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Abstract

Reversible jump Markov chain Monte Carlo (RJMCMC) is a Bayesian model estimation method which has been

generally used for trans-dimensional sampling and model order selection studies in the literature. In this study, we have

utilized RJMCMC beyond trans-dimensional sampling and the proposed usage, which we call trans-space RJMCMC,

reveals and draws attention to the generality and potentials of RJMCMC by exploiting the original formulation to

explore spaces of different classes or structures. This provides flexibility in using different types of candidate classes

in the combined model space such as spaces of linear and nonlinear models or of various distribution families. As

for application, we have performed a special case of trans-space sampling, namely trans-distributional RJMCMC

in impulsive data modeling. In many areas such as seismology, radar, image, using Gaussian models is a common

practice due to analytical ease. However, many noise processes do not follow a Gaussian character and generally

exhibit events too impulsive to be successfully described by the Gaussian model. We test the proposed usage of

RJMCMC to choose between various impulsive distribution families to model both synthetically generated noise

processes and real life measurements on power line communications (PLC) impulsive noises and 2-D discrete wavelet

transform (2-D DWT) coefficients.

Keywords: Reversible jump MCMC, Impulsive data modeling, PLC noise modeling, Wavelet coefficients modeling,

Symmetric α-stable distribution, Generalised Gaussian distribution, Student’s t distribution.

1. Introduction1

Reversible jump Markov chain Monte Carlo (RJMCMC) is a Bayesian model determination method which has2

had success in vast areas of applications since its introduction by Peter Green [1]. Unlike the widespread MCMC3

algorithm, Metropolis-Hastings (MH), RJMCMC allows one to search in solution spaces of different dimensions4
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which has been the main motivation for its use up to date. Classical applications of RJMCMC are model selection5

in regression and mixture processes [2, 3, 4, 5, 6, 7]. Unlike the classical applications in the literature, the original6

formulation of RJMCMC in [1] permits a wider interpretations than just exploring the models with different dimen-7

sions. As an example of the applicability of RJMCMC beyond model dimension selection: it was utilized to learn8

polynomial autoregressive (PAR) [8], polynomial moving average (PMA) [9] and polynomial autoregressive moving9

average (PARMA) [10] processes and identification of Volterra system models [11] by exploring linear and nonlinear10

model spaces in preliminary works by the authors.11

Apart from the classical MCMC methods, during the years, various methods have been developed to solve12

Bayesian problems. In [12], independence sampler (IS) which is a special case for MH algorithm has been proposed.13

IS works successfully if the proposal distribution can be defined as a good approximation to the target distribution.14

In [13] a Gibbs sampling based method has been proposed by Carlin and Chib. This method suggests generating15

pseudoprior at each realization of the Gibbs sampling and may be computationally inefficient. An alternative to Car-16

lin and Chib’s method is using an accept/reject procedure instead of sampling from a full conditional distribution in17

Gibbs sampling. This method can be named as Metroplised Carlin and Chib (MCC) as in [14]. A modification has18

been applied to Carlin and Chib’s method for variable selection applications and named as Gibbs variable selection19

in [14]. Methods such as Dellaportas’ [14] and Carlin and Chib’s [13] have been generally seen as rival methods20

to RJMCMC. However the application areas of these methods, to the best of our knowledge, are generally limited21

to regression problems, mixture processes, etc. RJMCMC offers wider meaning and has wider applications. On the22

other hand, RJMCMC being as an extended version of MH algorithm, is much more general and flexible than these23

methods as Gibbs sampling has been a special case of MH algorithm.24

In [15], Simon J. Godsill provided an important work on generality of RJMCMC and similarities between the25

Carlin and Chib’s method. In that study, a composite product space was created for reversible jump mechanism. The26

general perspective is to make the model dimension invisible in the operations, and at each iteration, problem turns into27

a fixed dimension case which can be solved via MCMC methods. The strengths and weaknesses of reversible jump28

mechanism was provided and authors stated that applying this procedure may be somehow problematic especially in29

non-nested problems. Applications are on variable and model order selection and show superiority of the RJMCMC.30

Apart from all other studies discussed above, this paper contributes to the literature with a generalization on31

RJMCMC beyond trans-dimensional sampling, which we call trans-space RJMCMC. The proposed method follows32

the generality of the formulation of Green [1] and emphasizes its potential to be a general estimation method by33

performing the reversible jump mechanism between spaces of different model classes rather than just being a trans-34

dimensional approach and a model order selection method.35
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Performing transition between non-nested or different classes of models needs much more attention on generat-36

ing proposal distributions. In order to increase the convergence speed and avoiding local traps in the algorithm, we37

propose common feature based proposals, specifically norm based transitions between different classes of models.38

The proposed usage and common parameter based proposal approach easily exhibit the generality and the potential39

of the original formulation of RJMCMC. In order to demonstrate this potential in this paper, we focus our attention40

on a more special but generic problem of choosing between different probability distribution families. The problem41

is a frequently encountered problem in signal processing and statistics, and their application fields such as in image42

processing and telecommunications. In various real-life modeling problems, we have limited prior information re-43

garding which model family is more suitable for the problem. In such cases, a method that would allow one to choose44

between different model families on the fly would be useful, eliminating the need for modeling with each candidate45

model class separately and comparing. This provides computational gains especially when the number of parameters46

and candidate model classes are high. An example is the choice between different probability density function (pdf)47

models for noise or signals.48

The pdf estimation problem is a frequently encountered problem in signal processing and statistics, and their appli-49

cation fields such as in image processing and telecommunications. In communication systems, channel modelling has50

been an important issue so as to characterize the whole system. However, for most of the cases, performing a deter-51

ministic channel modelling might be impossible and to represent real life systems, statistical channel models are very52

important. In addition, in applications of noise reduction operations in image processing, power-line communication53

systems, etc. dealing with a suitable statistical model beforehand is also important for the methods to be developed.54

Despite this importance, estimating the correct (or suitable) probability distribution along with its parameters within55

a number of generic distribution models may necessitate testing each candidate in order to choose the best possible56

model for the observed data/noise.57

General practice is to model noise/data with a Gaussian process especially in communications, network modelling,58

digital images, due to its analytical ease. In the case of non-Gaussian impulsive noise/data, various model families59

exist, for example, Middleton Class A, Bernoulli-Gaussian, α-Stable, Generalized Gaussian (GG), Student’s t, etc. It60

has been reported in the literature that noise exhibits non-Gaussian and impulsive characteristics in application areas61

such as wireless communications [16, 17], power line communications (PLC) [18, 19], digital subscriber lines (xDSL)62

[20, 21], image processing [22, 23] and seismology [24].63

In this paper, we propose a Bayesian statistical modeling study of impulsive noise/data by estimating the prob-64

ability distribution among three conventional impulsive distributions families: symmetric α-Stable (SαS), GG and65

Student’s t. Other than identifying the distribution family, the proposed method estimates shape and scale parameters66
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of the distribution. These distributions are the most popular statistical models in applications covering diverse areas67

such as wireless channel modeling, financial time series analysis, seismology, radar imaging.68

We study the algorithm extensively on synthetic data providing statistical significance tests. In addition, as case69

studies, we look into two statistical modeling problems of actual interest impulsive noise on PLC channels and 2-D70

discrete wavelet transform (2-D DWT) coefficients. Particularly, PLC impulsive noise measurements in [25, 26] have71

been utilized in the simulations. Apart from this, statistical modeling for 2-D DWT coefficients have been performed72

on different kinds of images such as Lena, synthetic aperture radar (SAR) [27], magnetic resonance imaging (MRI)73

[28] and mammogram [29].74

Rest of the paper is organized as follows: general definitions for trans-dimensional RJMCMC and the proposed75

method are discussed in Section 2. Section 3 reviews three distribution families and describes the impulsive data76

modeling scheme of the proposed method. Experimental studies for synthetically generated noise processes and for77

real applications are explained in Section 4. Section 5 draws conclusions on the results.78

2. Reversible jump MCMC79

RJMCMC has been first introduced by Peter Green in [1] as an extension of MCMC to a model selection method.80

Green, firstly derives the condition for the satisfaction of detailed balance requirements in terms of the Borel sets81

which the candidate models belong to. In the continuation of the derivation, he specializes his discussion to moves82

between spaces which differ only in dimensions and the general discussion is abandoned. In the follow up, to the best83

of our knowledge almost all publications utilized RJMCMC for model dimension selection. Popular use of RJMCMC84

is in linear parametric models such as autoregressive (AR) [2], autoregressive integrated moving average (ARIMA)85

[3] and fractional ARIMA (ARFIMA) [4] and mixture models such as Gaussian mixtures [5], Poisson mixtures [6]86

and α-stable mixtures [7].87

Apart from the popular applications above, RJMCMC has been used in other various applications such as detection88

of clusters in disease maps [30], graphical models based variable selection and automatic curve fitting [31], log-linear89

model selection [32], non-parametric drift estimation [33], delimiting species using multilocus sequence data [34],90

random effect models [35], generation of lane-accurate road network maps from vehicle trajectory data [36].91

In this study, our motivation is to draw attention to the generality of the classical RJMCMC beyond trans-92

dimensionality. The classical RJMCMC algorithm of [1] and the proposed usage, trans-space RJMCMC are discussed93

in the sequel.94

The standard MH algorithm [37] accepts a transition from Markov chain state x ∈ X to y ∈ X with a probability95

of:96
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A(x→ y) = min
{

1,
π(y)q(x, y)
π(x)q(y, x)

}
(1)

where π(·) represents the target distribution and q(y, x) refers to the proposal distribution from state x to y.97

RJMCMC, in the sense of trans-dimensional MCMC, generalizes MH algorithm by defining multiple parameter98

subspaces ζk of different dimensionality [1]. This is only achieved by defining different types of moves between99

subspaces providing that the detailed balance is attained. For this condition to hold, a reverse move from state y to x100

should be defined and dimension matching should be satisfied between parameter subspaces.101

Assume that we propose a move m with probability pm from a Markov chain state κ to κ′ each of which has102

parameter vectors θ ∈ ζ1 and θ′ ∈ ζ2, respectively with different dimensions. The move m is reversible and its reverse103

move mR is proposed with a probability pmR . The general detailed balance condition can be stated as:104

π(κ)q(κ′, κ)A(κ → κ′) = π(κ′)q(κ, κ′)A(κ′ → κ), (2)

where proposal distribution q(·) is directional and includes the probabilities of both the move itself and the proposed105

parameters. Then, the general expression for the acceptance ratio in (1) turns into [1]:106

(3)A(κ → κ′) = min
{

1,
π(κ′)pmRχ2(u′)
π(κ)pmχ1(u)

∣∣∣∣∣∂(θ′,u′)
∂(θ,u)

∣∣∣∣∣} ,
where χ1(·) and χ2(·) are the distributions for the auxiliary variable vectors u and u′, respectively which are required107

to provide dimension matching for the moves m and mR. The term
∣∣∣∣ ∂(θ′u′)
∂(θ,u)

∣∣∣∣ is the magnitude of the Jacobian.108

In each RJMCMC run, the standard Metropolis-Hastings algorithm is applied in moves within the same dimen-109

sional models, which is called as life move. Sampling is performed in a single parameter space and there is no110

dimension change in life move. For trans-dimensional transitions between models, moves such as birth, death, split111

and merge are performed which require the creation or the deletion of new variables corresponding to the increased or112

decreased dimension. Green handles the dimension changing moves as variable transformations and defines a dummy113

variable to match dimensions which provides a square Jacobian matrix that can be used to update the acceptance ratio114

easily.115

2.1. Trans-space RJMCMC116

In spite of RJMCMC’s use in trans-dimensional cases, the original formulation in [1] holds a wider interpretation117

than just sampling between spaces of different dimensions. In the beyond trans-dimensional RJMCMC point of view,118
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the main requirements of RJMCMC stated by Green are still valid with one exception, that is, a change in defining119

the spaces of model parameters.120

In the original formulation, Green firstly derives the condition for the satisfaction of detailed balance requirements121

in terms of the Borel sets which the candidate models belong to. In the continuation of the derivation, he specializes122

his discussion to moves between spaces which differ only in dimensions and the general discussion is abandoned.123

However, the parameter vectors in (2) may belong to Borel sets which differ not only in their dimensions but also in the124

generic models they belong to. Thus, the RJMCMC algorithm can be used for much more generic implementations.125

Notwithstanding, this general interpretation should be taken with caution to have a useful method. Particularly, the126

Borel sets should be related somehow, which can be conveniently set by matching a common property (e.g. norm) in127

defining the spaces. Defining proposals in this way will provide sampling more efficient candidates and help algorithm128

to converge faster. As an example, model transitions can be designed to provide fixed first ordered moments between129

spaces. Thus, this moment based approach provides a more efficient way to explore all the candidate models within130

the combined space. Carrying the trained information to a new generic model space is very crucial in this framework.131

Otherwise, the algorithm would start to train from scratch repeatedly each time it changes states and sampling across132

unrelated spaces would not give us a computational advantage. In that case, one could solve for different spaces133

separately and compare the final results to choose the best model.134

As in the case of all reversible jump applications, providing such proposals may be somehow hard, however,135

using a common feature provides users various application areas and an opportunity to utilize RJMCMC on model136

estimation studies of different classes of models. The proposed method is applicable to the nested cases the model137

space of which consists of related models. However, the importance of this approach significantly appears for the138

un-nested cases where the feature-based approach offers flexibility for RJMCMC moves between different classes139

models. Two examples one can think of firstly, are:140

1.) κ might correspond to a linear parametric model such as AR while κ′ might correspond to a nonlinear model such141

as Volterra AR.142

2.) κ might correspond to a pdf pA with certain distribution parameters while κ′ might correspond to another pdf pB143

with some other distribution parameters.144

To this end, we define a combined parameter space ϕ =
⋃

k ϕk for k > 1. Assume that a move M from Markov145

chain state x ∈ ϕ1 to x′ ∈ ϕ2 is defined and Borel sets A ⊂ ϕ1 and B ⊂ ϕ2 are related with a set of functions each146

of which are invertible. Particularly, for any Borel sets in both of the spaces, ϕ1 and ϕ2, functions h12 : A 7→ B and147

h21 : B 7→ A can be defined by matching a common property of the spaces. For generality, if the proposed move148

requires matching the dimensions, auxiliary variables u1 and/or u2 can be drawn from proper densities Q1(·) and149
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Q2(·), respectively. Otherwise, one can set u1 and u2 to ∅. Please note that the dimensions of the parameter spaces at150

both sides of the transitions can be different or the same and reversible jump mechanism of Green is still applicable.151

Consequently, although the candidate spaces are of different classes, since the Borel sets are defined as to be152

related, the assumption of Green still holds for a symmetric measure ξm and densities for joint proposal distributions,153

π(·)q(·, ·), can be defined with respect to this symmetric measure by satisfying the equilibrium in (2). Thus, the154

acceptance ratio can be written as:155

(4)A(x→ x′) = min
{

1,
π(x′)pMR Q2(u2)
π(x)pMQ1(u1)

∣∣∣∣∣∂h12(θ1,u1)
∂(θ1,u1)

∣∣∣∣∣} .
where MR is the reverse move of M and pM and pMR represent the probabilities of the moves. The Jacobian term156

appears in the equation as a result of the change of variables operation between spaces.157

Here we recall that in our previous works [8, 9, 10, 11], we have performed model estimation studies with RJM-158

CMC for Volterra based nonlinear models PAR, PMA and PARMA as well as an identification study of Volterra system159

models. In these studies, RJMCMC has been utilized to explore the model spaces of linear and nonlinear models in160

polynomial sense instead of performing a model order selection study in a single linear model space. Hence, we add161

a few concluding remarks.162

Remark1. We are going to name this general utilization on RJMCMC as trans-space. Trans-space RJMCMC reveals163

a general framework for exploring the spaces of different generic models whether or not their parameter spaces are of164

different dimensionality. Consequently, trans-dimensional cases are subsets of trans-space transitions.165

Remark2. Trans-space RJMCMC requires to define new types of moves due to the need for more detailed operations166

than, e.g. just being birth, death, split and merge of the parameters. These moves will be named as between-space167

moves and may include both birth and death of the parameters at the same time or a norm based mapping between the168

parameter spaces. Switch move (firstly proposed for Volterra system identification study [11]) will be proposed as a169

between-space move, which performs a switching between the candidate spaces of the generic model classes.170

Remark3. As a special case of trans-space sampling, the proposed method can be used to explore the spaces of171

different distribution families. Therefore, this special case will be named as trans-distributional.172

3. Trans-distributional RJMCMC for Impulsive Distributions173

In this study, we have applied RJMCMC to problems in which a stochastic process, x, is given whose impulsive174

distribution is to be found. For this purpose, we define a reversible jump mechanism which estimates the distribution175

family among three impulsive distribution families, namely, SαS, GG and Student’s t.176
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These three families cover many different noise modeling studies as stated in the above sections. All of them177

include Gaussian distribution as a special member, and many real life noise measurements can be modelled with these178

distribution families. For example, SαS family has various demonstrated application areas such as PLC [38], SAR179

imaging [23], near optimal receiver design [39], modelling of counterlet transform subbands [40], seismic amplitude180

data modelling [24], as noise model for molecular communication [41], reconstruction of non-negative signals [42]181

(Please see [43] and references therein for detailed applications).182

GG distributions have found applications in wavelet based texture retrieval [44], image modelling in terms of183

Markov random fields [45], multicomponent texture discrimination in color images [46], wheezing sound detection184

[47], modelling sea-clutter data [48].185

Student’s t distribution is an alternative to Gaussian distribution especially for small populations where the validity186

of central limit theorem is questionable. Student’s t distribution has been used in applications of finance [49, 50],187

full-waveform inversion of seismic data [51], independent vector analysis for speech separation [52], medical image188

segmentation [53], growth curve modelling [54].189

One might argue that training separate MCMC samplers for each of the seemingly irrelevant distribution families190

and comparing their modelling performances afterwards would be computationally more advantageous. However, in191

cases when the number of candidate models is not known or dramatically large, implementing a single Markov chain192

via RJMCMC could be simpler. In addition, when the number of models are small, one can not conclude that parallel193

MCMC approach would be a better choice than RJMCMC and this requires an analysis. By efficiently choosing194

the proposal distributions, the advantage of incorporating reversible jump mechanism can be extended to searching195

several distribution families which will be described in the sequel.196

In the literature, RJMCMC usage in this problem has been limited and it has been used to be examples of trans-197

dimensional approach deciding between two specific distributions [55, 56]. Particularly, when modelling count data,198

reversible jump mechanism has been applied to choose between Poisson and negative binomial distributions in [55].199

This study deals with the question whether the count data is over-dispersed relative to Poisson distribution. In [56]200

an approach which is a combination of Gibbs sampler and RJMCMC has been used to decide between Poisson and201

geometric distributions by using a universal parameter space called “palette”.202

Both of the studies above have utilized RJMCMC in distribution estimation; however, in both of the studies,203

Poisson distribution is a special member of the distribution families in question (or, there is a direct relation between204

Poisson and negative binomial or geometric distributions), hence, the methods in these studies can be handled with a205

single family search (i.e. intra-class sampling in this paper which will be discussed below sections). The proposed206

usage for RJMCMC, namely trans-distributional RJMCMC, is much more general than the examples above and207
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aims to fit a distribution to a given process x among various distributions by identifying the distribution’s family and208

estimating its shape and scale parameters. Two types of between-class moves have been defined, namely intra-class-209

switch and inter-class-switch. These moves propose model class changes within and between probability distribution210

families, respectively.211

3.1. Impulsive Distribution Families212

3.1.1. Symmetric α-Stable Distribution Family213

There is no closed form expression for probability density function (pdf) of SαS distributions except for the special214

cases of Cauchy and Gaussian. However, its characteristic function, ϕ(x), can be expressed explicitly as:215

ϕ(x) = exp( jδx − γ|x|α) (5)

where 0 < α ≤ 2 is the characteristic exponent, a.k.a. shape parameter, which controls the impulsiveness of the216

distribution. Special cases Cauchy and Gaussian distributions occur when α = 1 and α = 2, respectively. −∞ < δ < ∞217

represents the location parameter. The γ > 0 provides a measure of the dispersion which is the scale parameter218

expressing the spread of the distribution around δ.219

3.1.2. Generalized Gaussian Distribution Family220

The univariate GG pdf can be defined as:221

f (x) =
α

2γΓ(1/α)
exp

(
−

(
|x − δ|
γ

)α)
(6)

where Γ(·) refers to the gamma function, α > 0 is the shape parameter, −∞ < δ < ∞ represents the location parameter222

and the γ > 0 is the scale parameter. GG family has well-known members such as Laplace, Gauss and uniform223

distributions for α values of 1, 2 and∞, respectively.224

3.1.3. Student’s t Distribution Family225

The univariate symmetric Student’s t distribution family is an impulsive distribution family with parameters, α > 0226

which is the number of degrees of freedom, a.k.a shape parameter, the location parameter −∞ < δ < ∞ and the scale227

parameter γ > 0. Its pdf can be defined as:228
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f (x) =

Γ

(
α + 1

2

)
Γ(α/2)γ

√
πα

1 +
1
α

(
x − δ
γ

)2−((α+1)/2)

. (7)

Special members of the symmetric Student’s t distribution family are Cauchy and Gauss which are obtained for229

shape parameter values of α = 1 and α = ∞, respectively.230

3.2. Parameter Space231

RJMCMC construction for impulsive data modeling begins by firstly defining the parameter space. Parameter232

space has been defined on the common parameters for all three distribution families. These are: shape, scale and233

location parameters (α, γ and δ, respectively). In addition to them, the family identifier, k, which defines the estimated234

distribution family has been added to the parameter space. The k values of the distributions SαS, GG and Student’s t235

are 1, 2 and 3, respectively. Therefore, the parameter vector θ can be formed as: θ = {k, α, δ, γ}.236

In this study, the observed data from all three families are assumed to be symmetric around the origin for simplicity.237

Therefore, δ, is set to 0 and its effect will be invisible in the simulations. Consequently, parameter vector θ is reduced238

to: θ = {k, α, γ}.239

3.3. Hierarchical Bayesian Model240

The target distribution, f (θ|x), can be decomposed to likelihood times priors due to Bayes Theorem as:241

f (θ|x) ∝ f (x|k, α, γ) f (α|k) f (k) f (γ). (8)

where f (x|k, α, γ) represents the likelihood and f (α|k), f (k), and f (γ) are the priors.242

3.4. Likelihood243

We assume that the stochastic process x with a length of n comes from one of the distributions in candidate families244

(SαS, GG and Student’s t). Then, the likelihood corresponds to a pdf from one of these distributions:245

f (x|k, α, γ) =


∏n

i=1 SαS(γ), k = 1∏n
i=1 GGα(γ), k = 2∏n
i=1 tα(γ), k = 3

(9)
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3.5. Priors246

Priors have been selected as the following:247

f (γ) = IG(a, b), (10)

f (k) = I{1/3,1/3,1/3} for k = 1, 2, 3, (11)

f (α|k) =


U(0, 2) k = 1,

U(0, αmax,GG) k = 2,

U(0, αmax,t) k = 3,

(12)

where a and b represent the hyperparameters for scale parameter and they are generally selected as to take small values248

such as 1, 0.1 in the literature. The upper bounds for the shape parameters of GG and Student’s t distributions have249

been defined as αmax,GG and αmax,t, respectively.250

Choosing an inverse gamma prior for scale parameter is a general practice especially for Gaussian problems. Due251

to the lack of information about conjugate priors for distributions other than the Gaussian case and since Gaussian dis-252

tribution is common for all three families, an inverse gamma conjugate prior for scale parameters has been chosen for253

simplicity. Furthermore, all families are equiprobable a priori and shape parameter is uniformly distributed between254

lower and upper bounds.255

3.6. Model Moves256

Two RJMCMC model moves have been defined in order to perform trans-distributional transitions discussed in257

the previous sections. These are: life and switch moves. Life move performs classical MH algorithm to update γ.258

Switch move performs exploring the other distribution spaces. For this purpose, two types of switch moves have been259

defined: intra-class-switch and inter-class-switch. Intra-class-switch performs exploring the distributions in the same260

family, while inter-class-switch explores spaces of different families. At each RJMCMC iteration, one of the moves261

is chosen with probabilities Plife, Pintra-cl-sw and Pinter-cl-sw, respectively. Different types of moves can, of course, be262

created to solve this problem. Since the main purpose of this study is to draw attention to the generality of RJMCMC263

algorithm and to provide its applications on the real data measurements, we only focus on the between-space move264

switch and its different usages intra and inter class transitions.265

In Figure 1 the flow diagram of the proposed method is depicted where the parameter N refers to the maximum266

number of iterations. The details about the steps of the selected moves are discussed in the sequel.267
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Figure 1: Flow Diagram for the Proposed method.

3.6.1. Life Move268

Life move defines a transition from parameter space (k, α, γ) to (k′, α′, γ′) and only proposes a candidate for the269

scale parameter, γ (α′ = α and k′ = k). The proposal distribution for scale parameter γ′ has been chosen as:270

q(γ′|γ) = TN(γ, ξscale) for interval (0, γ + 1] (13)

where TN(γ, ξscale) refers to a Gaussian distribution where its mean γ is the last value of the scale parameter, and its271

variance is ξscale and is truncated to lie within the interval of (0, γ + 1] afterwards by rejecting samples outside this272

interval. This truncation procedure aims to satisfy the condition γ > 0 and forces candidate proposals not to lie far273

from the last value of γ. Hence, the resulting acceptance ratio for life move is:274
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Alife = min
{

1,
f (x|k′, α′, γ′)
f (x|k, α, γ)

f (γ′)
f (γ)

q(γ|γ′)
q(γ′|γ)

}
(14)

3.6.2. FLOM Based Proposals for γ Transitions275

As mentioned earlier in this paper, using a common feature among the candidate model spaces for the transition to276

be made will provide efficient proposals and is important in order to link the subspaces of different classes. Assume we277

have two candidate families parameter vectors of which belong to Borel sets, A and B, respectively. Providing fixed278

order norm for both of the Borel sets, the transition (e.g. h : A 7→ B) from one set to another carries the information279

in the same direction which has been already learned at the most recent Borel set. Considering the convergence and280

mixing of the algorithm, such an approach is very important to determine the transition process between generic281

distribution models, whether within the family or between families.282

When dealing with distribution estimation problems, moments with various orders, p have been defined for all283

distribution families. Moments of Student’s t and GG families have been defined at any orders for p > 0 and there284

are no restrictions on values of p. However, moments of the SαS family have been defined subject to the constraint of285

p < α. This constraint makes it possible to use the absolute fractional lower order moments (FLOMs) which has been286

also used in the parameter estimation methods of the SαS family. By taking into consideration of the facts that absolute287

FLOM expressions are defined for all impulsive families, and their success in parameters estimation studies of the SαS288

distributions, using an absolute FLOM based approach helps to construct a reversible jump sampler between different289

impulsive families, by linking the candidate distributions through absolute FLOM.290

In impulsive data modelling study in this study, absolute FLOM-based approach will be used for the proposals291

of the γ parameter. In particular, to perform sampling between related subspaces and generate efficient proposals292

on scale parameter γ, an absolute FLOM-based method has been used. The newly proposed scale parameter, γ′, is293

calculated via a reversible function, g(·) (or w(·)), which provides equal absolute FLOMs with order p for both the294

most recent and candidate distribution spaces. Thus, proposals on γ carry the learned information to the candidate295

space via absolute FLOMs.296

Absolute FLOMs are defined only for p values lower than alpha for the case of SαS distributions. Moreover, there297

are several studies which suggest near-optimum values for FLOM order p in order to estimate the scale parameter298

of SαS distributions. [57] suggests p = α/4 and [58] suggests p = 0.2. However, in [59] it has been stated that299

decreasing p for a fixed value of α (i.e. increasing α/p), increases the estimation performance of γ and [59] suggests300

the choice p = α/10. We use the value p = α/10 in our simulations for all the distribution families.301
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For a given data, x, in order to perform a transition from parameter space {k, α, γ} to {k′, α′, γ′} we assume that the302

absolute FLOM will be the same for both the most recent and candidate distribution spaces. In particular,303

Ek(|x|p) = Ek′ (|x|p) (15)

where absolute FLOMs for all three candidate families can be defined as:304

Ek(|x|p) =


Cα(p, α)γp/α k = 1,

CGG(p, α)γp k = 2,

Ct(p, α)γp k = 3,

(16)

where305

Cα(p, α) =

Γ

(
p + 1

2

)
Γ

(
−p
α

)
α
√
πΓ

(
−p
2

) 2p+1, (17)

CGG(p, α) =

Γ

(
p + 1
α

)
Γ(1/α)

, (18)

Ct(p, α) =

Γ

(
p + 1

2

)
Γ

(
α − p

2

)
√
πΓ

(
α

2

) αp/2. (19)

The candidate proposal, γ′, has been calculated via reversible functions which are derived by using the relations306

in (15)-(19) for each transition. These functions have been derived for both of the switch moves and are shown in307

Tables 1 and 2.308

3.6.3. Intra-Class-Switch Move309

RJMCMC performs a transition on shape and scale parameters in the same distribution family (k′ = k) when310

an intra-class-switch move is proposed. The proposed shape parameter α′ is sampled from a proposal distribution311

q(α′|α). In addition, the candidate scale parameter γ′ is defined as a function g(α, α′, p, γ).312

The γ transition in this move is dependent on the newly proposed α′ parameter and firstly one step is performed313

on shape parameter α to propose α′. The resulting shape parameter values are used to calculate the candidate scale314
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parameter γ′. For the shape parameter α transition, a proposal distribution such as q(α′|α) has been used. For this315

distribution, we first have assumed a symmetric distribution around the most recent α value. In addition, it has316

been preferred that the proposal distribution has heavier tails than Gaussian in order to make it possible to sample317

candidates much farther than the most recent α relative to the samples from the Gaussian distribution. Since the318

Laplace distribution is a distribution that satisfies all these conditions, the proposal distribution is chosen as a Laplace319

distribution. Due to the numerical calculation problems caused when α and α′ are close to each other (i.e. |α − α′|≤320

0.03), we have decided to utilize a finite number of candidate distributions (i.e. a finite number of α values) and the321

space on α is discretized with increments of 0.05. That’s why a discretized Laplace (DL(α,Γ)) distribution where the322

location parameter of which is equal to the most recent shape parameter α and scale parameter is Γ, has been utilized.323

An example figure of the proposal distribution q(α′|α) is shown in Figure 2(a).324

Importantly, our choice on the proposal distribution q(α′|α) is not restrictive; any distribution other than Laplace325

can be selected as the proposal distribution (e.g. Gaussian like). However, this might affect the convergence speed of326

the algorithm.327

Candidate scale parameter γ′ has been calculated via reversible functions, g(·), which are derived for intra-class-328

switch move by using the method in Section 3.6.2. Functions for each family are shown in Table 1.329
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Figure 2: (a) - Proposal distribution, q(α′ |α) for intra-class-switch move (γ = 1,Γ = 0.4). (b) - Mapping functions on shape parameter for
inter-class-switch move

Consequently, proposals for intra-class-switch move are;330

q(α′|α) = DL(α,Γ), (20)

γ′ = g(α, α′, p, γ). (21)
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Table 1: Intra-Class-Switch Details [(k, α, γ)→ (k′, α′, γ′)]
Family Degree, p γ′ = g(α, α′, p, γ) Jacobian, |J|

SαS α′/10
(

Cα(p, α)
Cα(p, α′)

)α′/p

γα
′/α

(
Cα(p, α)
Cα(p, α′)

)α′/p
α′

α
γ(α′−α)/α

GG α′/10
(

CGG(p, α)
CGG(p, α′)

)1/p

γ

(
CGG(p, α)
CGG(p, α′)

)1/p

t α′/10
(

Ct(p, α)
Ct(p, α′)

)1/p

γ

(
Ct(p, α)
Ct(p, α′)

)1/p

Table 2: Inter-Class-Switch Details [(k, α, γ)→ (k′, α′, γ′)]
(k → k′) Degree, p α′ = ψ(α, k, k′) γ′ = w(α, α′, p, γ)

1→ 2 α′/10 f1(α) =
α2

2

(
Cα(p, α)

CGG(p, α′)

)1/p

γ1/α

1→ 3 α′/10 f2(α) = logit
(
α + 2

4

) (
Cα(p, α)
Ct(p, α′)

)1/p

γ1/α

2→ 1 α′/10 f −1
1 (α)

(
CGG(p, α)
Cα(p, α′)

)α′/p

γα
′

2→ 3 α′/10 f2( f −1
1 (α))

(
CGG(p, α)
Ct(p, α′)

)1/p

γ

3→ 1 α′/10 f −1
2 (α)

(
Ct(p, α)

Cα(p, α′)

)α′/p

γα
′

3→ 2 α′/10 f1( f −1
2 (α))

(
Ct(p, α)

CGG(p, α′)

)1/p

γ

As a result of the details explained above, acceptance ratio for RJMCMC intra-class-switch move can be expressed331

as;332

Aintra-cl-sw = min
{

1,
f (x|k′, α′, γ′)
f (x|k, α, γ)

f (γ′)
f (γ)
|J|

}
, (22)

where |J| is the magnitude of the Jacobian (See Table 1).333

3.6.4. Inter-Class-Switch Move334

Different from intra-class-switch move, distribution family has also been changed in inter-class-switch move (k′ 6=335

k) as well as scale and shape parameters. Candidate distribution families are equiprobable for the candidate set336

{1, 2, 3}\{k}, and we use functions below to propose candidate parameters of α′ and γ′.337

α′ = ψ(α, k, k′) (23)

γ′ = w(α, α′, p, γ) (24)
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For intra-class transitions mentioned in the section above, the knowledge (about scale γ) learned in the previous338

algorithm steps was carried to the next step via FLOM based functions. The same approach is also utilized for γ339

transitions in inter-class-switch move and functions w(·) are derived, however, this time, the sides of the transition are340

in different families. Details are shown in Table 2.341

In order to perform efficient proposals for α in inter-class-switch move, instead of using a random move, we342

perform a mapping, ψ(·) from one family to another by taking into consideration the special members which are343

common for both of the families. For example, to derive an invertible mapping function on α for a transition from344

SαS to Student’s t, we utilize the information that Cauchy and Gauss distributions are common for both of the families.345

Cauchy refers to α = 1 for both of the families and Gauss refers to α = 2 for SαS and α = ∞ for Student’s t. Hence,346

the invertible function f2(α) performs the mapping for a transition from SαS to Student’s t.347

Similarly, Gauss distribution is common for both SαS and GG for α value of 2. Thus, we derive another invertible348

function f1(α) to move from SαS to GG. Both of these mapping functions have been depicted in Figure 2(b).349

GG and Student’s t distributions have only Gauss distribution in common for α values of 2 and ∞, respectively.350

Due to having only one common distribution and infinite range of α, instead of deriving an invertible mapping for351

transitions between these distributions, we perform a 2-stage mapping mechanism by firstly mapping α to SαS from352

the most recent family, then mapping this value to the candidate family by using functions f1(·) or f2(·). Then the353

mapping from GG to Student’s t is derived as: α′ = f2( f −1
1 (α)). It is straightforward to show that the reverse transition354

between shape parameters from Student’s t to GG results as α′ = f1( f −1
2 (α)). For all the transitions, mapping functions355

have been shown in Table 2.356

So, the acceptance ratio for inter-class-switch move can be expressed as:357

Ainter-cl-sw = min
{

1,
f (x|k′, α′, γ′)
f (x|k, α, γ)

f (γ′)
f (γ)

f (α|k)
f (α′|k′)

|J|
}

(25)

where |J|=
∂γ′

∂γ

∂α′

∂α
.358

4. Experimental Study359

We study experimentally three cases: synthetically generated noise, impulsive noise on PLC channels and 2-D360

DWT coefficients. Without loss of generality, distribution of data x is assumed to be symmetric around zero (δ = 0).361

The algorithm starts with a Gaussian distribution model with initial values k(0) = 2 and α(0) = 2. Initial value for362

scale parameter γ is selected as half of the interquartile range of the given data x and upper bounds αmax,SαS, αmax,GG363
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and αmax,t are selected as 2, 2 and 5, respectively. Some intuitive selections have been performed for the rest of the364

parameters. Move probabilities for intra-class-switch and inter-class-switch moves are assumed to be equally likely365

during the simulations. Additionally, in order to speed up the convergence of the distribution parameter estimations366

during the life move, which is the coefficient update move, it is chosen a bit more likely than intra-class-switch367

and inter-class-switch moves. Thus, the model move probabilities are selected as Plife = 0.4, Pintra-cl-sw = 0.3 and368

Pinter-cl-sw = 0.3. Hyperparameters for prior distribution of γ are set to a = b = 1 and variance of proposal distribution369

for γ in life move is set to ξscale = 0.01. Scale parameter Γ of the discretized Laplace distribution for intra-class-switch370

move is selected as 0.4.371

RJMCMC performs 5000 iterations in a single RJMCMC run and half of the iterations are discarded as burn-in372

period when estimating the distribution parameters. Random numbers from all the families have been generated by373

using Matlab’s Statistics and Machine Learning Toolbox (for details please see1).374

Performance comparison has been performed under two statistical significance tests, namely Kullback-Leibler375

(KL) divergence and Kolmogorov-Smirnov (KS) statistics. KL divergence has been utilized to measure fitting perfor-376

mance of the proposed method between estimated pdf and data histogram (for details of KL divergence please see377

[60]). Two-sample KS test compares empirical CDF of the data and the estimated CDF. It quantifies the distance378

between CDFs and performs an hypothesis test under a null hypothesis that two samples are drawn from the same379

distribution. (For details of KS test, please see [61])380

Table 3: Modeling results for synthetically generated processes.

Distribution Est. Est. Est. KL Div. KS KS
Distribution Family Shape (α̂) Scale (γ̂) Score p-value

S1.5S(2) SαS 1.4769 1.9162 0.0169 0.0125 1.0000
S1S(0.75) t 0.9970 0.7300 0.0454 0.0489 > 0.9999
GG0.5(0.5) GG 0.4990 0.5199 0.0229 0.0152 1.0000
GG1.7(1.4) GG 1.6456 1.3374 0.0221 0.0202 1.0000

t3(1) t 2.9303 1.0039 0.0251 0.0203 1.0000
t0.6(3) t 0.6197 2.9869 0.0465 0.0452 > 0.9999

4.1. Case Study 1: Synthetically Generated Noise Modeling381

In order to test the proposed method on modeling synthetically generated impulsive noise processes, six different382

distributions are chosen (2 distributions from each family). In a single RJMCMC run, data with a length of 1000 sam-383

ples have been generated from one of the example distributions. The example distributions are S1S(0.75), S1.5S(2),384

GG0.5(0.5), GG1.7(1.4), t3(1) and t0.6(3).385

1https://www.mathworks.com/help/stats/continuous-distributions.html
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Figure 3: Synthetically generated noise modeling - parameter estimation results in a single RJMCMC run. (a),(b),(c): Instantaneous α estimates.
(d),(e),(f): Estimated posterior distributions for γ after burn-in period.
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Figure 4: Wrong distribution initialized simulation for Case 1. (a) and (c) refer to the instantaneous shape parameter estimation plots for 2500
iterations. (b) and (d) refer to the instantaneous KS (or KL) statistics plots for 2500 iterations. The correct distributions are Cauchy and Generalized
Gaussian for the first and second rows, respectively.

40 RJMCMC runs have been performed for each distribution and estimated families with shape and scale param-386

eters for each example distribution are shown in Table 3. In Figure 3, instantaneous estimate of shape parameter α387

and estimated posterior distribution of scale parameter γ are shown for three example distributions. Results represent388

the estimates obtained by a randomly selected RJMCMC run out of 40 runs. Burn-in period is not removed in the389

subfigures (a)-(c) in order to show the transient characteristics of the algorithm. These plots show that the proposed390

usage of RJMCMC with FLOM based proposal distributions converges to the correct shape parameters. In subfigures391

(d)-(f), vertical dashed-lines with ∇ markers refer to ±σ confidence interval (CI). Examining these subfigures shows392

that correct scale parameters lie within the ±σ CI of the posteriors.393

As another simulation step, we have created a scenario where the algorithm has been forced to remain at a wrong394

distribution family for the first 1000 iterations. After that, all the limitations are released and algorithm tries to find the395

correct distribution for a given data set. This simulation has been named as wrong model initialized simulation and396

results are shown in Figure 4 for two different synthetically generated data sets. Examining the results in Figure 4-(a)397

and (c), we can easily see that after the wrong model initialization finishes at iteration 1000, the proposed method398

tries to find the correct distribution family as soon as possible and achieves this transition within the first 50 iterations399

(between 1000 and 1050). Even if it has been initialized at a completely wrong model, thanks to the norm based400
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proposals, algorithm can find its way towards the correct model very fast. In Figure 4-(b) and (d) statistical error401

measures are shown in order to visualize that the algorithm remains in a wrong model at first 1000 iterations. As soon402

as the transition to the correct family has been performed, error measures exhibit a rapid decrease and remain around403

these values until the end of the simulation.404

Estimated pdfs and CDFs for three example distributions are depicted in Figure 5. In addition to the statistical405

significance values in Table 3, fitting performance of the algorithm has been presented visually. As can be seen in406

Figure 5, estimated pdfs are very similar to the data histogram and fitting performances for all example distributions407

lie within KL distance of at most 0.0465. Moreover, estimated CDFs under KS statistic score are also very low and408

p-values are close to 1,0000. Please note that the estimation result in the second line of Table 3 is meaningful for an409

example Cauchy distribution, since the Cauchy distribution is a special member in both SαS and Student’s t families.410

4.2. Case Study 2: Modelling Impulsive Noise on PLC Systems411

PLC is an emerging technology which utilizes power-lines to carry telecommunication data. Telecommunication412

speeds up to 200 Mb/s with a good quality of service can be achieved on PLC systems. Apart from this, PLC offers a413

physical medium for indoor multimedia data traffic without additional cables [38].414

A PLC system has various types of noise arising from electrical devices connected to power line and external415

effects via electromagnetic radiation, etc. These noise sequences are generally non-Gaussian and they are classified416

into three groups, namely: i) Impulsive noise, ii) Narrowband noise, iii) Background Noise [25]. Among these,417

impulsive noise is the most common cause of decoding (or communications) error in PLC systems due to its high418

amplitudes up to 40 dBs [62].419

In this case study, we are going to use 3 different PLC noise measurements. First measurement (named as PLC-420

1) has been performed during a project with number PTDC/EEA-TEL/67979/2006. Details for the measurement421

scheme and other measurements please see [26]. Data utilized in this paper (PLC-1) is an amplified impulsive noise422

measurement from a PLC system with a sampling rate of 200Msamples/sec. Measurements last for 5ms and there are423

100K samples in the data set. In order to reduce the computational load, the data is downsampled with a factor of 50424

and the resulting 2001 samples have been used in this study. In Figure 6-(a) a time plot of the utilized downsampled425

data is depicted (For detailed description of the data please see2).426

Remaining two data sets are periodic synchronous and asynchronous (named as PLC-2 and PLC-3, respectively)427

impulsive noise measurements both of which have been performed during project with number TIC2003-06842 (for428

details please see [25]). Periodic synchronous measurements last for 4µs and contain 226 noise samples. Periodic429

2http://sips.inesc-id.pt/∼pacl/PLCNoise/index.html
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Figure 5: Synthetically generated noise modeling results. (a)-(c): Estimated pdfs, (d)-(f): Estimated CDFs.
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asynchronous measurements contain 1901 noise samples and last for 35µs. In Figures 6 (b) and (c) time plots are430

depicted for synchronous and asynchronous noise sequences, respectively (For detailed description of the data please431

see3).432

RJMCMC has been run 40 times for all three data sets. In Table 4, estimated distribution families and result-433

ing scale and shape parameters are depicted with significance test results. Estimated scale and shape parameters434

correspond to the average values after 40 repetitions. Examining the results in Table 4, we can state that all three con-435

sidered PLC noise processes follow SαS distribution characteristics. In the literature, there are studies [38, 63] which436

model the impulsive noise in PLC systems by using stable distributions. Particularly, these studies provide a direct437

modelling scheme via stable distribution, whereas the proposed method has estimated the distribution among three438

impulsive distribution families. Thus, our estimation results for impulsive noise in PLC systems provide experimental439

verification to these studies. According to the results of KL and KS statistics shown in Table 4 on estimated pdfs and440

CDFs and Figures between 6(d) and 6(i), RJMCMC fits to real data with a remarkable performance. KS p-values are441

all approximately 1 (> 0.9999) and this provides strong evidence that the estimated and the correct distributions are442

of the same kind.443

4.3. Case Study 3: Statistical Modeling for Discrete Wavelet Transform (DWT) Coefficients444

DWT which provides a multiscale representation of an image is a very important tool for recovering local and non-445

stationary features in an image. The resulting representation is closely related with the processing of the human visual446

system. DWT obtains this multiscale representation by performing a decomposition of the image into a low resolution447

approximation and three detail images capturing horizontal, vertical and diagonal details. It has been observed by448

several researchers that they have more heavier tails and sharper peaks than Gaussian distribution [22, 23].449

In this study, the proposed method has been utilized to model the coefficients (e.g. subbands) of 2D-DWT, namely450

vertical (V), horizontal (H) and diagonal (D). Four different images have been used to test the performance of the451

algorithm under statistical significance tests: Lena, synthetic aperture radar (SAR) [27], magnetic resonance imaging452

(MRI) [28] and mammogram [29] which are shown in the first columns of Figures 7 and 8.453

The proposed method has been performed for 40 RJMCMC runs. Estimated results for distribution families and454

their parameters (α and γ) are depicted in Table 5 as averages of 40 runs.455

Estimated distributions for wavelet coefficients of images in Table 5 show different characteristics. SAR and MRI456

images follow generally SαS characteristics while results for Lena and mammogram images are generally GG or457

Student’s t. Moreover, despite modelling with different distribution families, all the coefficients for all the images458

3http://www.plc.uma.es/channels.htm
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Figure 6: PLC impulsive noise modeling results. (a)-(c): Time plots, (d)-(f): Estimated pdfs, (g)-(i): Estimated CDFs.
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Table 4: Modeling results for PLC impulsive noise.

Data Est. Est. Est. KL Div. KS KS
Family Shape (α̂) Scale (γ̂) Score p-value

PLC-1 SαS 1.2948 5.6969 0.0086 0.0112 1.0000
PLC-2 SαS 0.7042 0.1799 0.0441 0.0486 > 0.9999
PLC-3 SαS 1.3140 1.3488 0.0046 0.0132 1.0000

Table 5: Modeling results for 2D-DWT coefficients.

Image Est. Est. Est. KL Div. KS KS
Family Shape (α̂) Scale (γ̂) Score p-value

Lena (V) GG 0.5002 1.7415 0.0271 0.0465 > 0.9999
Lena (H) t 1.0958 2.2422 0.0094 0.0349 > 0.9999
Lena (D) t 1.1628 1.7735 0.0145 0.0271 1.0000
SAR(V) SαS 1.5381 7.7395 0.0025 0.0123 1.0000
SAR(H) SαS 1.4500 8.6249 0.0043 0.0221 1.0000
SAR(D) SαS 1.7500 6.3710 0.0062 0.0125 1.0000
MRI(V) GG 0.3913 0.2693 0.0365 0.1152 0.8744
MRI(H) GG 0.3527 0.1039 0.0305 0.0548 > 0.9999
MRI(D) SαS 0.8504 0.5184 0.0245 0.0659 0.9998
Mammog.(V) t 1.6325 1.6411 0.0363 0.0907 0.9816
Mammog.(H) GG 0.7501 1.5154 0.0121 0.0555 > 0.9999
Mammog.(D) t 1.6430 0.4851 0.0073 0.0117 1.0000

have been modelled successfully according to the KL and KS test scores and p-values. The estimated pdfs and CDFs459

in Figures 7 and 8 show remarkably good fitting and provide support to the results which are obtained numerically in460

Table 5.461

4.4. Model Switching Analysis for Real Data Sets462

As discussed in detail in the previous sections, the proposed usage of RJMCMC in impulsive modelling appli-463

cations, has 3 different moves. Intra and inter class switch moves perform switching between different distributions464

and families as well. In order to analyze the model switching capabilities of the proposed model transition approach465

which is based on a common feature, specifically the FLOMs, instantaneous shape parameter plots are shown Figure466

9 for one example data set from each real dat set cases in this study which are PLC and 2D-DWT.467

FLOM based proposals demonstrate successful, efficient and fast model transitions leading to the correct (the most468

suitable of the best matching family) distributions. Except the cases for common distributions in two families such as469

Cauchy, after reaching the most suitable distribution family, algorithm is more likely to accept sampling in the same470

family (intra-class switch move) rather than perform sampling between families (inter-class switch move). The most471

important reason for this is that the norm based transitions highly penalize the transitions from the correct distribution472
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Figure 7: 2D-DWT coefficients modeling results for Lena and SAR images. (a),(d): Images, (b)-(e): Estimated pdfs, (c)-(f): Estimated CDFs.

family to another in the acceptance ratio terms. Although these kinds of transitions were somehow performed in some473

of the simulation cases, algorithm came back to the correct family after a low number of iterations and performed474

updates in the correct family. This results can be easily seen in Figures 3-(a) to (c), 4-(a) and (c) and 9-(a) and (c).475

5. Conclusion476

In this study, we have provided a new usage named as trans-space RJMCMC and draw attention to the generality of477

RJMCMC algorithm beyond the framework of trans-dimensional sampling. By defining a new combined parameter478

space of current and target parameter subspaces of possibly different classes or structures, we have shown that the479

original formulation of RJMCMC offers more general applications than just estimating the model order. This provides480

users to do model selection between different classes or structures. In particular, exploring solution spaces of linear481

and nonlinear models or of various distribution families is possible using RJMCMC. One can expect higher benefits482

from the trans-space RJMCMC compared to considering different model classes separately in the cases when the483

different model class spaces have intersections to exploit. The intersections for the trans-distributional RJMCMC484

considered in this paper have been the common distributions in the impulsive noise families. They made it possible485

to use the mapping functions benefiting from the FLOMs of the observed data. These functions in turn have enabled486
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Figure 8: 2D-DWT coefficients modeling results for MRI and Mammogram. (a),(d): Images, (b)-(e): Estimated pdfs, (c)-(f): Estimated CDFs.

to transfer the information learned while searching in one family to the subsequent search after an inter-class-switch487

move.488

Candidate distribution space covers various impulsive densities from three popular families, namely SαS, GG and489

Student’s t. In both synthetically generated noise processes and real PLC noise measurements and wavelet transforms490

of images, the proposed usage of RJMCMC shows remarkable performance in modeling. Simulation studies verify491

the remarkable performance in modelling the distributions in terms of both visual and numerical tests. KL and KS492

tests show the numerical results are statistically significant in terms of p-values which are generally close to 1.0000 (at493

least 0.85) for all the example data sets. Moreover, the algorithm indicated SαS distributions for 2D-DWT coefficients494

of SAR images and noise on PLC channels which is in accordance with the other studies in the literature and confirms495

the success of the algorithm.496

The proposed approach for proposal distributions, FLOM-based proposals, also make it possible to perform tran-497

sitions between distributions in different families which have similar statistical characteristics easily, even if they have498

very different values for scale and shape parameters. In other words, matching the FLOMs to calculate the parame-499
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Figure 9: (a) and (c) refer to the instantaneous shape parameter estimation plots. (b) and (d) refer to the instantaneous KS (or KL) statistics plots.
Results are for PLC-3 and Lena-H in the first and second rows, respectively.

ters, offers to switch distributions the parameters of which are strictly different. For further studies, this approach has500

possibility to open research directions to perform simulation studies about the mimicking capabilities of a distribution501

to another.502

We would like to underline that the ideas presented in this paper are not limited only to sampling across distribution503

families but can be extended to any class of models.504
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[10] O. Karakuş, E. E. Kuruoğlu, M. A. Altınkaya, Nonlinear Model Selection for PARMA Processes Using RJMCMC, in: 25th European Signal522

Processing Conference (EUSIPCO), IEEE, 2017, pp. 2110–2114.523
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