When the testing gets tough, the tough get ElasTest

Antonia Bertolino Antonello Calabro Guglielmo De Angelis
CNR-ISTI CNR-ISTI CNR-IASI, and CNR-ISTI
Pisa, Italy Pisa, Italy Rome, Italy

antonia.bertolino@isti.cnr.it

Micael Gallego
Universidad Rey Juan Carlos
Madrid, Spain
micael.gallego@urjc.es

ABSTRACT

We present ElasTest, an open-source generic and extensible plat-
form supporting end-to-end testing of large complex cloud sys-
tems, including web, mobile, network and WebRTC applications.
ElasTest is developed following a fully transparent and open ag-
ile process around which a community of developers, contribu-
tors and users is collected. We demonstrate ElasTest in action by
testing the FullTeaching application: the video is available from
http://elastest.io/videos/icse2018-demo .

CCS CONCEPTS

« Software and its engineering — Software testing and debug-
ging; Software notations and tools; « Computer systems organi-
zation — Cloud computing;

KEYWORDS

Cloud testing, End-to-end testing, Open-source test platform, TaaS,
Test automation

ACM Reference Format:

Antonia Bertolino, Antonello Calabr6, Guglielmo De Angelis, Micael Gal-
lego, Boni Garcia, and Francisco Gortazar. 2018. When the testing gets
tough, the tough get ElasTest. In Proceedings of 40th International Conference
on Software Engineering: Demonstrations (part of ICSE’18), Tien Nguyen
and Anne Koziolek (Eds.). ACM, New York, NY, USA, Article ICSE-Demo-65,
4 pages. https://doi.org/XXX.XXX

1 INTRODUCTION

We assist today to two trends whose convergence motivates the
urgent need of new more powerful approaches and tools for soft-
ware testing. On the one side, software-intensive systems become
increasingly pervasive, interconnected and interactive, so that in
all business and social activities we are now strongly dependent
on their proper functioning. Hence we need effective means to
assess that such systems expose adequate levels of dependability
and security. On the other side the context in which such systems

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

part of ICSE’18, 27 May-3 June 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s).

ACM ISBN XXX XXX...$XX XX

https://doi.org/XXX XXX

antonello.calabro@isti.cnr.it

Boni Garcia
Universidad Rey Juan Carlos
Madrid, Spain
boni.garcia@urjc.es

guglielmo.deangelis@iasi.cnr.it

Francisco Gortazar
Universidad Rey Juan Carlos
Madrid, Spain
francisco.gortazar@urjc.es

are immersed and executed may vary widely and dynamically, re-
quiring novel and additional types of testing on top of the standard
functional or structural testing techniques: the front end of mobile
and web applications need to be tested over many versions of dif-
ferent systems, server-end sides might be running in the cloud and
need to be tested for multi-tenancy, elasticity and performance; the
application could embed IOT (Internet Of Things) facilities and need
to be tested for proper accounting of environment interactions.

In brief, testing modern software systems is increasingly chal-
lenging and costly, and more than ever the research needs to de-
velop appropriate tools to help test automation. In particular the
end-to-end testing of large complex applications remains a manual
and huge effort-intensive activity. In our experience, while many
powerful commercial and academic tools have been proposed to
address this or that specific testing task, which we call “testing-in-
the-small” (TiS), the tester remains largely responsible of properly
combining and orchestrating the composition and configuration of
the System under Test (SUT) to address global system properties,
which we call “testing-in-the-large” (TiL).

The reasons why many IT companies are migrating their appli-
cations to the cloud are widely acknowledged in the literature (see,
e.g., [9]) and include infrastructure cost reduction with no up-front
investments, high scalability and elasticity, fast and easy access to
infrastructure. For the same reasons several authors (see, e.g., [7])
have suggested that testing resources themselves could be hosted
in the cloud and leveraged according to arising needs.

A recent study [6] investigated the adoption and use of cloud-
based testing in practice by conducting a survey over 20 organiza-
tions. The findings confirmed that there is growing interest into
the opportunities offered by cloud testing tools. However, the au-
thors also conclude that [6] “many testing-related problems remain
unsolved. For example, cloud-based testing widens both manual and
automated testing offerings, but it does not offer a generic test au-
tomation environment that covers testing needs.

We present here ElasTest, a test platform that goes exactly to-
wards the above direction: it is a generic environment for automat-
ing the testing process of modern cloud applications and also pro-
vides facilities to leverage specific test services as device emulators,
browsers, security tools, and monitoring services.

ElasTest is developed with an H2020 European Project (http:
//elastest.eu/). While a preliminary overview of the project ob-
jectives has been given in [4], the project is still ongoing and
this demonstration has two aims: we show here for the first time

http://elastest.io/videos/icse2018-demo
https://doi.org/XXX.XXX
https://doi.org/XXX.XXX
http://elastest.eu/
http://elastest.eu/

part of ICSE’18, 27 May-3 June 2018, Gothenburg, Sweden A. Bertolino, A. Calabré, G. De Angelis, M. Gallego, B.Garcia, and F. Gortazar

a complete release of ElasTest in action while testing a multi-
media e-learning application, and we invite software engineering
researchers and practitioners to join the ElasTest community of
users and developers to contribute to its next releases.

2 HOW DOES ELASTEST ADVANCE THE
STATE-OF-ART?

Due to lack of space we cannot include here an extensive review of
the literature on cloud testing, and refer to some existing surveys
to explain what is the novelty of ElasTest. In particular, in their
overview of cloud testing literature between 2009 and 2012, Incki
et al. [5] categorize existing tools along four dimensions according
to: test level (namely: Unit, Integration, System and Acceptance)
and test type (i.e., functional, performance, security, interoperabil-
ity), the offered contribution (whether a solution for test execution
automation, or test case generation, or a general framework, or an
evaluation) and the delivery model (service, platform or infrastruc-
ture). They also orthogonally map the body of work onto different
problem domains (e.g., Mobile, Cloud, Desktop, Real-time, among
others), obtaining a matrix from which existing gaps can be visual-
ized. In particular the study evidences quite few work at integration
level and addressing interoperability testing. Thus one first novelty
of the ElasTest solution is the focus on end-to-end testing of large
complex cloud applications, which can include web applications,
mobile, WebRTC !, and so on. Such focus poses many challenges,
as end-to-end tests aim at exposing functional and non-functional
behaviours at system level to ensure compatibility among:

e all interacting components, and
e all involved infrastructures and tools (possibly including
different variants and versions)

With respect to contribution dimension, the core of ElasTest
is a solution for test automation all along the test process cycle,
including SUT deployment, test execution, SUT monitoring during
test run, and test results reporting to testers. Moreover, the intent is
to make ElasTest flexible and extensible to also include more tools
to cover other testing tasks, e.g. test generation, or test reliability
assessment.

Another survey by Bai et al. [1] classifies cloud testing tools
according to the main goal they address. Specifically, they distin-
guish four main tool classes: simulation, service mocking, test job
parallelization and environment virtualization. As their survey ev-
idences, there exist several tools that address one or another of
the above goals, and the list of available tools has grown further
after that survey. A second novelty of ElasTest is the ambition of
developing one solution that can cover all-in-one those four testing
goals: service mocking (including database usage, IoT devices, and
also user impersonation) and environment virtualization are al-
ready available. Simulation (concerning, e.g., network failures and
stress load for scalability testing) and test job parallelization are
under way at the time of writing. In addition, it is also planned that
ElasTest provides support for test orchestration, i.e., for properly
combining smaller tests addressing specific components or proper-
ties into end-to-end test sequences, and for test recommendations,

Uhttps://webrtc.org/

i.e., for advising the testers on what could be the next test cases
based on machine learning technology.

Several authors have proposed Testing as a Service (TaaS) so-
lutions in which, essentially, “traditional” testing approaches and
tools are migrated to the cloud. A couple of examples, among others,
include: Ciortea et al. [3] developed an on-demand software test-
ing service that performs symbolic execution leveraging the cloud
to allow for massive parallelization over machine clusters. Tsai
et al. [8] propose a framework for combinatorial testing provided
as a service on the cloud that enhances scalability by exploiting
composition and multitenancy. The main purpose of such TaaS
solutions is to reduce the costs and effort from testers in setting and
maintaining the needed test infrastructure. One further novelty is
the very motivation behind ElasTest: improving the software testing
process as a whole, rather than improving the cost-effectiveness of one
specific testing approach.

In conclusion, ElasTest is a comprehensive framework for de-
ploying and testing a cloud system that offers some own core test
services and provides the capability to leverage cloud resources for
facilitating functional and non functional testing.

While such aim may seem ambitious, we can rely on a large
consortium of partners that are collaborating in developing the
basic solution. In addition, as described in Section 5, we are strongly
motivated to establish a wide community of users and developers
for further enlarging ElasTest components and capabilities.

The project follows an agile process and at time of writing a
beta release is available. The platform is being validated on four
industrial demonstrators through comparative case studies and
quasi-experiments [2].

3 ELASTEST ARCHITECTURE

The ElasTest platform is conceived as a distributed architecture over
the cloud that exposes its functionalities through REST APIs (both
HTTP, and WebSocket) accessible by developers and testers (e.g.
by means of web or command-line interfaces), or by Continuous-
Integration frameworks (e.g. by means of dedicated plugins). The
design solution that led to the definition of the architecture com-
bined principles for: composing testing units (i.e. TJobs?) in order
to cover more comprehensive testing objectives; experimenting
the SUT in operational conditions close to the actual real-world
context; customizing the SUT so to gather relevant information
during testing; supporting the recommendation of testing actions
enabling interactive decision-taking during the testing phase.

The overall architecture (see Figure 1) distinguishes between a
set of core services (i.e., the ElasTest core-platform), and a set of
other pluggable services (i.e., test support services) which are either
optional, or provide some domain-specific/legacy feature. Among
the others, the ElasTest core-platform includes the ElasTest Platform
Manager (EPM) that abstracts to the ElasTest services the under-
lying cloud infrastructure where they are actually deployed. In
other words, the EPM is the interface that makes the core-platform
fully technologically agnostic and enables ElasTest to be deployed
and executed seamlessly in several target cloud infrastructures (e.g.
Docker, OpenStack, Kubernetes, AWS, etc.).

2TJobs are technologically neutral: the ElasTest platform supports TJobs expressed in
any language and using any testing framework.

https://webrtc.org/

When the testing gets tough, the tough get ElasTest

- - @ i Test Support Services

w w Impersonation 3

U : Service loT |

Tester Developer : G Device |

cl Emulator;

i| Costs |[Monitoring| | External [i:

i|Service|| Service Testing

i[Tlob |[Security Liam)
|| Executor || Service

Web ||Cmd Line|
Interface||Interface|| Plugin

; ¢HWP ; ¢HWP ; ¢HWP
&7 ElasTest
[EDM]

core-platform

firstiumentation Agents

Figure 1: Architecture of the ElasTest Platform

The ElasTest Data Manager (EDM) is responsible for installing,
managing, and uninstalling the different persistent services avail-
able for the rest of the architecture. Specifically the EDM includes
features supporting both SQL and NoSQL DBMS, as well as several
kinds of elastic distributed file systems; in addition it provides fea-
tures for query parsing, search indexing, and trend visualization.
The EDM gathers various kinds of data collected by the platform:
metrics; events at platform level; logs from TJobs executions; files
issued by other services, TJobs, or the SUT; and platform manage-
ment data and metadata.

The ElasTest Service Manager (ESM) is responsible for creating
instances of supporting services that can be requested by the SUT,
or by the platform. Among others, such test support services may
concern the proper execution of sets of TJobs, monitoring activities,
accounting, or impersonation of actors external to the SUT. In addi-
tion, the ESM is also responsible for the engagement of test support
services specifically conceived to reuse testing harnesses external
to the ElasTest services suite. In the reference implementation the
ESM manages the life-cycle of service instances by relying on the
Open Service Broker API (OSBA) technology 3 .

Both EDM and ESM integrate existing applications leveraging on
the containers technology offered by Docker solutions. For example,
the ElasTest platform relies on Docker Compose in order to package,
and to manage the life-cycle of the supporting services.

Last but not least, the ElasTest Orchestration and Recommenda-
tion Manager (TORM) is the entry point to all the functionalities
offered by the ElasTest platform. It is responsible for guiding the
selection and the execution of the TJobs during a testing session,
and orchestrating all the above mentioned support services.

In broad terms, the ElasTest architecture does not impose any
specific constraint on the SUT: the platform has been conceived
in order to target any kind of SUT exporting the only interfaces
needed for the execution of the tests. In this sense, the SUT is a
system external to ElasTest deployed on some premises. Neverthe-
less, the TORM also foresees the possibility to directly handle the
deployment of a SUT instance over the cloud facilitating effective
test deployment and execution. Like in the case of the supporting
services, currently the deployment of a SUT leverage on the Docker
technology.

3see http://www.openservicebrokerapi.org

part of ICSE’18, 27 May-3 June 2018, Gothenburg, Sweden

In the case of an external deployment, typically the SUT has to
be injected with specific bundles referred to as the Instrumentation
Agents; if not the ElasTest platform can only observe/act on the
supporting services the SUT is interacting with. However, when
the SUT is directly deployed by the TORM, a pre-defined set of
Instrumentation Agents are automatically available for the testers.
In this case the SUT can be internally monitored, and even con-
trolled from the ElasTest platform unveiling the full potentials of
the proposed solution.

Instrumentation Agents enable the ElasTest platform to observe
relevant information for testing purposes that are grubbed from
within the SUT (e.g. current local configuration, internal status,
resources utilization, etc.) during a testing session. In addition, they
can also bring controllability for the local environment hosting
the SUT. In this sense, the agents can force custom operational
conditions, for example by modifying the network parameters, the
CPU utilizations, the memories consumptions, or even shutting-
down some hosts. From a technological perspective, the reference
implementation of the Instrumentation Agents relies on the Elastic
Beats * data shippers.

A detailed description of all the services in the ElasTest ecosys-
tem is available from: https://github.com/elastest/.

4 HOW CAN TESTERS USE ELASTEST?

This section describes some main use cases that testers can benefit
from by working with the ElasTest platform. The context of the
presentation is given by the testing of the FullTeaching application °.
FullTeaching is an open-source educational web-based platform
supporting teachers in structuring courses, classes and contents;
also it provides means (e.g. calendars, dashboards, forums, etc.) for
engaging and interacting with students.

From the testing perspective, FullTeaching is a complex software
application involving several components; among the others the
core of the web application (i.e. the FullTeaching App Server), the
OpenVidu Server ¢, the Kurento Media Server 7, and the MySQL
DBMS. Each component can be deployed in a distributed manner,
and configured according to various independent settings: different
versions of each component can be selected and combined, possibly
with different results to be validated. In this setting, the adoption of
several datasets (e.g., the data retrieved from the persistence layer of
FullTeaching by querying a specific MySQL instance) can contribute
to spot possible unexpected behaviours that are data-dependent. In
addition, as FullTeaching includes features enabling real-time video
conferencing, testers should be able to systematically master the
conditions of the underlying infrastructure hosting the application
but external to the specific SUT instance (e.g., assumed level of
latency or packet loss ratio in the network, configuration of fire-
walls, number of concurrent clients), as they can hardly impact on
functional and non-functional aspects.

Testing a structured application such as FullTeaching challenges
testers to validate the behaviour exposed by the SUT when interact-
ing with different 3rd party clients (e.g., web browsers) or services
(e.g., calendars). Hence a test plan should identify the sets of 3rd

4see https://www.elastic.co/products/beats
Ssee https://github.com/elastest/full- teaching
®see http://openvidu.io/

7see http://www.kurento.org/

http://www.openservicebrokerapi.org
https://github.com/elastest/
https://www.elastic.co/products/beats
https://github.com/elastest/full-teaching
http://openvidu.io/
http://www.kurento.org/

part of ICSE’18, 27 May-3 June 2018, Gothenburg, Sweden A. Bertolino, A. Calabré, G. De Angelis, M. Gallego, B.Garcia, and F. Gortazar

party software to be targeted. The ElasTest platform facilitates such
task by providing: an abstraction that supports the specification
of a variety of 3rd party software to be bound during the tests;
and a seamless orchestration of testing instances for such external
software aiming at reproducing some actual execution context for
the SUT (e.g. users impersonation through web browsers).

Also, testers adopting the ElasTest platform can monitor and
analyse the results from TiL sessions. The ElasTest platform ob-
serves and logs events emitted during the executions; it collects
elastic log data from many distributed sources enabling the aggrega-
tion of large volumes of events. The analysis and the visualization
of these data aim to support testers to ultimately detect whether
the observed sequence, or some complex sequence of interest con-
tains any fault. The inspection approach advocated by the ElasTest
platform is agnostic to both the architecture, and the technology
of the SUT. Specifically it exploits canonical techniques for TiS in
order to dynamically build (i.e. create and instantiate) monitors
producing simple or aggregated event sequences to be inspected.
The dynamic orchestration of monitors enables to narrow or widen
the focus of the analysis according to the current needs/goals.

The rest of the section details the demonstration of the use cases
described above within the context of the FullTeaching application.

4.1 Configuration and Deployment

The ElasTest platform may expolit some set-up over the SUT (see
Section 3). For this demo, the FullTeaching application has been
split in four parts (namely FullTeaching App Server, OpenVidu
Server, Kurento Media Server, and MySQL); each part has been
virtualised in independent Docker containers. The demo shows the
configuration for the multi-containers instantiation of FullTeaching
by means of Docker-Compose technology. The setup includes the
specification of a configuration parameter enabling the selection of
the versions for the different parts in the SUT.

In this setting, the demo shows how the ElasTest platform will
be able to deploy the FullTeaching application under different envi-
ronments/configurations. As a result the testers can exercise the
SUT in several configurations, and are thus enabled to retrieve and
compare execution traces from different setups (see Section 4.3).

4.2 Impersonation

The demo presents how the ElasTest platform starts several browser
instances that are testing the video-conferencing feature of Full-
Teaching. Specifically, the tests will cover one-to-one video and
audio real-time streaming using the Chrome web browser.

After the deployment of the SUT according to a desired configu-
ration (see Section 4.1), and while the ElasTest platform waits that
the FullTeaching App server is available on the port 8080, the demo
shows the structure and the configurations for an impersonation
test to be run. In this specific case, the tests are codified in JUnit
and their implementations refer to the Selenium technology.

Back to the ElasTest platform, the demo presents how the TJob
Executor loads and runs the specific test instances (i.e., TJob-i);
samples of the interactions between the SUT and the impersonated
users are shown during the tests executions. When the TJob Execu-
tor has run all the prescribed TJobs, the ESM stops the test support
services involved in the scenario.

4.3 Test Results and Analytics

Both during and after the execution of one or more TJobs, the testers
consult the ElasTest management dashboard in order to access the
logs from the tests executions and the metrics values revealed by the
Instrumentation Agents activated over all the several components
of the SUT. Specifically, the demo focuses on test cases codified with
JUnit, thus the output of the Maven executions have been stored
in the platform and are shown by the demo. Also the ElasTest
platform handles the log events proper of the whole FullTeaching
application, thus testers can query and analyse the information they
contain. About metrics (e.g., cpu_totalUsage, mem_maxUsage, or
net_txErrors, etc.), the trends of measured values over the whole
execution of the TJobs are stashed away and shown. Finally, as the
demo concerns emulation of users acting via web browsers, the
specific test support service (i.e., Impersonation Service) stores in
the core-platform a video of the interactions referred in Section 4.2;
this way testers can validate the actual behaviour of FullTeaching
experienced by realistic clients during the tests.

5 CONTRIBUTING TO ELASTEST

The ElasTest platform is being developed following a completely
open and transparent agile approach. The community web site (see
http://elastest.io), reports the project roadmap, and also up-to-date
installation instructions, user documentation, developer procedures,
and histories from users.

It is our ambition to create a large and active community of both
users and contributors around ElasTest. Not only we hope to attract
developers of the core platform, but we also welcome very much
the opportunity of enlarging the test services offered by ElasTest
by embedding (“containering”) other tools.

ACKNOWLEDGMENTS

This paper describes work undertaken in the context of the Euro-
pean Project H2020 731535: ElasTest.

REFERENCES

[1] Xiaoying Bai, Muyang Li, Bin Chen, Wei-Tek Tsai, and Jerry Gao. 2011. Cloud test-
ing tools. In Service Oriented System Engineering (SOSE), 2011 IEEE 6th International
Symposium on. IEEE, 1-12.

[2] Antonia Bertolino and Eda Marchetti (Ed.s). 2018. ElasTest validation methodology
and its results, Version 1. http://elastest.eu/deliverables.html. (2018). (Public
Deliverable, in preparation).

[3] Liviu Ciortea, Cristian Zamfir, Stefan Bucur, Vitaly Chipounov, and George Candea.
2010. Cloud9: A software testing service. ACM SIGOPS Operating Systems Review
43, 4 (2010), 5-10.

[4] Francisco Gortazar, Micael Gallego, Boni Garcia, Giuseppe Antonio Carella,
Michael Pauls, and Ilie-Daniel Gheorghe-Pop. 2017. ElasTest - An Open Source
Project for Testing Distributed Applications with Failure Injection. In Conference
on Network Function Virtualization and Software Defined Networks. IEEE.

[5] Koray Incki, Ismail Ari, and Hasan Sézer. 2012. A survey of software testing in the
cloud. In Software Security and Reliability Companion (SERE-C), 2012 IEEE Sixth
International Conference on. IEEE, 18-23.

[6] Leah Riungu-Kalliosaari, Ossi Taipale, Kari Smolander, and Ita Richardson. 2016.
Adoption and use of cloud-based testing in practice. Software Quality Journal 24,
2 (2016), 337-364.

[7] Scott Tilley and Tauhida Parveen. 2013. Software Testing in the Cloud: Perspectives
on an Emerging Discipline. IGI Global.

[8] Wei Tek Tsai, Guanqiu Qi, Lian Yu, and Jerry Gao. 2014. Taas (testing-as-a-service)
design for combinatorial testing. In Software Security and Reliability, 2014 Eighth
International Conference on. IEEE, 127-136.

[9] Qi Zhang, Lu Cheng, and Raouf Boutaba. 2010. Cloud computing: state-of-the-art
and research challenges. Journal of internet services and applications 1, 1 (2010),
7-18.

http://elastest.io
http://elastest.eu/deliverables.html

	Abstract
	1 Introduction
	2 How does ElasTest advance the state-of-art?
	3 ElasTest architecture
	4 How can testers use ElasTest?
	4.1 Configuration and Deployment
	4.2 Impersonation
	4.3 Test Results and Analytics

	5 Contributing to ElasTest
	Acknowledgments
	References

