Multilingual Text Classification Made Easy

Alejandro Moreo Fernández

(Joint work with Andrea Esuli and Fabrizio Sebastiani)

Istituto di Scienza e Tecnologie dell'Informazione Consiglio Nazionale delle Ricerche 56124 Pisa, IT E-mail: alejandro.moreo@isti.cnr.it

> IIR 2018, Roma, Italy May 28–30, 2018

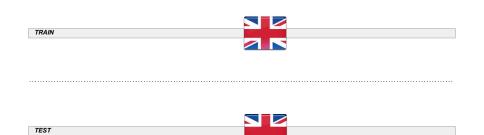
> > ▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

What is this talk about?

- Multilingual text classification
- Classifier ensembles
- Vector spaces

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

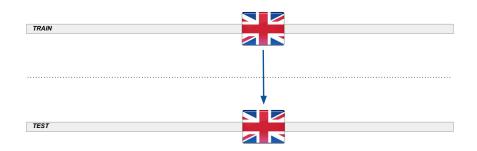
Text Classification



• Classification scheme ("codeframe") $C = \{c_1, ..., c_n\}$

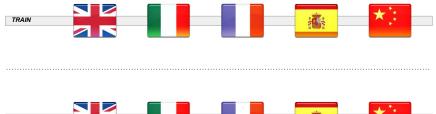
▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Text Classification



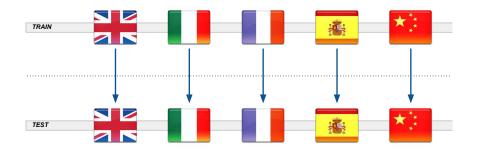
- Classification scheme ("codeframe") $C = \{c_1, ..., c_n\}$
- We learn, by observing labelled (English) documents, a classifier (e.g., a SVM) for unlabelled (English) documents.

Multilingual Text Classification



- Each document d written in one of a finite set $\mathcal{L} = \{\lambda_1, ..., \lambda_m\}$
- Classification scheme ("codeframe") $C = \{c_1, ..., c_n\}$ is the same for all languages
- Scenario common in many multinational organizations (e.g., European Union) / companies (e.g., Vodafone)
- How can we learn from heterogeneous data?

The Naïve Solution

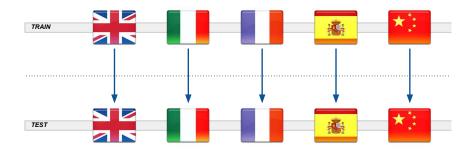


(a)

э

• MLC solved as *m* independent monolingual classification tasks

The Naïve Solution

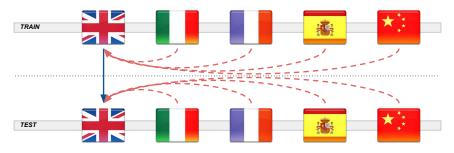


・ロン ・回 と ・ ヨン ・ ヨン …

э

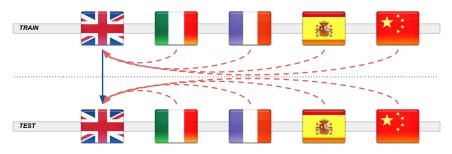
- MLC solved as *m* independent monolingual classification tasks
- Suboptimal!

The Machine Translation approach



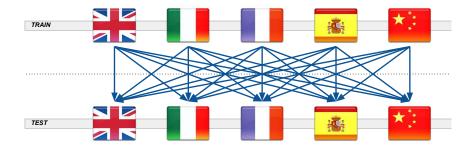
• Use MT to transform all documents into a single language.

The Machine Translation approach



イロト イポト イヨト イヨト

- Use MT to transform all documents into a single language.
- Problems:
 - MT tools may not be available for certain language pairs,
 - may not be free
 - may work suboptimally



イロト イポト イヨト イヨト

э

- · Attempts to exploit synergies among languages
- \Rightarrow Improve on monolingual classifiers (naïve)

• And we want to avoid the use of any:

◆□▶ ◆□▶ ★ 臣▶ ★ 臣▶ 三臣 - のへで

• And we want to avoid the use of any:

◆□> ◆□> ◆三> ◆三> ・三 のへで

MT tools

• And we want to avoid the use of any:

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・ ヨ

- MT tools
- Bi-lingual dictionaries

- And we want to avoid the use of any:
 - MT tools
 - Bi-lingual dictionaries
 - Multilingual Thesaurus (e.g., BabelNet)

- And we want to avoid the use of any:
 - MT tools
 - Bi-lingual dictionaries
 - Multilingual Thesaurus (e.g., BabelNet)

• External resources (e.g., Wikipedia)

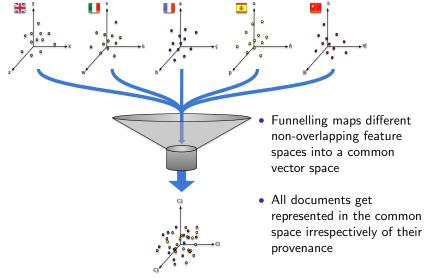
- And we want to avoid the use of any:
 - MT tools
 - Bi-lingual dictionaries
 - Multilingual Thesaurus (e.g., BabelNet)

• External resources (e.g., Wikipedia)

Is that possible?

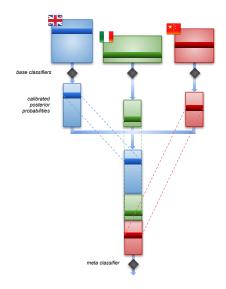
Funnelling!

National Research Council of Italy



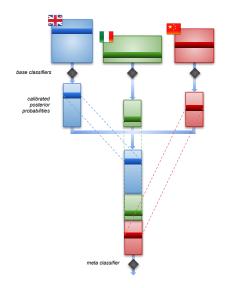
・ロト・「聞・・用・・用・・ のくの

Funnelling: PLC made easy



- Two-level classification architecture
 - |L| language-dependent base classifiers
 - One language-independent metaclassifier
- For the metaclassifier, document *d* represented as vector of |C|classification scores
- Metaclassifier outputs a vector of $|\mathcal{C}|$ classification scores

Funnelling: PLC made easy



National Research Council of Italy

- All documents from any language contribute to the other languages
- Learner-independent
- Independent from representation model used in base classifiers
- No requirement that training set should be parallel or comparable
- No requirement for ML dictionaries, ML datasets, MT services

Fun(TAT): "Funnelling Training and Test"

- Train base classifiers using monolingual training sets
- Classify training examples via trained classifiers
- Uses classification scores of training examples for training metaclassifiers

Fun(TAT): "Funnelling Training and Test"

- Train base classifiers using monolingual training sets
- Classify training examples via trained classifiers
- Uses classification scores of training examples for training metaclassifiers
 - Problem: base classifiers generate higher-quality representations for training data than for test data (iid assumption)

Fun(TAT): "Funnelling Training and Test"

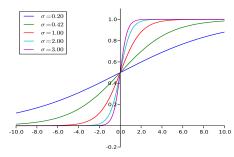
- Train base classifiers using monolingual training sets
- Classify training examples via trained classifiers
- Uses classification scores of training examples for training metaclassifiers
 - Problem: base classifiers generate higher-quality representations for training data than for test data (iid assumption)

Fun(kFCV): "Funnelling k-Fold Cross-Validation"

- 1 Train base classifiers using monolingual training sets (same)
- 2 Classify training examples via k-fold cross-validation
- Use classification scores of training examples for training (same) metaclassifiers

Probability calibration

- Problem: metaclassifier receives as input vectors coming from different, incomparable sources
- Solution: make them comparable!, by converting classification scores S(c, d) into well calibrated posterior probabilities Pr(c|d)
- Calibration: "90% of items whose Pr(c|d) is 0.9 should belong to c"
- To be performed independently for each base classifier



- **→** → **→**

Training a funnelling system: Fun(TAT)

Fun(TAT):

- 1 Train base classifiers using monolingual training sets
- 2 Classify training examples via trained classifiers
- 3 Map classification scores into well-calibrated posterior probabilities
- **4** Use posterior probabilities of training examples for training metaclassifiers

Fun(kFCV) :

- 1 Train base classifiers using monolingual training sets
- **2** Classify training examples via k-fold cross-validation
- 3 Map classification scores into well-calibrated posterior probabilities
- **4** Use posterior probabilities of training examples for training metaclassifiers

How well does funnelling work?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Datasets and learners

Datasets:

- RCV1/RCV2: comparable corpus, 9 languages, 10 samples × ((1000 training + 1000 test) per language), 73 classes
- JRC-Acquis: parallel corpus, 11 languages, 10 samples \times ((1155 training + 4242 test) per language), 300 classes

- Learners:
 - SVMs w/ linear kernel (base classifiers)
 - SVMs w/ RBF kernel (metaclassifier)

Baselines and evaluation measures

- Baselines:
 - Naïve (i.e., monolingual classification)
 - Cross-Lingual Explicit Semantic Analysis
 (CLESA Song & Cimiano, CLEF 2008)
 - Distributional Correspondence Indexing (DCI – Moreo et al., JAIR 2016a)
 - Lightweight Random Indexing (LRI – Moreo et al., JAIR 2016b)
 - Polylingual Embeddings (PLE – Conneau et al., ICLR 2018)
- Measures (both in micro- and macro-averaged versions):

- *F*₁
- $K~(\approx$ "balanced accuracy")

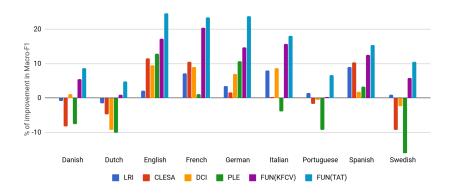
National Research Council of Italy

Multi-label PLC results

		NAÏVE	LRI	CLESA	DCI	PLE	Fun(kfcv)	FUN(TAT)	UPPERBOUND
F_1^μ	RCV1/RCV2	.776	.771	.714	.770	.696	.801†	.802	-
	JRC-Acquis	.559	.594	.557	.510	.478	.581	.587	.707
F_1^M	RCV1/RCV2	.467	.490	.471	.485	.453	.512	.534	-
	JRC-Acquis	.340	.411	.379	.317	.300	.356	.399	.599
K^{μ}	RCV1/RCV2	.690	.696	.659	.696	.644	.731	.760	-
	JRC-Acquis	.429	.476	.453	.382	.429	.457	.490	.632
K ^M	RCV1/RCV2	.417	.440	.434	.456	.466	.482	.506	-
	JRC-Acquis	.288	.348	.330	.274	.349††	.328	.365	.547

Some results

• More consistent improvements over naïve baseline



・ロッ ・同 ・ ・ ヨッ ・

3 x 3

Mational Research Council of Italy

How efficient is funnelling?

	NAÏVE	LRI	CLESA	DCI	PLE	Fun(kfcv)	Fun(tat)
RCV1/RCV2	537	5,506	28,508	344	954	1,041	215
	12	138	576	3	59	15	12
JRC-Acquis	6,005	67,571	63,497	4,888	2,232	13,127	4,987
JIC-Acquis	39	529	719	8	870	54	45

- PLC: an important task for many multinational organizations / companies
- Approach: mapping different language-dependent feature spaces into a language-independent vector space:
 - exploiting the information from all languages

- PLC: an important task for many multinational organizations / companies
- Approach: mapping different language-dependent feature spaces into a language-independent vector space:
 - exploiting the information from all languages

< ● ● > < ■

• very effectively

- PLC: an important task for many multinational organizations / companies
- Approach: mapping different language-dependent feature spaces into a language-independent vector space:
 - exploiting the information from all languages
 - very effectively
 - very efficiently

- PLC: an important task for many multinational organizations / companies
- Approach: mapping different language-dependent feature spaces into a language-independent vector space:
 - exploiting the information from all languages
 - very effectively
 - very efficiently
 - using no external knowledge!

Where can we go from here?

National Research Council of Italy

- Different codeframes
- Other classification scenarios (e.g., "multimodal" classification)
- Adopt a deep learning end-to-end architecture

・ロン ・回 と ・ ヨン・

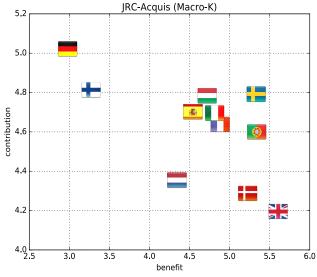
Questions?

・ロト・(型ト・モミト・モニー)のへで

Thank you!

For any question, email me at alejandro.moreo@isti.cnr.it

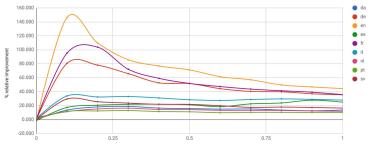
Which languages benefit / contribute most?



ヨー つくの

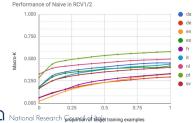
National Research Council of Italy

How does this contribution evolve?



Cross-lingual relative improvement (Fun(TAT) vs. Naive) in RCV1/2

proportion of target training examples



Performance of Fun(TAT) in RCV1/2 1.000 🔵 da de en 0.750 es fr Macro-0.500 it n l 🔵 pt 0.250 sv 0.000

proportion of target training examples