
A Software Architecture for Narratives

Carlo Meghini, Valentina Bartalesi, Daniele Metilli, Filippo Benedetti

Istituto di Scienza e Tecnologie dell’Informazione “Alessandro Faedo” – CNR Pisa,
Italy,

{carlo.meghini,valentina.bartalesi,daniele.metilli,filippo.benedetti}@isti.cnr.it

Abstract. The current Digital Libraries (DLs) usually return as an-
swer of a user’s query a ranked list of the resources included in the DLs
but no semantic relation among the resources are reported. Using the
Semantic Web technologies it is possible to improve these search func-
tionalities introducing narratives as new search method. As narratives
we intend semantic networks of events that are linked to the objects of
the DLs and are endowed with a set of semantic relations that connect
an event to another. These semantic networks may help the users to
obtain a more complete knowledge on the subject of their searches. In
this paper, we present a software architecture for building narratives in
order to introduce them in DLs. Our architecture is composed of several
tools (automatic and semi-automatic tools) for creating, storing and vi-
sualizing narratives. When possible, we reused open source components
already available on-line, and for the software we developed, we freely
distribute it for research aims.

Keywords: Software Architecture, Semantic Web, Semantic Reasoner,
Narratives, OWL, Digital Libraries

1 Introduction

The search functionalities of the current Digital Libraries (DLs) are usually ba-
sic systems that answer to a user’s query, expressed in natural language, with a
ranked list of the resources included in the DLs but no semantic relations among
the returned objects are reported. The Semantic Web [3], and the Linked Open
Data [11] paradigm, can overcome the limitations of these search functionalities.
The long-term aim of our research is to develop and integrate in DLs a new
search method, using the semantic Web technologies: the narrative. We intend
narratives as semantic networks composed of events that are linked to the ob-
jects of the DL and are endowed with a set of semantic relations connecting
these events, i.e. actions or occurrences taking place at a certain time at a spe-
cific location. In our vision, instead of list of objects, DLs should provide the
narratives as answers of the queries, which could be useful for users in order to
obtain a more complete knowledge on the subject of their searches. To reach
this aim, we developed a software architecture that allows to create narratives
using the Semantic Web technologies. This architecture is composed of a set of
tools (automatic and semi-automatic tools) for creating, storing, querying, and



visualizing narratives. The stored knowledge is formally represented following
an OWL ontology for representing narratives [1] we developed, encoded in the
OWL 2 DL profile [5]. In order to maximize its interoperability, our ontology
was developed as an extension of the CIDOC CRM standard ontology [4].
We have created some narratives using this architecture. In particular, two bi-
ographical narratives were produced by a Digital Humanities researcher at the
Italian National Research Council (CNR): (i) on the life of Dante Alighieri1, the
major Italian poet of the Middle Age; (ii) on the life of the Austrian painter
Gustav Klimt2. The third narrative was developed by a researcher in Computa-
tional Biology at the CNR to narrate the discoveries related to the giant squid3.
Several components of our architecture are already developed and open source,
thus we reused them. For what regards the software we developed, we distribute
it freely for research aims.

2 Architecture

This section describes our current architecture for the representation of narra-
tives. Figure 1 shows the architecture, whose main components are the following:

1. a narrative-building tool. It is used for creating, modifying or visualizing a
narrative, possibly representing knowledge that has been derived by reading
some texts. The user operates through the Graphical User Interface (GUI) of
the narrative-building tool, by manually inserting the narrative data and, at
the same time, importing resources from Wikidata4. The created narrative
is stored as an intermediate JSON representation5;

2. an OWL triplifier. Once the narrative is complete, the corresponding JSON
representation is given as input to the Java Triplifier. The triplifier trans-
forms the JSON file into an OWL (Web Ontology Language) ontology en-
coded as an RDF graph, using the OWL API library [6]. The organization
of the knowledge in the graph follows the structure defined in the ontology
for narratives we developed [1].

3. a semantic reasoner. It is used by the triplifier to infer new knowledge. The
triplifier takes as input also a file with SWRL rules [7] that are used by the
reasoner to support the temporal reasoning on the narrative.

4. a triple store. The triplifier stores the resulting graph, expanded with infer-
ences produced by both the reasoner and the SWRL rules, into a Blazegraph
triple store6;

5. a visualization interface. Finally, the user can access the knowledge stored in
the triple store through a Web interface. The knowledge is extracted using
SPARQL queries [10] and shown using graphic libraries.

1 https://dlnarratives.eu/timeline/dante.html
2 https://dlnarratives.eu/timeline/klimt.html
3 https://dlnarratives.eu/timeline/squid.html
4 https://www.wikidata.org
5 http://json.org/
6 https://www.blazegraph.com/



A review of approaches relevant to our study is reported in [8].

Fig. 1. The schema of our architecture.

2.1 Narrative-building Tool

In order to facilitate the creation of a narrative and its semantic representation
by the narrator, we built a web-based narrative-building tool. The tool is built
with HTML57 and JavaScript (ECMAScript68), using the jQuery9, jQuery UI10,
Bootstrap11, and Typeahead.js12 libraries.
The main interface of the tool is based on simple drag-and-drop metaphors,
allowing the user to create events and drag the appropriate entities that compose
them from a list of entities (e.g. location, person, object) automatically extracted
from the Wikidata knowledge base through its SPARQL endpoint. The entities
are color-coded according to their class, i.e. person, organization, place, object,
concept, or work. These are linked to the corresponding CRM classes by using a
specific mapping we defined. The interface also allows the user to link together
events by using two different semantic relations: (i) the mereological (part-of)
relation, or (ii) the causal dependency relation. A view of the NBVT interface
is reported in Figure 2.

7 https://www.w3.org/TR/html5/
8 http://www.ecma-international.org/ecma-262/6.0/
9 https://jquery.com

10 https://jqueryui.com
11 https://getbootstrap.com
12 https://typeahead.js.org



Fig. 2. The interface of the NBVT.

The tool is available online13, it is open-source and released under the GPLv3
license14. As the user inserts knowledge in the interface of the tool, the data is
stored into a CouchDB15 database, using the PouchDB16 library to interface with
it. This allows automatic saving of the data, revisioning, and synchronization
between a local and remote database. Finally, the resulting timeline of events is
exported in the JSON format.

2.2 OWL Triplifier

The knowledge exported from the tool in JSON format is subsequently imported
into a Java-based triplifier. The triplifier makes use of the OWL API library to
define an ontology model. Then, it loads the JSON file and converts it to an in-
termediate Java representation. Then the OWL API library takes as input this
representation that is used for populating the model. The triplifier also imports
some SWRL rules. The Semantic Web Rule Language (SWRL) is a proposed
language for the Semantic Web that can be used to express rules as well as logic,
combining OWL DL or OWL Lite with a subset of the Rule Markup Language.
We added SWRL rules to overcome the limitations of the OWL 2 DL about:
(i) the definition of a relation as simultaneously transitive and irreflexive, as in

13 https://dlnarratives.eu/tool.html
14 https://www.gnu.org/licenses/gpl–3.0.en.html
15 http://couchdb.apache.org
16 https://pouchdb.com



the case of the part-of and causality relations, (ii) the definition of a relation
as simultaneously transitive and disjoint [9], as in the case of the temporal re-
lation, (iii) the implication between part-of and temporal relations and between
causality and temporal relations. For this reason, we use SWRL rules and OWL
2 DL axioms simultaneously. The SWRL rules were produced using a software
developed by Batsakis et al. [2] for what concerns the temporal relations. The
implications between part-of and temporal relations and between causality and
temporal relations were defined by writing the SWRL rules manually. The SWRL
rules are taken as input by the triplifier as an OWL file. The result of the pro-
cess of triplifier is an OWL graph that represents the narrative, exportable in
RDF/XML17, Turtle18, or several other syntaxes19.

2.3 Reasoner

At this point, a reasoning is performed on the knowledge in order to perform
consistency checks and make inferences. The reasoner we adopted is Openllet20

version 2.6. The main reasons for this choice are the following: (i) Openllet sup-
ports all the features of OWL 2 DL; (ii) it fully supports SWRL rules; (iii) it is
Java-based and easily integrated with OWL API21; (iv) it is an open source soft-
ware actively maintained. Openllet provides functionality to check consistency
of ontologies, compute the classification hierarchy, explain inferences, the graph
is stored into a triple store.

2.4 Triple Store

The knowledge is exported to a triple store. The triple store we chose is Blaze-
graph 22. Blazegraph is a standards-based, high-performance, scalable, open-
source graph database. Written entirely in Java, the platform supports the RDF
data model and the SPARQL 1.1 family of specifications, including Query, Up-
date, Basic Federated Query, and Service Description. The knowledge stored in
Blazegraph is shown to the user through a visualization interface. We imple-
mented SPARQL queries to retrieve this knowledge from the triple store.

2.5 Visualization Interface

First of all, in order to give a complete overview of the narrative, the events were
placed on a timeline. We used TimelineJS library23 for the implementation. For
each event on the timeline, the more meaningful information is reported, i.e. title,

17 https://jena.apache.org/documentation/io/rdf-output.html
18 https://www.w3.org/TR/turtle/
19 https://jena.apache.org/documentation/io/rdf-output.html
20 https://github.com/Galigator/openllet
21 https://owlcs.github.io/owlapi/
22 https://www.blazegraph.com/
23 https://timeline.knightlab.com/



date, primary sources, related digital objects, related images. Events occurred
at the same time are allowed and visualised on a timeline. Figure 3 shows an
event of the timeline of Dante Alighieri’s life.

Fig. 3. An event of Dante Alighieri’s life on the timeline.

Another requirement for the tool is the visualization of the entities that
compose each event. To this aim, a SPARQL query to get this information
from the knowledge base was implemented. This query retrieves, for each event
title, the names and IRIs of the corresponding entities. The vis.js24 JavaScript
library was used to implement the visualization. One of the most important
requirements for a scholar who studies historical events, is the knowledge of their
primary sources. For each event of the narrative, the tool allows to visualize the
primary sources and in particular the title and the author of a primary source,
the textual fragment of the primary source that describes the event, the reference
of the textual fragment. This information is visualized in tabular format. Finally,
the user has the possibility to visualize all events that occurred in a specified
period of time. Upon specifying the desired period, the user can freely insert the
dates using a widget to select a full date or the year only. The results of the
query are shown in form of table, where for each event its dates are shown.
It is possible to explore the visualization interface on-line25, browsing the three
narratives that are available on our Web site26.

24 http://visjs.org
25 https://dlnarratives.eu/narratives.html
26 https://dlnarratives.eu



3 Conclusions and Future Work

In this paper we have presented a software architecture for building narratives
using the Semantic Web technologies. In this context, we intend narratives as se-
mantic networks of events linked to each other and to digital objects by semantic
relations. In order to represent the knowledge we have developed an OWL on-
tology for narratives as an extension of the CIDOC CRM standard vocabulary.
Where possible, to develop this architecture, we have reused software open source
already available. For what regards the software we developed, it is freely dis-
tributed, released under the GPLv3 license.
The long-term goal of our study is introducing the narrative as new first-class
search functionality of digital libraries. As output of a query, this new search
functionality should not only return a list of objects but it should also present
one or more narratives on the topic of the search. The architecture presented in
this paper would be used to create narratives that later could be imported and
shown in the DL interfaces.

References

1. Bartalesi, V., Meghini, C., Metilli, D.: Steps towards a formal ontology of narratives
based on narratology. In: OASIcs-OpenAccess Series in Informatics. vol. 53. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik (2016)

2. Batsakis, S., Petrakis, E., Tachmazidis, I., Antoniou, G.: Temporal representation
and reasoning in OWL 2. Semantic Web 8(6), 981–1000 (2016)

3. Berners-Lee, T., Hendler, J., Lassila, O., et al.: The semantic web. Scientific amer-
ican 284(5), 28–37 (2001)

4. Doerr, M.: The cidoc conceptual reference module: an ontological approach to
semantic interoperability of metadata. AI magazine 24(3), 75 (2003)

5. Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S.: Owl 2 web
ontology language primer. W3C recommendation 27(1), 123 (2009)

6. Horridge, M., Bechhofer, S.: The owl api: A java api for working with owl 2 on-
tologies. In: Proceedings of the 6th International Conference on OWL: Experiences
and Directions – Volume 529. pp. 49–58. OWLED 2009, CEUR-WS.org, Aachen,
Germany (2009), http://dl.acm.org/citation.cfm?id=2890046.2890052

7. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.,
et al.: Swrl: A semantic web rule language combining owl and ruleml (2004)

8. Meghini, C., Bartalesi, V., Metilli, D.: Using formal narratives in digital libraries.
In: Italian Research Conference on Digital Libraries. pp. 83–94. Springer (2017)

9. Motik, B., Patel-Schneider, P.F., Parsia, B., Bock, C., Fokoue, A., Haase, P., Hoek-
stra, R., Horrocks, I., Ruttenberg, A., Sattler, U., et al.: Owl 2 web ontology lan-
guage: Structural specification and functional-style syntax. W3C recommendation
27(65), 159 (2009)

10. Prud, E., Seaborne, A., et al.: Sparql query language for rdf (2006)
11. Yu, L.: Linked open data. In: A Developers Guide to the Semantic Web, pp. 409–

466. Springer (2011)


