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Abstract. It has been recently shown how the computation of performa-
bility measures for Markov models can be recasted as the evaluation of a
bilinear form induced by appropriate matrix functions. In view of these
results, we show how to analyze a security model, inspired by a real
world scenario. The model describes a mobile cyber-physical system of
communicating nodes which are subject to security attacks. We take
advantage of the properties of matrix functions of block matrices, and
provide efficient evaluation methods.

Moreover, we show how this new formulation can be used to retrieve
interesting theoretical results, which can also rephrased in probabilistic
terms.
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1 Introduction

Consider an Homogeneous Continuous Time Markov Chain (CTMC) X () with
exponentially distributed transitions, and with infinitesimal generator (). As-
sume that the process has s > 0 absorbing states, and that all these states
are final, that is once the process arrives in any of those there will not be any
more transitions. Such a CTMC is commonly encountered when studying reli-
ability [17] and reliability/security models [12], and defines the context of our
work.

Up to permuting the states, the Markov chain’s generator @ can be parti-
tioned as follows:

Q:|:0 Q 4 :|7 V= Un—s4+1 | -+ | Un | - (1>
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When the Markov chain is acyclic, which happens for instance when no “repairs”
are possible in the system, the matrix Q can be permuted in upper triangular
form as well. Nevertheless, for our analysis it is not necessary to consider acyclic
Markov chains. We are concerned with the following questions:

1. What is the probability of being, at any positive time ¢, in a certain absorbing
state k, for n — s < k < n or, more generally, in a set Z of absorbing states?

2. Given the same set Z composed of absorbing states, what is the expected
time that the process spends within this set in the time interval [0, ¢]?

Answering these questions allows us to compute, when the CTMC comes from a
security and reliability model and a reward structure [17] is defined on the chain,
measures such as: the probability that the system under analysis is in a failed
state at a given time or the average time the system spent in a compromised
state.

The answer to the first question yields a so-called instantaneous measure,
whereas the second produces a cumulative measure. In view of the results in
[13], we show that these measures can be rephrased in matriz function form [8],
and that this yields an effective way of computing them exploiting the structure
in the matrix @, as well as some interesting theoretical characterizations.

In practice, we will show that the new formulation allows powerful algebraic
manipulations of the measures, thus making easy to rephrase the problem in
convenient ways. Matrix functions are becoming an increasingly popular tool to
attack stiff ODEs [1,10,11], and allow for an easy exploitation of banded and
more general structures which are often present in the infinitesimal generator
of Markov chains [3,14]. These results suggest that the reformulation of these
measures in terms of matrix functions is natural and provides the base for further
improvement to state-of-the art solvers.

Our main contributions in this paper are the following:

1. We reduce probabilities and cumulative measures of interest to the compu-
tation of bilinear forms whose matrices are indeed matrix functions of () or
Q (Theorem 1), where the latter is the restriction of @ to the non-absorbing
states.

2. In view of this new formulation, we propose an efficient numerical method
for their computation, based on the matrix function evaluation that extends

the approach presented in [13].

Having at disposal the parallelism between security /reliability measures and spe-
cial matrix functions evaluations allow us to import, we think for the first time,
from the linear algebra community a toolbox of effective and efficient numerical
methods into the dependability framework. In this framework, we impose no
restrictions on Q except of being sparse. So, for instance, the CTMC can have
cycles.

The paper is structured as follow. We start with a summary of definition and
properties of matrix functions in Section 2. In particular we discuss how the block
triangular structure of @ impact on the evaluation of f(Q). Standard definition



of reward structures and measures on CTMCs are reported. In Section 3 we
prove Theorem 1, that translate the measures of interest into the language of
matrix functions, and show how to compute them. Section 4 is dedicated to the
study of a concrete security/reliability model. Here we compare our methods
to the well known uniformization [15] method in order to collect empirical data
about performance. Finally, we drawn conclusions and discuss future work in
Section 5.

2 Preliminaries

Here, we briefly summarize the definition of a matrix function. We refer the
reader to [8] and the references therein for a more detailed discussion.

Definition 1 (Matrix function). Let A be a matriz with spectrum o(A) =
{1,y A}, and f(2) a function that is analytic on the spectrum of A. Let
J =V YAV be the Jordan form of A, with J = J1(A\j,) & ...® Ji(N\;,) being its
decomposition in elementary Jordan blocks; we define the matrix function f(A)
as

FA)=VINHVTL () =f(1) @ ... & (k)

where for an m x m Jordan block we have:
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Even though the above definition needs to take the Jordan form into consid-
eration for generality purposes, the intuitive definition of a matrix function is the
action of of z — f(z) on the eigenvalues of A. That is, when A is diagonalizable,
f(A) has the same eigenvectors of A, but the eigenvalues are f(A) in place of A.

The most well-known examples of matrix functions are probably the inverse
f(z) = 1/z, which corresponds to f(A) = A~! and the matrix exponential
f(A) = e?. As we will see, there are other functions f(z) which are of interest.

Let us fix some notation. We denote by r a fixed weight vector of n elements,
so that 7x () is a process whose value at time ¢ corresponds to entry of index
X(t) in r. The components of r are time independent. In most cases, r will be
the reward vector, containing a “prize” assigned for being a certain state. We
shall give two definitions of reward measures, to ease the discussion of their
computation later on.

Definition 2. Letr be a reward vector, and X (t) a Markov chain with infinites-
imal generator Q. Then, the number E[rx )] is called instantaneous reward
measure at time t, and is denoted by Mins(t). Similarly, the number

M(t)=E [/Ot rX(r) dT} = /Ot]E [rx(n] dr = /Ot Mt (1) dr



is called cumulative reward measure at time t.

Note that both definitions depend on the choice of the reward vector 7.
This dependency is not explicit in our notation to make it more readable —
in most of the following examples the current choice of r will be clear from
the context. Occasionally, we will make this dependency explicit by saying that
a measure is associated with a reward vector r. Intuitively, the instantaneous
reward measures the probability of being in a certain set of states (the non-
zero entries of 1), weighted according to the values of the components of r. The
cumulative version is averaged over the time interval [0, t].

The probability of being in a specific absorbing state k at a given time ¢ and
the expected time spend by X (7) within a subset of absorbing states, weighted
with r, for 7 € [0, ¢] can be derived with elementary probabilistic tools, and only
depends on Q and vg.

In fact, we can prove the following result.

Lemma 1. Let X(t) be a Markov chain with s absorbing states, and assume we
have permuted the states as in (1). Let T be a set of absorbing states, that is
ZC{k|n—s<k<n}, andr a vector such that r; # 0 implies that i € T.
Then,

PIX()eT) =3 Y [ B =3 )y o @)

keZ j=1
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0 keT j=1 0 /0
where rx ;) denotes the random variable that, at time t, has the value of the

component of the vector r with index X (t).

Proof. We note that, if we prove the result for (2) for the case Z = {k} then
the more general measures (2) and (3) follow immediately by linearity of E[].
Therefore, without loss of generality, we first consider the case P{X(t) = k},
where k is an absorbing state.

This probability can be written as the summation of the probability of the
process jumping from state j to k at any time 7 < t. The probability of jumping
from j to k at time 7 has density Qi - P{X (1) = j} dr, since Qi is the rate of
transitioning from j to k. Therefore, we can write

PX(W =k} = Y [ BX() =) Qu o

and the thesis follows by (vx); = Q;x. Consider then

n

E[TX(T)]ZZH-IP’{X(T)ZZ'}= Y e P{X(r) =k},

k=n—s+1



and the thesis follows from the linearity of the integral, in fact

t n—s t 6
/o Elrxn) dr =" Zrk/o /0 P{X(0) = j} - (vx); db,

keT j=1

where the last equality follows by the assumption that all the nonzero compo-
nents of r lie in Z. O

The formula obtained by Lemma 1 do not yield a direct computation method
especially in the cumulative measure case. In fact, the latter formula involve two
integrals and two summations, so we would like to find a simpler evaluation
procedure. As we will see in the next section, matrix functions will satisfy this
request.

3 Rephrasing measures in matrix function form

The purpose of this section is to use the formalism of matrix function to rephrase
the results of Lemma 1 in a way that is more suitable for computation. From now
on, we will use MATLAB notation of matrix indexes, i.e., A(3 : 7,2 : 5) refers to
the submatrix of A that consists of elements A;; with 3 <¢ <7 and 2 < j <5.
Moreover, we will often use the notation m(¢) to denote the probability of being
in a certain state at time ¢, and my the one encoding the probability of being in
a certain state at time 0. With these hypothesis, 7(t) can be characterized by
the ODE (known as Chapman—Kolmogorov equation)

{#T(t) = Qr(t)T

w(0) = 7o ’ )

T

whose solution is 7(t)T = 7f'e!@. Our task will be to prove the following result.

Theorem 1. Let X(t) be a Markov chain with n states and infinitesimal gen-
erator @, and with s absorbing states, indexed as n — s < k < n. Let my be the
vector containing the initial state of the chain at t = 0, and assume that Q is
partitioned as in (1). Let g be the vector containing the first n — s entries of
o, and assume that all the others are zero. Then, if r is a a reward vector with
non-zero components on the absorbing states, we have

Elrxm] =t- frggol(tQ)v, p1(z) = ¢ - 1, v=Q(1:n—s,)r,

E [/t TX(7) dT:| =t 7l pa(tQ)v, @a(z) = M, v=Q(l:n—s,:)r
0 z

The definition of f(Q) for f(z) being either ¢1(z) or pa(z) is given in Def-
inition 1. At this stage, however, it is not yet clear how to efficiently compute
these matrix functions. In fact, the action of a matrix function on a vector can
be efficiently approximated with O(n) flops, where n is the size of the matrix



Q, by relying on Krylov methods, such as [7]. We refer the reader also to [13],
where this strategy is applied precisely to Markov chains for the computation of
performance and reliability measures.

We shall prove a property of matrix function of block upper triangular ma-
trices that will be useful for our analysis. The result is a simple generalization
of [8, Theorem 1.21], and the proof follows the same lines.

Lemma 2. Let A be a 2 X2 block upper triangular matriz partitioned as follows:

A= |:A11 i12:| , All c (lexml’ A22 c szX’ITLQ,
22

and assume that Asg = diag(dy,...,dm,). Then, f(A) has the same block struc-
ture, and can be expressed as

| f(An) Y _
f(A)—[ f(Azz)]’ Y = |gi(Ai)vr| .. | gm, (A1))om, |,

where vj = Aige; and g;(2) = (f(2) — f(d;))/(z — dj).

Proof. We consider the case where the entry d; are not eigenvalues of A;;. If
that’s not the case, one can still obtain the result by continuity, for instance
approximating A with A + ¢;I with appropriately chosen €¢; — 0.

Since f(A) commutes with A, we have Af(A) = f(A)A, and reading off this
equation on the (1,2) block yields f(A11)A12 + YD = A Y + Ao f(D). Right
multiplying by e; yields (A11 —d;I)Ye; = (f(A11) — f(d;)I)v;. Since A1y —d;I
is nonsingular, this implies that

Yej = (A —di )7 (f(An) = f(dj))v; = g;(Ain)vy,
and this concludes the proof. a

Since the vector 7(t), encoding the probability of being in each state at time

t, solves the Chapman-Kolmogorov equation 47 ()7 = n(¢)7Q, with initial

condition 7(0) = g, we have that 7(¢)T = 7l % particular, we can express
the quantities of interest for us as

t t
E[’I"X(t)] = WgetQ’r‘ and E {/ TX(r) dr] = (/ WgeTQ dT) oy
0 0

The measure on the left is already in matrix function form. Concerning the one
of the right, we rely on [13, Lemma 2.10], which can be stated as follows.

Lemma 3. Let M be a cumulative reward measure, defined as

t
M:E|:/ Tx(T) dT:|
0



Then, M(t) = 7l f(Q)r, where o is the initial probability distribution, r the
reward vector, and

f(z) == tp1(tz) = {ez z2#0

t 2=0"
Now, we have all the ingredients to prove Theorem 1.

Proof (Theorem 1). Let us first consider the measure P{X (¢t) = j}, with j being
an absorbing state. We know that this is equal to ml’ e'?ey,, in view of the previous
remarks. Since @ is block upper triangular, we can apply Lemma 2 to obtain

e'Qej, = exp (FQ tI(;V}) ex =t - p1(tQ)v, vi=Q(l:n—s,:)eg,

where ¢1(z) = (e* — 1)/z. This proves the first part of the claim. Concerning
the second part, we can repeat the same steps replacing e'* with tp;tz, in view
of Lemma 3. In particular, this yields

t t
M=E[ [ rxe dr] = [ Elrxeo] dr =t 7 1Q)r = -7 a0
0 0

where v = Q(1 : n — s,:) - r, thanks to a direct application of Lemma 2. a

3.1 A motivation for the use of the ¢; functions

For anyone that has experience with exponential integrators (see for instance [2,
10]) the appearance of the ¢;(z) functions in the previous result will not come
as a surprise. In fact, they appear in the explicit solution of the ODE

o' (t) = Au(t) + g(t, u(t)), t>0, u(0) = ug. (6)

If we set ug = %g(t, u(t))‘ , the solution can be written as
=0

oo

u(t) = etug + Z or(tA)truy,
k=1

where the ¢;(z) functions are defined by recurrence as follows:

1

pi(2) — 51
prr(2) = ———,  wlz) =€
In particular, the ¢1(z) and the ¢2(2) are the ones we have considered in the
previous section. Now, let us consider once more Lemma 1, and in particular the

formulation

POX(0) = 1 = 3 Q- [ PEX() =) o



Notice that if we define as s(t) = fot #(7) dr we have that, by substituting in
the Chapman—Kolmogorov differential equation (5), we obtain

ST =s)"Q+7g,  s(0)=0,
which is in the form of (6). Therefore, we can express the measure of interest as

s(t)” = 5(0)7e'? +17(0) o1 (tQ) = t - #(0) 01 (tQ).

We may then retrieve the same results given in Theorem 1 noting that the
summation is in fact equivalent to the multiplication by the vector v. A similar
statement can be given for the accumulated measure. In fact, this reasoning also
provides an alternative proof to the one given in the previous section.

The construction of exponential integrators, which are a class of methods
particularly effective for stiff ODEs, has been the main motivation behind the
development of fast methods for the evaluations of ¢;(A)b in recent years.

3.2 Computational remarks

In order to efficiently compute the matrix functions ¢;(z) and ps(z) on the
matrix Q, we rely on the tools developed in [13], which in turn heavily rely on
the restarted Krylov methods for the evaluation of f(A)b developed in [7]. The
use of Krylov method for the evaluation of the action of matrix functions on
a vector is in fact much older, and we refer the reader to [1,2,6,9,16] and the
references therein for a list of similar approaches.

The choice of the method is motivated by the fact that it directly approxi-
mates the action of the matrix exponential, without integrating the Chapman—
Kolmogorov differential equation. In particular, as shown in [13], this approach
is much more resilient to stiffness in the problem with respect to the uniformiza-
tion method used, for instance, in M6bius [5]. This will be apparent also in our
numerical experiments, which we describe in Section 4.

The method presented in [7] allows to evaluate any matrix function that
has an integral representation. Among these, we find entire functions (that is,
holomorphic functions defined on C), for which we have the Cauchy integral

formula ) 1)
P

dz, zo C Int(I),

where by Int(I") we denote the domain enclosed by a closed path I'. All the
functions we are interested in (namely, the ¢; functions) satisfy this constraint,
and it is sufficient to choose the path I" so that it encloses the spectrum of the
matrix Q However, in [7] the authors present a particularly efficient choice of
the parameters in the method that works particularly well for the approximation
of f(z) = €*. In order to exploit this work, we use [2, Theorem 2.1] that allows
to rewrite ¢;(A)b as eb where A is obtained by bordering A with j columns
and rows. In the sake of conciseness, we shall not discuss the algorithmic details
further, and we refer to [13] and to [7] for further details.



In the case of the instantaneous measure P{X (t) = k} = 7l e'Qey, it might
seem odd to consider the formulation of the problem given in terms of a matrix
exponential, transforming it into the evaluation of a ¢;(z) matrix function in
view of Theorem 1, and then actually computing it by going back to a matrix
exponential. However, we stress that these are all different matrices. In fact,
the original matrix ) has s absorbing states, whereas bordering Q only gives 1
absorbing state, and so the latter still has s—1 less columns and rows with respect
to (. We can give a precise characterization of the probabilistic interpretation
of this procedure in the special case when the reward vector r is exactly equal
to 1 on all the absorbing states.

Lemma 4. Let Q, Q be the matrices as defined in (1), r a reward vector equal
to 1 on the absorbing states . Consider the bordered matrix @ given by

Q::L)%S]» v=Qr.

Then, 7r0Tethn_5+1 = tp1(tQ)r = P{X(t) € I}, and Q is the infinitesimal
generator of the Markov chain obtained by lumping together all the absorbing
states.

Proof. We notice that the states in Z, being all absorbing and final, have all 0
outgoing transition rates, and in fact correspond to null rows in the matrix Q.
Moreover, the lumping process is obtained by considering a modified process
X (t) that coincides with X (t) on the first n — s states, and has an additional
state n — s + 1 such that the rate of transitioning from a state ¢ < n — s to
n — s+ 1 is the same of the sum of all the rate of going from ¢ to any state in Z
for X(t). A direct verification reveals that these rates are exactly the entries of
v, and therefore @ is the infinitesimal generator of X (t). O

If the reward vector r does not include all the absorbing states (or has more
general weights), then the matrix Q will not fall in the previous characterization.
In fact, in general Q will not even be stochastic, so it cannot be “transparently”
associated with a Markov chain.

4 Reliability model for communication system attacks

We consider the mobile cyber-physical system model presented in [12], describing
a collection of communicating nodes which are subject to attacks. The original
study is based on a real-world architecture: there are N mobile nodes, each
node using sensors for localization and measuring anomaly phenomena, and the
system comprises an imperfect intrusion/detection functionality distributed to
all nodes for dealing with both intrusion and fault tolerance. This mechanism
is based on a voting system. Here a simplified version is discussed, we refer the
reader to [12] for further details on the intrusion/detection functionality and the
complete system description.



The model considers a node capture which involves taking control of a good
node by deceiving the authentication and turning it into a bad node that will be
able to generate attacks within the system. The attackers primary objective is to
cause impairment failure by performing persistent, random, or insidious attacks.
At each instant of time, the number of good and bad nodes are indicated as
N¢g and Np, respectively, and Ng is the number of evicted nodes, i.e., nodes
that have been detected as bad ones by the intrusion/detection mechanism. At
the beginning, all nodes are considered good, i.e., Ng¢ = N. Only bad nodes
can perform internal attacks, and whenever one of this attacks have success the
entire system fails, switching the value of Np from 0, ok, to 1, failed.

TGB TBF
Ng Np _ 4 Nr
® Il o [ Ne=0 O

e L N U ~s—o0
NgAe NBpaAy
Tpp 1 ]VB%
Ter
0w
Prp

Fig. 1. Attack model for the cyber-physical communication system described in Sec-
tion 4. This model is a simplified version of the model presented in [12]. Places are
represented as circles, transitions are represented as rectangles. Place and transition
names are in black, transition rates are in red and actions performed whenever transi-
tion Ter completes are in blue.

The model is expressed through the definition of the Stochastic Reward
Net [17] depicted in Figure 4, where places (circles) correspond to Ng, Ng, N, Ng,
and determine the state of the system, and transitions (rectangles) define the
behavior of the attack model:

Tep is a transition of a node from good to bad, which represents the capture
of a node by an attacker. The capture of a single node take place with rate
¢, thus, being the capture of a node independent from the capture of other
nodes, the rate of transition Tgg is NgAe.

Tpr is a transition of a node from bad to evicted, that represents the correct
detection of an attack. Calling Py, the probability of intrusion/detection false
negative, and Tipg the period at Whi%h the intrusion/detection mechanism

1—Ppy

is exercised, the rate of Tgg is NBH'



Teg is a transition of a node from good to evicted, that represent a false pos-
itive of the intrusion/detection mechanism. Calling Py, the probability of

intrusion/detection false positive, the rate of Tgg is Ng :,{ID g’s.

Tpr is a transition of a the entire system from ok to failed. When a node is
captured it will perform attacks with a probability p, and the success of
attacks from Np compromised nodes has rate Ay, thus the rate of Tpp is
NppaAs. At completion of transition Tpr the entire system fails and then
both Ng and Np are set to 0 so that the Stochastic Reward Net reach a
(failed) absorbing state.

The graph whose vertexes are all the feasible combinations of values within places
and arcs correspond to transitions forms the Markov chain under analysis. For
instance, with N = 3 The Stochastic Reward Net of Figure 4 produces the
Markov chain depicted in Figure 4, where the notation (ng,np,ng,np) means
Ng = ng,Ng = ng, Ng = ng and Ngp = ng. The parameters are chosen as

Fig. 2. Markov chain corresponding to Figure 4 with N = 3. Absorbing states are:
failure without evicted nodes (red), failure with evicted (gray) and state with all evicted
and without failure (blue).

follows

Pa = 07, an = pr = 0.1, TIDS = 15.0, )\C = 0.1, )\f =0.2.



Fixed a time instant ¢ > 0, the instantaneous measure of interest is the proba-
bility of system failure without evicted nodes at time ¢

Pfailed—no—evicted(t) = ]P){X(t) = (07 07 07 1)}

An interesting cumulative measures is the averaged total time spent within states
of system failure with some evicted nodes

1 t
Fyome-evicted (t) = ;/0 E [rx(] dr, r= ]1{(070’,%1) for some k s.4. 1<h<N—1}

Notice that lim;eo Fsome-cvicted 1S the probability that the process X (¢) ends
up in an absorbing state where the system is failed and there are some evicted
nodes [4], as can be seen in Figure 5.

We note that this can be proven also in the matrix function framework.
In fact, in view of Lemma 3 the measure Fiome evicted(t) can be written as
Fyome-evicted (t) = & 01 (tQ)r. Since, for any z with negative real part we have
lim; o0 01 (t2) = lim;_, o0 %%, and the spectrum of Q is contained in the left half
plane, we immediately obtain

tlgglo Fiome-evicted (t) = tlgglo w(:)rgol(t@)r = tlggo ﬂgeth = tlgglo P{X(t) € T},
where 7 is the set where r = 1, corresponding to the states with some evicted
nodes. Moreover, the fact that e’ — 1 (tz) goes to zero linearly as t — oo implies
that the convergence above also behaves linearly. In fact, one can spot that the
asymptotic convergence goes as % in Figure 5.

We consider three examples to test the computational efficiency of the pro-
posed approach. First, we use our algorithm to evaluate the instantaneous mea-
sure Prjled-no-evicted (f) at the time ¢ = 30. This is done using Theorem 1 that
yields a formulation with the ¢;(z) function. Then, we consider the average cu-
mulative measure Fyome-evicted (t), and we repeat our test computing its value for
t = 30. For this case, we also report the values of the measure for ¢t € [0,100]
using a fixed value of N to show that it converges to a fixed value, namely the
probability of being in a gray state.

The results for the first experiments are reported in Figure 3, where the
timings required to solve the problem with our approach (denoted by MR) and
Mbobius [5] are reported. The same is done for the second example in Figure 4.
In both cases, we note that the complexity has a linear behavior as the number
of states in the Markov chain increases. In contrast, the uniformization method
suffers from the increasing stiffness of the problem, and therefore the timings
required by M6bius are quadratic with respect to the number of states. This is a
known limitation of the uniformization method, that is best suited to problems
with balanced rates. The fact that the stiffness increases with n is due to the
dependence of the rates by the marking, as visible in Figure 4.

Finally, we check that the averaged cumulative measure Fyome-evicted (t) tends
to a limit values of ¢ goes to infinity for the smaller case, which corresponds to
N = 50 and has n = 1376 states, by sampling the measure for various values
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Fig. 3. On the left, the timings required to compute the measure Prailed-no-evicted (t)
at ¢ = 30 using the approach in [13], denoted by MR, and the solver included in
Moébius, which is based on the uniformization method. On the right, the timings and
the computed measure for the same problem are reported in the table.

102 34.; ‘1\2[]‘5{‘“[13] T i n tMR (S) thbius(S) Fsome-evicted

F —m— Mobius 1,376 4.71-10722.35-1072 0.49
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Fig. 4. On the left, the timings required to compute the averaged cumulative measure
Fiome-evicted (t) at ¢ = 30 using the approach in [13], denoted by MR, and the solver
included in Mobius, which is based on the uniformization method. On the right, the
timings and the computed measure for the same problem are reported in the table.
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Fig.5. The plot shows the value of Fiome-evicted(t) for different values of t ranging
between 0 and 100. This case is the one with N = 50, and corresponds to a Markov
chain of 1376 states.

of ¢ between 0 and 100. The results are reported in Figure 5. By running our

algorithm up to t = 107 we have extrapolated the limit for this case to be

approximately 0.528483, which is also reported in the figure for comparison.
The results can be replicated using our public available MATLAB code 3.

5 Conclusions and future work

We have presented a way of analyzing a Markov model by heavily relying on
matrix functions. We have confirmed the results reported in [13], which claim a
computational advantage in treating the problem of computing these measures
in matrix function form, in particular with respect to dealing with the stiffness
in the model. We have tested our tools on a relevant example, but in fact we
believe that they have far more general applicability. In particular, we suggest
that the use matrix functions, which to the best of our knowledge is not part of
the standard tools for the analysis of reliability and security models, enables the
design of better algorithms, as well the achievement of new theoretical findings.

For the model under consideration, we have performed a quantitative analysis
of attacks impact on reliability. The system logical architecture came from a real-
world study but the parameters selected here are not taken from real measures.

The link with exponential integrators, which are sophisticated quadrature
methods resilient to stiffness has been mentioned, and the tools needed to work
with the measures using matrix functions directly have been presented. In par-
ticular, we have shown how measures originally formulated using the matrix
exponential can be rephrased in terms of matrix functions with higher-order
©;(z) functions. The result given in Theorem 1 has been proven using matrix
function theory, and a probabilistic interpretation as well. We have also provided

3 https://github.com/numpi/markov-measures



the steps necessary to retrieve this result by direct integration of the underlying
ODE defining the measure.

The numerical experiments confirm the effectiveness of Krylov methods for
this task, presented in [13] for the computation of Markov measures, and in
particular their resilience to stiffness in the ODE.
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