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Abstract. How do we measure the borders of urban areas and there-
fore decide which are the functional units of the territory? Nowadays, we
typically do that just looking at census data, while in this work we aim
to identify functional areas for mobility in a completely data-driven way.
Our solution makes use of human mobility data (vehicle trajectories)
and consists in a agglomerative process which gradually groups together
those municipalities that maximize internal vehicular traffic while min-
imizing external one. The approach is tested against a dataset of trips
involving individuals of an Italian Region, obtaining a novel territorial
division which allows us to identify mobility attractors. Leveraging such
partitioning and external knowledge, we show that our method is able to
outperform the state-of-the-art algorithms. Indeed, the outcome of our
approach is of great value to public administrations for creating synergies
within the aggregations of the territories obtained.

Keywords: human mobility, community discovery, functional areas

1 Introduction

The traditional interpretation of the urban hierarchy simply refers to the size
of the city, with its population and boundaries. From the theoretical point of
view, a rather different perspective is given by the concept of polycentrism [1]:
urban areas are often evolving from mono-centric agglomerations to more com-
plex systems made of integrated urban centers (cores) and sub-centers. In other
territories, a number of cities and towns are increasingly linking up, forming
polycentric integrated areas.

The understanding of the spatial organization of homogeneous regions and
of how places link among them can improve analytical approaches when facing
governance challenges such as the economic development of nation wide com-
plex systems. Indeed, policy makers are paying increasing attention to the role



of homogeneous economic agglomeration and to the capacity of local areas to
contribute to social growth [2].

Moreover, the contraction of public expenditure has driven a process of ser-
vice concentration towards denser urban areas.

Our work aims at contributing to this debate by providing a tool to re-
searchers and policy makers to build a novel definition of regions seen as func-
tional areas of similar behaviors [3].

The questions that drive our research are thus the following:

Q1: Can we identify mobility functional units just looking at human vehic-
ular movement data?
Q2: Are such units mono-centric agglomerations or more complex polycen-
tric integrated areas?
Q3: Which are the most relevant characteristics of such areas?

To answer such questions we developed a methodology whose identify a rea-
sonable number of well-knit sub-regions that are significantly self-contained in
terms of mobility fluxes, and therefore represent candidate functional areas w.r.t.
mobility. The approach also tries to be not influenced by marginal municipali-
ties that are substantially disconnected from the others and/or less interesting
from the decision maker point of view, e.g. because of low traffic flows or small
population. This latter characteristic is often neglected by traditional group dis-
covery algorithms, whose final goal is to partition a generic set of linked elements
disregarding any semantics attached to it.

As in [4], we model movements between municipalities as a network, and
we compare our approach with competitors taken from network analysis studies
(i.e., community detection) as well as from data mining ones (i.e., clustering).

2 Background

In this section we discuss some works in literature that are adopted – or might
be adapted – to identify functional areas.

From a statistical and economical point of view, in [3] are illustrated different
methodologies used to solve the problem of redefining urban areas. Among these,
Dynamic Metropolitan Areas (DMA) are specifically designed to deal with the
characteristics of policentricity. The first stage of the DMA algorithm has a top-
down approach: it identifies first-order centers (seeds) which have at least 50,000
inhabitants and merges the surrounding municipalities that commute at least
15% of their inhabitants.

While (to the best of our knowledge) there are no works on data science
tackling our specific problem, several group discovery methods might be applied
to it, following a clustering of network-based perspective. Here we briefly mention
some basic approaches in the field, while Section 1b will provide a detailed
description of those we compared to.

Clustering methods generally aim to group a set of objects putting together
those that are similar to each other under some specific notion of similarity. The



three classical and most frequently adopted examples are: k-means, representing
a family of partitioning methods that create compact clusters, trying to minimize
the diversity within a cluster and to maximize it across different clusters; hier-
archical clustering, producing several different partitioning at different levels of
aggregation; density-based clustering, which puts together groups of objects that
form locally dense areas, not enforcing any constraint on the size and shape of
clusters.The solution we proposed belongs to the hierarchical methods, yet bas-
ing the aggregation of groups on complex self-containment considerations rather
than on the standard maximization of mutual similarities within the cluster.

Network-based methods saerch for communities, i.e. groups of linked nodes
that share common properties, defining them w.r.t. several objective functions[5].
In the context of territorial partitioning, community discovery has became an im-
portant tool for decision makers that need to study social complex systems, e.g.
in grouping together municipalities showing similar characteristics [2]. Indeed,
by adopting a community discovery approach we can obtain, in a bottom-up
way, an unsupervised classification of territories. In this work we realize a ded-
icated method, that we called Mobility Functional Areas Discovery (MFAD),
based on a context-specific combination of objective functions. As we will show
in the experiment section, results prove the superiority of our solution.

(a) Iteration n (b) Evaluation(n) (c) Iteration n + 1

Fig. 1: An iteration of MFAD : Considering a generic iteration n (a), we evaluate
all possible combination of localQ (b). Once selected the best pair, i.e. (b,c), we
proceed to the union of nodes and updating the data structures (c).

Algorithm 1 MFAD(OD)

1: Inputs: OD represents the mobility flows among municipality.
2: Output: The territorial tessellation T̃ .
3: G = CreateMobilityGraph(OD) . loading the graph
4: T = ∅
5: while |G.V | > 1 do
6: C = ComputeConfigurations(G) . computing all the possible fusions
7: bestPair = arg max(a,b)∈C localQ(a, b,G) . selecting the best fusion

8: G = update(G, bestPair) . updating G
9: T = T ∪ {G} . Saving configuration

10: T̃ = arg maxG∈T globalQ(G) . Evaluating configurations

return T̃



3 Mobility Functional Areas Discovery (MFAD)

Our final goal is to partition the territory considering mobility habits. We model
the mobility between municipalities as a network graph G = (V,E, F ), and ap-
proach the task of defining a meaningful tessellation as the problem of identifying
a community coverage of G. The municipalities define the set of the nodes V of
G, while edges E represent the flows between nodes, their weights being denoted
with F (e) for each e ∈ E.

The general criterion we follow for obtaining an optimal solution is self con-
tainment of traffic flows: the traffic within a group of nodes should be much
higher than that across different groups. The literature on community detection
over networks provides a measure, called modularity, that seems to approxi-
mate this notion. However, directly maximizing modularity in our context leads
to results that violate some basics expectations of the domain expert, e.g., it
causes the appearance of geographically discontinuous groups (which is counter-
intuitive) and the fact that densely populated areas tend to dominate the whole
process (undesirable).

In order to overcome modularity limitations, adopt an agglomerative process,
summarized in Algorithm 1, driven by a local measure that at each step of
the process evaluates the benefits – in terms of self-containment of flows – of
aggregating a pair of groups into a single larger one. Modularity is then used as
global measure to decide when the aggregation process should stop. The process
starts from a situation where each input node in the network G is kept separated
from the others, meaning that each node forms a cluster by itself. Iteratively, two
clusters are selected and merged together, thus reducing the number of clusters
by one unit, and stop only when G contains just one cluster. In order to choose
which clusters to merge, all possible pairs are taken into consideration, and for
each of them our local measure localQ is computed, selecting the best one. Such
measure, in particular, is computed as the fraction of the local traffic (i.e. the
flows involving either node of the pair) that would be converted into internal
traffic thanks to the merger:

localQ(a, b,G) =
F (a, b) + F (b, a)∑

(x,y)∈E∧{a,b}∩{x,y}6=∅ F (x, y)
(1)

Considering the example in Fig. 1, localQ(b, c,G) would compute the ratio
between the total traffic between b and c, i.e. F (b, c) + F (c, b) (the same traffic
that, if b and c are merged, will move from inter-group traffic to intra-group) and
the total traffic from/to any of them, i.e. F (a, b) + F (b, a) + F (b, c) + F (c, b) +
F (c, d) + F (d, c).

When the best pair of nodes a, b is found they are merged thus replacing
them in G by a single node a&b. The edges to/from the new node is the union
of those to/from either of the original nodes, and the flows associated to them
are computed as the sum of the original flows, e.g. F (a&b, c) = F (a, c) +F (b, c).

When the iterative process comes to the end, T will contain the collection
of all graphs obtained at each step, including the original graph G and the last



one where only two (big) nodes are left. In order to identify the most promising
aggregation level, we adopt the modularity measure as global evaluation crite-
rion, and find the graph G ∈ T that maximizes it. That is computed by function
globalQ :

globalQ(G) =
∑

(i,j)∈E

F (i, j)− F (i→) ∗ F (→ j)

K
(2)

where F (→ i) represents the total sum of outgoing flows from node i and
F (j →) is the total of incoming flows to node j. Finally K =

∑
e∈E F (e) repre-

sents the total flows in the network. Overall, the rightmost part of the formula
provides the expected flow from i to j.

Computational costs: From a computational point of view, the Algorithm
costs o(n3) where n is the cardinality of V . While high, cost is not a real issue
in our application, since n is typically a low number; in our case study, covering
the municipalities of a region, we have around 300 nodes, and running the whole
process on a standard computer takes a few minutes. It is worth to notice that
the expensive part of the algorithm is easily parallelizable.

4 Experiments

We apply our methodology on a dataset of trajectories capturing the mobility
of individuals in a region. The dataset consists of 5 million trips produced by
around 70 thousands cars within Tuscany (Italy) in a period of observation of 5
weeks4. Tuscany has about 4.8 million residents and 287 municipalities with a
population density of 163 residents/Km2.

MFAD is applied on the origin and destination matrix (OD Matrix) at munic-
ipality level. An OD Matrix is a network that describes the number of trajectories
that start in a municipality and end in another one (not necessarily adjacent):
the Tuscany dataset is composed by 287 nodes and 30 thousands of arcs. The
average degree of the network is 119.74, the average clustering coefficient is 0.74
while the average shortest path is 1.64. The final output of MFAD is a set of 25
contiguous areas that, as will be discussed in deeper detail later, highlight some
interesting structures in the region.

4.1 Competitors

Here we introduce some of the main state-of-art methods for partitioning sets
of elements into groups, which are then used as competitors against our pro-
posed solution. Following the literature, we refer to partitioning methods based
on networks (CD) or clustering. Finally, we introduce a simple random model
as baseline solution.

4 The analyzed trajectories are generated from raw GPS data using a tool called M-
Atlas [6].



Louvain described in [7], is a fast and scalable algorithm based on a greedy
modularity approach. It has been shown that modularity-based approaches suf-
fer a resolution limit, and therefore, Louvain is unable to detect medium size
communities [8]. This produces communities with high average density, due to
the identification of a predominant set of very small communities and a few
huge communities. Demon: introduced in [9], is an incremental and limited
time complexity algorithm for community discovery. It extracts ego networks,
i.e., the set of nodes connected to an ego node u, and identifies the real communi-
ties by adopting a democratic bottom-up merging approach of such structures.
Infohiermap: is one of the most accurate and best performing hierarchical
non-overlapping clustering algorithms for community discovery [10] studied to
optimize community conductance. The graph structure is explored with a num-
ber of random walks of a given length and with a given probability of jumping
into a random node.

K-medoids and DBSCAN are two of the existing methods for obtaining a
homogeneous grouping of elements. We choose these algorithms because they can
easily accommodate any distance function, which is a key feature for our prob-
lem, since standard measures (Euclidean, etc.) would not model it in a meaning-
ful way. In particular, since the goal of our analysis is to identify groups that max-
imize the local score introduced in Section 3, we feed the algorithms with a dis-
tance which is the complement of localQ , i.e. distance(a, b) = 1− localQ(a, b,Q),
which has the same range of values [0, 1]. K-medoids is a partitional cluster-
ing algorithm, that clusters the dataset into k clusters, where k is known a
priori. It minimizes the overall distance (more specifically, the sum of squared
distances) between the points of a cluster and its center. In contrast to the K-
means algorithm, K-medoids chooses a real point as center and works with an
arbitrary metrics of distances between data-points. We determine k using the
standard silhouette score [11]. DBSCAN is a density-based clustering algo-
rithm. It identifies each input point as core point, border point or outliers. A
point p is a core point if at least minPts other points are within distance ε
from it. Border points are those that are not core but have a core point within
distance ε. Finally, all remaining points labeled as outliers. The minPts pa-
rameter is known to be not critical, and thus was set to the standard default
value of 3. The (more critical) parameter ε was instead chosen through a grid
search, selecting the one that optimizes the globalQ function introduced in Eq. 2.

We compute a baseline method called NM1 in order to test if there is a ran-
dom configuration that generates a better territorial partitioning than MFAD.
NM1 fixes a priori the number of territorial partitions (k), then randomly
chooses k elements that represent the seed of clusters. The remaining munic-
ipalities are assigned sequentially, according to three criteria: the candidate mu-
nicipality is assigned to an adjacent seed; if not possible, the municipality is
assigned to an existing group that contains an adjacent municipalities; if all
fails, the municipality is assigned randomly to a seed (even if not adjacent).



(a) Louvain (b) Demon (c) Infohiermap

Methods Internal Edge Density Conductance Modularity Communities Contiguous
MFAD 0.27/0.75/0.49/0.20 0.014/0.97/0.88/0.19 -0.06 25 True
Louvain 0.15/0.32/0.21/0.07 0.014/0.58/0.38/0.27 0.16 7 True
Demon 0.12/0.50/0.28/0.18 0.37/0.90/0.50/0.17 -0.38 7 False

Infohiermap 0.09/0.50/0.18/0.10 0.90/0.98/0.95/0.24 0.006 29 False

Fig. 2: Communities identified. (a) Louvain produces very few and large com-
munities; (b) Demon communities are slightly dispersed and show a significant
overlapping (not visible from the figure); (c) Infohiermap produces several non-
contiguous areas. We report the min., max., avg. and std. deviation of the mea-
sures. MFAD communities are denser on average, and have a good value of
conductance even thought it was not explicitly among its optimization criteria.

4.2 Results

Here we show the territorial partitions obtained with network-based methods
and how they provide a good partitioning, yet not satisfying some requirements
needed to answer our research questions. We will see the territorial partitions
obtained with clustering methods and how DBSCAN proves to be the best com-
petitor for our approach. Finally, we evaluate the territorial partitions obtained
with a null model w.r.t. the final configuration of MFAD, proving that its ran-
dom process fails to find better partitioning.

Since Louvain optimises the partition modularity, its modularity score is
higher than MFAD, yet the latter provides communities with higher average
densities and higher conductance. The main drawback of Louvain is the re-
duced number of communities it produces, which comes from the tendency of
modularity-based approaches to build up few very large communities along with
small sized ones (Fig. 2a). Demon is a good method because it manages to
handle noise and overlapping communities. Yet, MFAD improves both density
and conductance (Fig. 2b). In our context, moreover, offering crisp and non-
overlapping partitions is a plus, since it simplifies the interpretation of results.
Demon’s overall very good results are therefore not very appealing for our goal.
Infohiermap creates communities that are on average less dense than MFAD.
Also, it produces a comparable conductance (MFAD=0.88, Infohiermap=0.95),
while not optimizing this measure explicitly. Finally, Infohiermap groups are



consistently non-contiguous, which is a counterintuitive result from the the ap-
plication viewpoint (Fig. 2c). Overall, MFAD produces results that outperform
CD approaches, since the latter tend to find either too few and big communities,
or non-contiguous ones.

Now we show the territorial partitions obtained with K-medoids and DB-
SCAN cluster methods. For K-medoids we selected the k value that optimizes
the silhouette coefficient, which results to be k = 6. As shows in Fig. 3a), the
algorithm produces non-contiguous areas and a fragmented spatial partitioning,
which also happens for any other value of k. DBSCAN was performed for sev-
eral values of ε in the interval [0, 1], computing the globalQ score for each result,
as reported in Fig. 3d). The best score is obtained for ε = 0.79. Fig. 3b) depicts
the corresponding territorial partitioning showing that DBSCAN basically sat-
isfies the requirements we mentioned before, producing a reasonable number of
contiguous communities and isolating/removing uninteresting (noisy) municipal-
ities. In terms of globalQ score, however, we can see that the best DBSCAN can
reach is still largely inferior to MFAD (around 35% smaller). Also in this case,
despite DBSCAN is so far the best competitors, MFAD remains, however, the
best option, since it reaches much higher values of our globalQ quality function.

(a) k −medoid (b) DBSCAN

(c) MFAD (d) performance comparison

Fig. 3: Territorial partitioning. (a) K-medoids generates a fragmented partition-
ing useless for our purpose. (b) DBSCAN provides 21 contiguous communities
with ε = 0.79 (the optimal value). Visually, the result is good and comparable to
(c) MFAD . As shown in (d), however, the optimal value of globalQ for DBSCAN
is much lower than MFAD.



Finally, the random heuristics called NM1 has been applied with all possi-
ble values of k between 10 and 30, running the method 100 times for each k.
Varying the number of areas produced by the model NM1, which assigns each
municipality randomly to one of the k groups, we obtain lower values of globalQ
w.r.t. MFAD. We can clearly see that the random approach consistently behaves
much worse than our solution, regardless of the number of groups it seeks.

5 Evaluation

In this section we evaluate the functional areas obtained by MFAD with the
aid of domain experts (co-authors of this paper) working for a public agency
on topics related to territorial policies. For this kind of problems the expert
needs a complete tessellation of the territory, therefore in Sec. 5.1 we show an
assignment criterion for municipalities not grouped by MFAD. In Sec. 5.2 we
show the internal structure of the main areas identified and, finally, we report
some domain expert’s comments in terms of how the obtained results can be
used (Sec. 5.3).

5.1 Saturation

MFAD produces clusters which do not include the totality of the municipalities.
For some applications the domain expert requires the assignment of all the mu-
nicipalities in a cluster. This may be the case, for example, if we use the partition
to redefine the perimeters of universal public services (health care, education,
transport). In this scenario, we must assign every municipality to a cluster, since
we cannot have a territory where the service is not provided. For this reason, we
applied a saturation process, that iteratively (i) selects the unassigned munici-
pality m and the area a such that they are adjacent and their merger maximizes
the globalQ function; (ii) assigns m to a; (iii) reiterates the process until all areas
have been assigned. Geographically isolated municipalities, if any, form singleton
areas.

5.2 The policentric structure of the urban areas

As requested by the domain expert we analyzed the structure of the communi-
ties identified, with particular reference to the highly populated areas. In Fig.
5a) we note that rural areas (mainly situated in the South) are defined by larger
aggregations, while the central areas are comprised of smaller ones. The North-
ern border, which is mainly mountainous, shows more fragmentation than the
population density would suggest. This could be due to a combination of two
factors: insulated communities and a border effect (since our data are trimmed
at the administrative regional border). After selecting some interesting areas for
the domain expert (Fig. 5b), we can observe the internal structure of the com-
munities with the highest population density. Fig. 5c) shows the structure of 4
communities, depicting the flow between municipalities and the in/out flows of



(a) MFAD (b) MFAD with Saturation (c) Global Improvement

Fig. 4: Figures (a) and (b) show the result provided by MFAD, before and after
the saturation process applied to include also the unclustered municipalities to
the detected areas. In (c) we show the growth of globalQ value for each reallocated
municipality.

(a) Population Density (b) Most populated areas (c) Network structure

Fig. 5: Here we evaluate the characteristics of the areas obtained by MFAD. (a)
The size and density of communities depends on the socio-economic character-
istics of the territories, observing a very low density in rural areas (mainly in
the South of Tuscany and mountainous locations) and very high one in the most
urbanized zones. (b) Among the 25 areas we select those belonging the more
urbanized part of the region. (c) observing the internal structure of the network
generated by vehicular flows, we can observe several polycentric sub-areas.

each single municipality as the size of lines and points. The densest area has
a main hub in Firenze, which is accompanied by a second, slightly smaller one
at North-West, and together they keep all the area tightly connected to them.
The area on the West is centered on Pisa, and has a different and more diffuse
structure. Indeed, there are several poles of comparable size (Pisa being slightly
larger), each capturing a part of the area, and in most cases they are only weakly
connected to other poles. The area around Empoli is quite similar to Pisa, at a
smaller scale. Finally, the small area around Monsummano is very homogeneous
and made of municipalities of approax. the same weight.

5.3 Exploitation potential

The proposed bottom-up approach defines a partition of the selected region
that can be be interpreted in different ways. The first application could be an



analytical approach: mobility patterns tell us a story about territorial integration
that goes beyond the administrative borders. If we want to analyze the socio-
economic dynamics and the determinants of local development, the algorithm
can suggest us which might be the boundaries of our analysis.

From the public administration perspective, this method of clustering terri-
tories could be helpful in the policy design phase. Since we are looking at highly
integrated areas, we might want to tailor the intervention on the characteristics
of the aggregated partition, since we expect that the outcome at the municipality
level can have a spillover effect on the surrounding territories, and, vice-versa,
that the socio-economic conditions of surrounding territories affect the potential
outcome of the single municipality. Therefore, an integrated and coordinated
policy implementation approach can maximize the desired outcome and prevent
potential drawbacks.

Moreover, as we mentioned in the introduction, public service provision can
be more cost-effective when implemented at an aggregated level. This is espe-
cially true in the case of Italian municipalities, where excessive fragmentation
of administrative units has been recognized as one of the sources of inefficient
public expenditure.

6 Conclusion

The evolution of the economy and society affects the way metropolitan areas
change over space and time. It is therefore necessary an accurate boundary de-
limitation of services in order to increase the efficiency of public administrations
without marginalizing the surrounding territories. We propose to use Big Data,
to be precise GPS data produced by vehicles, to overcome the limitations of
traditional sources in the measurement of the real boundaries of the city. The
position of our work is to contribute to provide a tool to policy makers for
building a novel definition of regions considered as mobility functional areas [3].

The results highlighted in the paper show on a real dataset that MFAD
outperforms state-of-the-art methods optimizing an objective function defined
with domain experts. We have shown that 25 communities emerge from data,
observing only the private vehicle mobility (ref. question Q1 in the introduc-
tion). The identified communities show a polycentric structure, with centers
apparently corresponding to highest population density and presence of trans-
port infrastructures that facilitate connections to/from other municipalities (ref.
Q2). Finally, the areas found have very diverse population density and size, the
tighter connections corresponding to highest populated areas (ref. Q3, and see
Fig. 5a)).

Planned developments of the work include the exploration further aspects
with domain experts, in particular how communities change by applying our
method only to the systematic vs. occasional traffic, and by including public
transportation. Also, it would be very helpful including social and productive
aspects in the global objective function. Comparison with the Local Labour Com-
munities defined by the Italian Statistical Institution (ISTAT) shows that the



border effect (i.e. influence of neighbouring municipalities outside our dataset) is
actually relevant in those areas. This suggests that further developments should
include cross-border data. Finally, we plan modify the initialization phase of our
method – now consisting in putting each municipality in a separated group –
by following the approach in [3], which might provide better initial seeds for the
computation, injected through local domain knowledge.
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