting valuable knowledge out of large masses of
data: the Knowledge Discovery in Databases (KDD) [33]. When the data del-
uge began, the KDD technologies were well prepared so that the new advances
stimulated by the many novel challenges and opportunities associated with Big
Data took place in parallel very effective field demonstrations in a wide array of
domains, thus activating a virtuous cycle between innovation and research.

The data deluge has been really impressive: digital technology has become
ubiquitous and very much part of public and private organizations and individ-
uals. People and things have become increasingly interconnected. Smartphones,
buildings, cities, vehicles and other environments and devices have been filled
with digital sensors, all of them creating evermore data. New high-throughput
scientific instruments, telescopes, satellites, accelerators, supercomputers, sensor
networks, and running simulations have generated and are generating massive
amounts of data.

Big data have been blossoming together with the hope to harness the knowl-
edge they hide to solve the key problems of society, business and science. How-
ever, turning an ocean of messy data into knowledge and wisdom is an extremely
challenging task. Heterogeneity, scale, timeliness, complexity, and privacy prob-
lems with Big Data are the key issues to be addressed at all phases of the pipeline
that can create value from data.
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Big Data is not natively in structured format; for example, tweets and blogs
are weakly structured pieces of text, while images and video are structured for
storage and display, but not according its semantic content to enable search:
transforming such content into a structured format for later analysis has been
and is a major challenge. The value of data explodes when it can be linked
with other data, thus data integration is a major creator of value. Since most
data is directly generated in digital format today, we have the opportunity and
the challenge both to influence the creation to facilitate later linkage and to
automatically link previously created data.

In this context, at the end of the 90s a new analytical trend joined data mining
and machine learning: the emergence of network science [13]. Once again, the
availability of large graph data emerging from the web has allowed to discover
general patterns and statistical laws regulating statics and dynamics of complex
networks.

Another relevant impact of big data is the opportunity to observe and mea-
sure how our society intimately works: the digital breadcrumbs of human ac-
tivities carried the capacity to scrutinize the ground truth of individual and
collective behaviour at an unprecedented detail. Multiple dimensions of our so-
cial life have been increasingly “proxied” by big data: automated payment sys-
tems record the tracks of our purchases; search engines record the logs of our
queries on the web; wireless networks and mobile devices record the traces of our
movements; social media record the traces of our opinions and emotions; social
networks record the traces of our interactions. This new scenario took the name
of social mining and it is clear that such challenge requires high-level analytics,
modeling and reasoning across all the social dimensions above.

This chapter proposes an account of the scientific and technical evolution of
data mining and machine learning from relational data bases to data science,
focusing on “making sense” of data generated as by-product of ICT mediated
human activities, i.e. on the analytical methods and process, intentionally ne-
glecting the amazing advances on the efficiency and scalability of the algorithms
as well as their ability to deal with massive streaming data. The chapter tells
the story of this evolution through the research achievements of a network of
research labs in Pisa across the CNR and the University, which contribute to
the birth and life of the Italian database community of SEBD. The next sections
discuss are dedicated to the main trends and results of these groups in the follow-
ing areas. Mobility data analysis leverages the spatio-temporal dimensions of
big data to the purpose of understanding human mobility behavior, evolutionary
patterns, daily activity patterns, geographic patterns. Social network analy-
sis studies the architecture of interpersonal relationships, with the purpose of
understanding the structure and the dynamics of the fabric of human society.
Multimedia media mining methods for making sense of heterogeneous data,
sensed from different on line sources: tweets, mails, blogs, web pages, link struc-
tures, videos etc., to the purpose of extracting the hidden semantics from them.
Sentiment mining. At the crossroads of natural language processing and infor-
mation retrieval, a key topic is opinion/sentiment mining, aimed at harnessing
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the emotional content of user generated texts. The last two sections present two
activities that have a transversal impact. First, privacy aware analytics to pre-
vent “by-design” the risks of invading the sphere of personal information and the
reflection on the ethical consequences of predictive analytics. Second, the new
opportunities that data infrastructures and virtual research environments bring
to data scientists.

2 Mobility data analysis

In the last decades, the wide-spread availability of geo-localization devices and
the technologies to store and analyze the data they generate had a huge impact
on the research areas dealing with spatial and spatio-temporal data. GPS traces
and other forms of mobility data quickly became a focus for researchers from
several disciplines, especially in the domain of data mining. These mobility data
provide a new powerful social microscope, which may help us understand human
mobility, and discover the hidden patterns and models that characterize the
trajectories humans follow during their daily activity.

Revisitations of standard data mining problems and techniques quickly ap-
peared, many of them coming from the important contributions provided by the
Italian community in the last 15 years: trajectory patterns, i.e. frequent patterns
describing sequences of places and possibly timings that are common to a large
number of input trajectories; trajectory clustering, i.e. grouping similar trajecto-
ries [9] or trajectory segments [45] into homogeneous groups; location prediction,
i.e. forecasting the position that a moving object will have in the near future [49];
recognition of movement activity, i.e. associating to a trajectory or to a stop area
the activity it was aimed to [57], such as going to work, leisure, shopping, etc.

In the rest of this section we will mention two examples that had a great
impact on the research community, in terms of references and applications that
stemmed from them: Trajectory Patterns and Mobility Profiles.

2.1 Trajectory patterns

In some contexts, the moving objects we are examining might act in a sim-
ilar way, even if they are not spatially located together. For instance, simi-
lar daily routines might lead several individuals to drive their car along the
same routes, even if they leave home at very different hours of the day. Or,
tourists that visit a city on different days of the year might actually visit it
in the same way – for instance by visiting the same places in the same order
and spending there approximately the same amount of time – because they
simply share interests and attitude. The kind of questions we might try to
answer in this cases is: Are there groups of objects that perform a sequence
of movements, with similar timings though possibly during completely differ-
ent moments? Accordingly, T-Patterns [41] (abbreviation of Trajectory pat-
terns) provide sequences of spatial locations with typical transition times, such
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as Railway Station
15min−→ Museum

2h15min−→ Castle Square. This might represent
the typical behavior of tourists that rapidly reach a museum from the railway
station and spend there about two hours before getting to the adjacent square.

The set of spatial regions to be used to form patterns is a major parameter
of the method, i.e., the spatial extension of “Railway Station” and any other
place considered relevant for the analysis. However, the algorithm proposed also
contains heuristics to automatically define such regions, based on coverage of
dense areas, in case there is no domain expert to provide them.

T-Patterns represented the first attempt to automatically infer from raw GPS
traces an higher abstraction of movement, capturing key places (the regions in
the patterns) and temporal evolution. This information has been later exploited
as building block of various applications, such as prediction (the WhereNext
method [49], which predicts the next most likely area a moving object will visit),
or the identification of hot routes in the city [40].

2.2 Mobility profiles

Despite the great attention that the analysis of individual trajectories attracted,
for a very long time the individuals themselves have not been considered as a
relevant subject of analysis. Mobility profiles [69] represent the first clear step
on the opposite direction, by analysing individuals (rather than just large groups)
with the purpose of understanding systematic mobility, as opposed to occasional
movements, which is fundamental in some mobility planning applications, e.g.
public transport.

The objective is to use the set of trips of an individual user to find his/her
routine behaviors. That is realized by grouping together similar trips based on
concepts of spatial distance and temporal alignment, with corresponding thresh-
olds for both the spatial and temporal components of the trips. In order to be
defined as routine, a behavior needs to be supported by a significant number of
similar trips of the user. The technology adopted to achieve that is a clustering
algorithm that groups together the similar trajectories, each cluster represent-
ing a routine [9]. In particular, the algorithm combines density-based methods
(known to deal well with non-spherical clusters and noisy data, both being typi-
cal features of trajectory data) with bisecting k-means (used to obtain compact
clusters). Each group obtained is then summarized by its central element.

Individual Mobility profiles enable several applications, ranging from deeper
traffic analyses (indeed, the traffic traversing a given area can now be described
also by a systematicity index, measuring the percentage of trips that are routi-
naries for the individuals involved) and the creation of predictive models (as
in the case of MyWay [68], where ongoing trips are compared against the user’s
routines, and in case of match they are used to predict how the trip will continue)
to services like carpooling [42].
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2.3 The borders of human mobility.

The problem of discovering the geographic borders from human mobility at the
low spatial resolution of municipalities or counties is a far reaching problem,
motivated by providing policy makers with suggestions about the best admin-
istrative partitions for the government of the territory. In [23,58], we adopt a
social network analysis view to mobility data to reach a better understanding
of human mobility patterns, leveraging the underlying, hidden connections that
human mobility establishes among different places. Starting from a given zon-
ing of the territory, tessellated into census zones, we construct a network whose
nodes are the zones and the weighted edges between any two zones represent the
number of travels originating in the first and ending in the second. The analy-
sis phase consists in discovering densely connected sub-graphs in this network
by means of a community detection method, thus highlighting groups of zones
that are highly connected by many travels compared to the lower connectivity
among different modules. This an example how a network mining method can
be adopted to reveal the hierarchical structure of a complex phenomenon, and
highlight the thresholds at which we separate macro-, meso- and micro-levels of
the system.

2.4 Returners and Explorers

Another interesting line of research has been at the crossroad of mobility data
mining and network science. Network science is aimed at discovering the global
models of complex social phenomena, by means of statistical macro-laws gov-
erning basic quantities, which show the behavioral diversity in society at large.
Data mining is aimed at discovering local patterns of complex social phenom-
ena, by means of micro-laws governing behavioral similarity or regularities in
sub-populations. The objective of combining micro and macro laws has has been
pursued in [54] where taking advantage of massive digital traces of human where-
abouts a series of novel insights on the quantitative patterns characterizing hu-
man mobility have been discovered and used to anchor to reality the abstract
models of human mobility. Our work starts from the recent consensus on the fact
that the considerable variability in the characteristic travelled distance of indi-
viduals coexists with a high degree of predictability of their future locations. Here
we shed light on this surprising coexistence by systematically investigating the
impact of recurrent mobility on the characteristic distance travelled by individu-
als. Using both mobile phone and GPS data, we discover the existence of two dis-
tinct classes of individuals: returners and explorers. As existing models of human
mobility cannot explain the existence of these two classes, we develop more realis-
tic models able to capture the empirical findings. Finally, we show that returners
and explorers play a distinct quantifiable role in spreading phenomena and that
a correlation exists between their mobility patterns and social interactions.
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2.5 Sociometer: classification of city users and flows

One very promising source of mobility information are mobile phones traces,
most commonly collected in the form of Call Detail Records (CDRs), i.e. records
of the phone calls performed that describe the starting time and location (in
terms of antenna connected in that moment) of the call. In this context, an
analysis method named Sociometer was developed, aimed to associate to each
user her role w.r.t. a specific area, such as resident, visitor, etc.

Adopting a vision similar to the mobility profiles described above, our work
started from the analysis of the single users’ behavior. The approach summarizes
the CDR data of each user through a temporal distribution of her calls within
the spatial area under consideration, measuring the percentage of days that her
was seen at different hours of the day (grouped into three intervals of around
8 hours each), in different days of the week (grouped into week-days and week-
ends), in different weeks. The basic idea is that different city users will produce
different kinds of temporal distribution, for instance residents will most likely be
present on all the time slots, while commuters will be seen only during working
hours/days.

The personal fingerprints are clustered to identify the most relevant call-
ing patterns, which are then classified through a standard K-NN classification
schema. Earlier versions of the solution were based on a manual labelling of
the relevant calling patterns found [35], while most recent ones compare them
against a pre-defined set of representative distributions, called archetypes [36].

3 Social Network Analysis

Nowadays Complex Networks are pervasively used to model and describe the be-
haviors of a wide range of real world phenomena. Social relationships, biological
interactions, transportation, commercial exchanges are only few of the several
scenarios usually studied with the support of instruments borrowed by graph
theory. Countless problems are formulated, or can be formulated, upon such
structures: Community Discovery, Link Prediction, Tie Strength estimation are
only few of them. Among all the fields that emerged in the last decades Social
Network Analysis, SNA, is the one that makes use of graph mining techniques to
understand human behaviors. SNA research has certainly be facilitated by the
ever-growing popularity of online social network platforms data available. Such
unprecedented sources of human generated data naturally modelled by the tools
and theories offered by graph theory have lead to the rising of this novel field of
research. Among the vast SNA literature, our research group has effectively con-
tributed to the following themes: Multidimensional network analysis, Commu-
nity Discovery, Network Analytics & Mobility and analysis of diffusive patterns.

3.1 Multidimensional Networks

Most real life networks are intrinsically multidimensional, and some of their
properties may be lost if the different dimensions are not taken into account. In
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other cases, it is natural to derive multiple dimensions connecting a set of nodes
from the available data to the end of analyzing some phenomena. In order to
study this complex scenario a framework that extends the classical graph theory
is needed. Reasoning on multidimensional networks seems clear that the usual
graph model is not enough to represent all the available information. In our work
“Foundations of Multidimensional Network Analysis” [14], using a multigraph
representation, we proposed and evaluated on real datasets a multidimensional
framework able to capture the interplay among dimensions and to overcome
some limits that made the classical monodimensional measures unsuitable in this
complex scenario. Such framework was then extended, in [53] where we formulate
an approach to estimate tie strength on multidimensional networks and validate
it on a multigraph built upon the social relationships of users interacting on three
different online platform, namely Facebook, Twitter and Foursquare. Moreover,
in [60] we proposed and evaluated a set of Link Prediction approach specifically
tailored for multidimensional networks.

3.2 Community Discovery

The problem of identifying communities in complex networks is very popular
among network scientists, as witnessed by an impressive number of valid works
in this field. Traditionally, a community is defined as a dense subgraph, in which
the number of edges among the members of the community is significantly higher
than the outgoing edges. Our survey [22] explores all the most popular tech-
niques to find communities in complex networks and categorize them into eight
main categories: Feature Distance, Internal Density, Bridge Detection, Closeness,
Structure Definition, Link Clustering, Meta Clustering and Diffusion. In [24] we
propose a bottom-up approach to efficiently extract overlapping communities:
DEMON. DEMON leverages the nodes perspective to identify meaningful net-
work substructures: it works by identify local-communities at the ego-network
level exploiting label propagation and then merging them in an incremental fash-
ion. Our approach has been used as a proxy for users homophily to support net-
work quantification tasks [47]; as filter to reduce the computational cost of Link
Prediction approaches [61]; as well as to bound set of Skype users while searching
a network driven methodology to relate service usage to network position [62].
Moreover, in order to cope with the evolving nature of interaction networks, we
proposed an online dynamic community discovery algorithm, TILES [63], able
to track community life cycles as new perturbations appears in the network (i.e.
appearance/ vanishing of nodes as well as edges).

4 Sentiment analysis

A large proportion of the data that is generated daily, and that needs to be
processed by search and mining algorithms, is of a textual, non-structured na-
ture; these data have traditionally been the domain of information retrieval and
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text mining. After the advent of the so-called “Web 2.0”, a lot of textual con-
tent is user-generated, and its nature is not purely descriptive: that is, it is not
confined to describing facts or states of affairs in an objective, detached way,
but is instead rich in subjective, opinionated content. Harnessing the opinions
and emotions expressed by the authors of these textual contents is the object of
sentiment analysis (also known as opinion mining), an area at the crossroads of
natural language processing and information retrieval that has blossomed in the
mid years of the past decade, and that has been receiving increased attention,
from industry and the scientific community alike, ever since.

4.1 Automatically expanding sentiment lexicons

Possibly the most important task underlying attempts to tap into this kind of
data is sentiment classification, the task of classifying an item of user-generated
content (UGC – e.g., a tweet, a product review, a post on a social networking
service) according to the sentiment it conveys (or opinion it expresses) about a
certain entity. While this shares many characteristics with the task of classifying
text by topic, the traditional “bag of words” (BoW) approach to representing
textual content cannot be used for classifying text by sentiment: to see why,
simply consider the fact that two sentences such as “A horrible hotel in a beau-
tiful town” and “A beautiful hotel in a horrible town” would be assigned the
same class if relying on a BoW representation, while they convey radically dif-
ferent sentiment. As a result, classification by sentiment fundamentally relies on
the availability of a sentiment dictionary, i.e., an online dictionary where lex-
ical entries (e.g., words, or word senses) are tagged in terms of whether they
convey a sense of positivity (e.g., “truthful”, “sublime”) or negativity (e.g., “in-
accurate”, “pathetic”). However, manually curated sentiment dictionaries char-
acterised by a high coverage of the language rarely exist in practice, especially
for less resourced languages. As a result, our group investigated a number of
language-independent methods for automatically tagging by sentiment existing
online dictionaries.

A first method we developed was based on gloss classification, i.e., on classi-
fying a lexical entry as positive or negative by classifying the textual definition of
the entry (“gloss”); the method was first applied to classifying words according to
the positive vs. negative dichotomy [32], and later extended to also identify neu-
tral words (i.e., words that convey no sentiment; e.g., “inorganic”, “quadratic”)
[29]. This method was deployed in practice in order to tag the English-language
version of WordNet; the result was SentiWordNet [31], a sentiment lexicon now
routinely used by hundreds of research groups worldwide.

A second method we later developed was based on random walks, and as-
sumed that a positive (resp., negative) word being defined (the definiendum)
is defined by mostly using positive (resp., negative) words in the gloss (the
definiens). By assuming that positivity and negativity “flow” along the links
connecting the definiendum with the words contained in the definiens, random
walks on the word graph can be used for performing fine-grained computations
of how positive/negative a word in a dictionary is. This method was applied
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to refining SentiWordNet; this led to a more accurately tagged version, called
SentiWordNet 3.0 [12], which is the version now currently available.

4.2 Cross-Lingual and Cross-Domain Sentiment Classification

Cross-lingual sentiment classification is the task of classifying by sentiment text
expressed in a target language (e.g., Urdu) when training data are available
only for a source language (e.g., English). Cross-domain sentiment classifica-
tion instead refers to sentiment classification of texts about a target domain
(e.g., reviews of books) when training data are available only for a source do-
main (e.g., reviews about CDs). In [52] we have developed a technique that can
tackle cross-language and cross-domain sentiment classification at the same time
(e.g., classifying reviews of books in Urdu when only training reviews of CDs
in English are available). The technique, called Distributional Correspondence
Indexing (DCI), leverages the “distributional hypothesis”, i.e., the hypothesis
that words with similar meanings tend to occur in the same contexts. DCI de-
rives term representations in a vector space common to both languages/domains
where each dimension reflects its distributional correspondence to a pivot, i.e.,
to a highly predictive term that behaves similarly across languages/domains.
Experiments show that DCI obtains better performance than current state-of-
the-art techniques for cross-lingual and/or cross-domain sentiment classification.

4.3 Sentiment Quantification

While sentiment classification is important, in [30] we argued that, in many cases
of applicative interest (e.g., when analysing tweets or product reviews), the final
goal is often not the classification of individual items, but the estimation of the
percentage of items that belong to a certain class; in other words, in these cases
we are interested not in sentiment classification, but in sentiment quantification.

Research has shown that quantification is best tackled by quantification-
specific algorithms, and not by using standard classification algorithms followed
by counting the number of items that have been assigned the class. In [38,37] we
conducted an extensive analysis of existing quantification algorithms as applied
to analysing tweets by sentiment; the results confirmed that applying standard
classification technology when quantification is the real goal, is suboptimal. Sim-
ilar conclusions were reached when, instead of standard multi-class quantifica-
tion, we tackled ordinal quantification [25], i.e., the task characterized by a set
of classes on which a total order is defined.

5 Multimedia Analysis

Content-based Multimedia Information Retrieval (CBMIR) on a very large scale
has been a very active multidisciplinary research field during the last 25 years.
Multimedia retrieval involves topics ranging from similarity search, metric access
methods and big data, to features extraction, deep learning and smart cameras.
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The explosion of multimedia data caused by the diffusion of mobile devices and
social media, has increased the relevance of this topic for both industries and
governments. We show that the combination of state-of-the-art data structures
and deep neural networks allows multimedia analysis that have been considered
unachievable for many years because of issues such as semantic gap and curse of
dimensionality.

In 2016, a benchmark consisting of 97M deep features4 extracted from the
Yahoo Creative Commons 100M (YFCC100M) dataset was presented and two
approximate similarity search techniques were tested on it [7]. In this Section we
start from this recent result, to discuss the most relevant research results of the
last 25th years that made this possible.

Starting from the CoPhIR dataset dating back to 2009, large datasets have
been created using the multimedia shared by users on social media [15]. The
proliferation of easily and quickly accessible social media data can be used by
researchers for many different purposes. For example, such data has already
proved useful for many scenarios such as that of emergency management [11],
intelligence [3], eHealth [26], and social networks security. In recent years, we
have observed the explosion of image-sharing services such as Flickr and Insta-
gram. For instance, Instagram has 600 Million Monthly Users and it was esti-
mated that about 85 million photos are shared everyday Since by sharing photos,
users could also express opinions or sentiments, social media images provide a
potentially rich source for understanding public opinions.

The features extracted from the images in [7] are the activations of an hid-
den layer of a Convolutional Neural Networks. This information, automatically
extracted from pre-trained deep neural networks, has recently show outstanding
results, rapidly becoming state of the art in many computer vision applications
that have used global (e.g., MPEG-7 Visual Descriptors) and local features (e.g.,
SIFT, SURF, BRIEF) for decades. Moreover, deep learning is allowing tasks that
were not even considered before. In [18], as an example, the authors presented a
deep learning based method for searching in a visual feature space, by learning
to translate a textual query into a visual representation allowing text searching
in non-annotated (not even automatically) image datasets. Deep Learning is also
substituting local features based techniques in smart cameras applications such
as parking occupancy detection [5].

While Computer Vision is significantly contributing to make multimedia
analysis more effective, the large and increasing amount of multimedia avail-
able through social media requires large scale and big data algorithms. Among
several approaches to address the problem of efficient search in large archives of
image features, one that is very promising is the use of inverted indices. [8] intro-
duced MI-File, an approach that allows using inverted files to perform similarity
search with an arbitrary similarity function. In [4] a Surrogate Text Represen-
tation (STR) derived from the MI-File has been proposed. The conversion of
the permutations in a textual form allows using off-the-shelf text search engines
for similarity search. Another solution that exploits a text retrieval engine to

4 http://www.deepfeatures.org
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perform image similarity search, introduced in [6], uses a straightforward quan-
tization of the vector components of the DCNN features.

6 Social Mining and Ethics

In a world more and more connected, we are witnessing an incredible growth
in the generation and sharing of data originating from the digital breadcrumbs
of human activities and sensed as a by-product of the ICT systems that we use
everyday. Thanks to the massive availability of this data, human behavior can
be observed at large scale. New powerful data-driven tools may be designed and
developed to exploit this data for improving the world in many different ways. We
can use GPS/GSM data to observe and measure the behavior of a population,
to build better cities tailored to the movement of the population, with lower
commuting times and lower pollution. We can exploit medical data to build
classifiers able to help in diagnosing and curing diseases. We can use industrial
data to improve the production processes, and create smarter and more secure
factories. We can do a lot of other incredible and useful things with the support
of data and analytical tools able to extract useful knowledge from raw data.

These data describing human activities are at the heart of the idea of a
knowledge society, where the understanding of social phenomena is sustained
by the knowledge extracted from the miners of big data across the various so-
cial dimensions by using social mining technologies. However, the opportunities
of discovering interesting patterns from human data can be outweighed due to
the high risks of ethical issues in data processing and analysis and ethical con-
sequences of their suggestions and predictions. Important ethical risks are: (i)
privacy violations, when uncontrolled intrusion into the personal data of the sub-
jects occurs, and (ii) discrimination, when the discovered knowledge is unfairly
used in making discriminatory decisions about the (possibly unaware) people
who are classified, or profiled.

In the literature some works have shown that data analytics and ethics are
not necessary enemies: practical and impactful data-driven and knowledge-based
services can be designed obtaining data and service quality while enforcing eth-
ical requirements. The key factor is to develop data analytics technologies that
by-design enforce ethical value requirements to provide safeguards of fairness.
This vision is fully compliant with the European General Data Protection Reg-
ulation which will be applied on 25 May 2018 and that especially encourages the
application of the privacy by-design principle.

In the context of privacy protection in big data analytics, Monreale et al. [51]
propose the instantiation of the privacy-by-design paradigm [20], introduced by
Ann Cavoukian, in the 1990s, to the designing of big data analytical services.
This methodology was applied to guarantee privacy in the following fields.
Privacy in Data Mining Outsourcing. Giannotti et al. in [39] propose a method
for the outsourcing of the association rule mining task while ensuring privacy
protection. The results show how an organization can outsource transactional
data to an untrusted third party, such as a cloud provider, and obtain a data
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mining service in a privacy-preserving manner. In this particular scenario, not
only the underlying data but also the mined results are not intended for sharing
and must remain private because they are considered valuable strategic informa-
tion. The proposed schema, before sending the transactional data to the third
party, applies an encryption based on the addition of fake transactions to the
original data in such a way that each item (itemset) becomes indistinguishable
with at least (k−1) other items (itemsets). This framework guarantees that not
only individual items, but also any group of items, have the property of being
indistinguishable from at least k other groups in the worst case, and actually
many more in the average case. The consequence is that a possible attack has a
very limited probability of success in guessing actual items contained either in
the transaction data or in the mining results. However, the data owner any time
queries the third party can efficiently decrypt correct mining results.

Privacy in Mobility Data Publishing. Monreale et al. [48] present a frame-
work offering an instance of the privacy by-design paradigm concerning personal
mobility trajectories, obtained from GPS devices or cell phones. The designed
method enforces privacy protection while enabling clustering analysis useful for
understanding human mobility behavior in specific urban areas. The released
movement data are made anonymous by a process that applies a data-driven
spatial generalization of the trajectories. This data-driven approach allows to
generalize more areas with high traffic density with respect to urban areas with
lower level of traffic. The results obtained with the application of this frame-
work show how trajectories can be anonymized to a high level of protection
against re-identification while preserving the possibility of mining clusters of
trajectories, which enables novel powerful analytic services for info-mobility or
location-based services.

Privacy in Distributed Analytical Systems. Monreale et al. in [50] apply the
privacy-by-design methodology also in a distributed setting where an untrusted
central station is able to collect some aggregate statistics computed by each
individual node that observes a stream of mobility data. The central station
stores the received statistical information and computes a summary of the traffic
conditions of the whole territory, based on the information collected from data
collectors. The proposed methodology guarantees for each node of the system
privacy protection at individual level by applying a data transformation based
on the well-known differential privacy model [27].

In the context of discrimination data analysis, two main lines of research are
being pursued (see [59] for a survey).

Discrimination discovery from data consists in the actual discovery of an un-
justified difference in treatment of individuals in a large amount of historical
decision records. A process for direct and indirect discrimination discovery on
social groups using classification rule mining and filtering was originally proposed
[65]. The process is guided by legally grounded measures of discrimination, pos-
sibly including statistical tests of confidence. An alternative view of “discovery
as attack” is investigated in [66], in which attack strategies of privacy models are
used to unveil discrimination hidden behind redlining practices. Discrimination
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against individuals has been instead modeled with a k-NN approach, following
the legal methodology of situation testing, and applied to a real case study in
research project funding [67].

Discrimination prevention consists of removing bias in the machine learning and
data mining process. Bias can be present in the training data and in the learning
algorithm. Data sanitization for discrimination prevention has been investigated
in [64], by first reducing the t-closeness model of privacy to a model for non-
discrimination, and then adapting state-of-the- art data sanitization methods
for t-closeness. An approach dealing with both privacy and discrimination sani-
tization is in [43]. Regarding learning algorithms, a modified voting mechanism
of rule-based classifiers in order to reduce the weight of possibly discriminatory
rules has been proposed [55].

7 Data Infrastructure and Virtual Research
Environments as data science enablers

Data Infrastructures [28] open new opportunities to data mining and machine
learning activities by facilitating faster and cheaper investigations and enabling a
more rapid expansion of their volume. In fact, they are conceived to realise large
scale software ecosystems suitable for the big data challenges including analytics
[44]. They offer the entire spectrum of resources (data, software, methods, ser-
vices, computing) needed to carry out a certain investigation “as-a-Service” thus
relieving researchers to operate and maintain them. Moreover, they are progres-
sively introducing mechanisms that limit as much as possible the exposure of the
researcher to technicalities and challenges related with access to the necessary
distributed and heterogeneous set of resources.

Novel data infrastructures support the entire data processing chain, from
the collection and preparation of the necessary datasets, to the analytics steps
till the publication of the produced outcomes. Along this chain, unifying and
open capabilities are provided thus to make it possible, for example, to access
uniformly different datasets or to simply plug-in new tools/methods and data
whenever needed. The resource space offered can also be made available to re-
searchers through tailored views, i.e. web-based working environments known as
Virtual Research Environments [17], where (a) researchers can focus on a specific
investigation by having at their fingerprint what is needed; (b) what researchers
produce is equipped with rich enough metadata thus to become a new resource
compliant with Open Science [34] practices; (c) researchers are also provided
with state-of-the-art facilities promoting collaboration and cooperation.

Driven by this rationale a software system named gCube [10] has been de-
signed and developed. This technology is enacting the D4Science Infrastructure
[16] and exploited to create and operate more than 70 diverse VREs. Overall,
these VREs are serving more than 3100 (returning) scientists in 44 countries
across a rich array of diverse communities including the KDD community via
the SoBigData RI.
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Along the years, gCube has been progressively endowed with (a) a rich array
of mediators for interfacing with existing systems and their enabling technolo-
gies including distributed computing infrastructures (e.g. EGI [19]) and data
providers (e.g. by relying on standards like OAI-PMH, SDMX, OGC W*S) as
well as for making it possible for third-party service providers to easily exploit
gCube facilities (e.g. OAuth, OGC W*S, REST APIs), (b) a set of basic services
including a shared workspace where the objects used and resulting from VRE
activity (beyond simple files) can be stored, organised and accessed as if they
were in a “standard” file-manager; a social networking area where the member
of each VRE can have discussions, share news and other material of interest,
rate each item of a discussion, classify the discussion items by hashtags, refer
to people or groups thus to call for actions from them, etc.; a user management
area where authorized people are allowed to manage VRE membership, to create
groups, assign members to groups, assign roles to member, invite new members,
etc.; an open, customizable and extensible set of facilities made available for
the needs of the specific community context. These include a project manage-
ment and issue-tracking system with a wiki, a rich and extensible data analytics
platform [10,21], a flexible “products” catalogue where any (research) artefact
produced in the VRE and worth being “published” can be easily made avail-
able by equipping it with rich metadata including license and provenance-related
ones, a rich array of domain data management facilities.

VREs are created by using a wizard-based approach where a VRE designer
is simply requested to select (among the available ones) the facilities and re-
sources he/she is willing to have in the VRE, and then upon approval the VRE
is automatically provisioned and made available by a web-based portal.

Overall, the data analytics platform resulting from gCube is characterised by
the following key principles:

– Extensibility : the platform is “open” with respect to (i) the analytics tech-
niques and methods it offers and supports and (ii) the computing infras-
tructures and solutions it relies on to enact the processing tasks. It is based
on a plug-in architecture to support adding new algorithms and methods as
well as new computing platforms;

– Distributed processing : the platform is conceived to execute processing tasks
by relying on “local engines” / “workers” that can be deployed in multiple
instances and execute tasks in parallel and seamlessly. The platform is able
to rely on computing resources offered by both well-known e-Infrastructures
(e.g. EGI) as well as resources made available by the Research Infrastructures
or communities to deploy instances of the “local engines” / “workers”. This
is key to make it possible to “move” the computation close to the data;

– Multiple interfaces: the platform offers its services via both a (web-based)
graphical user interface and a (web-based) programmatic interface thus to
enlarge the possible application contexts. For instance, having a proper API
facilitates the development of components capable to execute processing
tasks from well-known applications (e.g. R, KNIME);
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– Cater for scientific workflows [46]: the platform is both exploitable by ex-
isting WFMS (e.g. a node of a workflow can be the execution of a task /
method offered by the platform) and support the execution of a workflow
specification (e.g. by relying on one or more instances of WFMSs);

– Easy to use: the platform should is easy to use for both (a) algorithms /
methods providers, i.e. scientists and practitioners called to realise processing
methods of interest for the specific community, and (b) algorithms / methods
users, i.e. scientists and practitioners called to exploit existing methods to
analyse certain datasets;

– Open science friendly : the platform is transparently injecting open science
practices in the processing tasks executed through it. This includes mecha-
nisms for capturing and producing “provenance records” out of any comput-
ing task, mechanisms aiming at producing “research objects” so as to make
it possible for others to repeat the task and reproduce the experiment.

These key principles make this analytics platform suitable for the challenges
KDD community is facing.

8 Conclusions

Twenty-five years ago, most statisticians and computer scientists looked with
skepticism at the novel community of KDD scientists, trying to reformulate the
analytical process as data driven discovery. Indeed, such visionary endeavor,
combined with the advent of big data and spectacular advances in high per-
formance computing, has brought what we call today data science: a disrup-
tive paradigm shift impacting all disciplines that pushes towards novel scientific
methods where “top down” modelling of phenomena coexists with “bottom up”
discoveries from data.

Data abundance combined with powerful data science techniques has the po-
tential to dramatically improve our lives by enabling new services and products,
while improving their efficiency and quality.

Many of today’s scientific discoveries are already fueled by developments in
statistics, data mining, machine learning, network science, databases, and visual-
ization, and we can expect advances in any field related to the comprehension of
complex phenomena as in medicine and health (network/personalized medicine),
manufacturing (industry 4.0), social dynamics, urban planning, sustainable de-
velopment.

The importance of data science is widely acknowledged, but there are also
great concerns about the irresponsible use of data and models. Automated data
driven decisions may be unfair or non-transparent. Confidential data may be
shared unintentionally or abused by third parties. Each step in the data science
pipeline (from raw data to conclusions) may create inaccuracies, e.g., if the data
used to learn a model reflects existing social biases, the algorithm is likely to
incorporate these biases. The ethics of data science is a challenging research topic
where computer scientists play a central role, we contributed to change society
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and we cannot escape the responsibility to understand the impact of the digital
transformation helping in catching the opportunities mitigating the risks.

Finally, there is an urgent need to start harnessing these opportunities for
scientific advancement and for the social good, compared to the currently preva-
lent exploitation of big data for commercial purposes (e.g. user profiling and
behavioral advertising) or, worse, social control and surveillance. The main ob-
stacle to this accomplishment, besides the scarcity of data scientists, is the lack
of a large-scale open ecosystem where big data and social mining research can
be carried out.

This is why we propose to establish SoBigData, the Social Mining & Big
Data Ecosystem: a research infrastructure (RI) providing an integrated ecosys-
tem for ethic-sensitive scientific discoveries and advanced applications of social
data mining on the various dimensions of social life, as recorded by “big data”.
The research community will use the SoBigData RI facilities as a “secure digi-
tal wind-tunnel” for large-scale social data analysis and simulation experiments.
SoBigData will serve the wide cross-disciplinary community of data scientists,
i.e., researchers studying all aspects of societal complexity from a data- and
model-driven perspective, including data and text miners, computer scientists,
socio-economic scientists, network scientists, political scientists, humanities re-
searchers, and more.
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