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ABSTRACT

Content-Based Image Retrieval in large archives through the use of
visual features has become a very attractive research topic in recent
years. The cause of this strong impulse in this area of research
is certainly to be attributed to the use of Convolutional Neural
Network (CNN) activations as features and their outstanding per-
formance. However, practically all the available image retrieval
systems are implemented in main memory, limiting their applica-
bility and preventing their usage in big-data applications. In this
paper, we propose to transform CNN features into textual repre-
sentations and index them with the well-known full-text retrieval
engine Elasticsearch. We validate our approach on a novel CNN
feature, namely Regional Maximum Activations of Convolutions.
A preliminary experimental evaluation, conducted on the standard
benchmark INRIA Holidays, shows the effectiveness and efficiency
of the proposed approach and how it compares to state-of-the-art
main-memory indexes.
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1 INTRODUCTION

Convolutional Neural Networks (CNNs) are increasingly used as
feature extractors to support efficient Content-Based Image Re-
trieval (CBIR) systems. One of the obstacles to use these features
is, however, in their high dimensionality, which prevents the use
of standard space-partitioning data structures. For instance, in the
well-known AlexNet architecture [13] the output of the sixth layer
(fc6) has 4,096 dimensions. To overcome this problem, various par-
titioning methods have been proposed. For example, the inverted
multi-index [6], which outperforms the state of the art by a large
margin, uses product quantization both to define the coarse level
and to code residual vectors combined with binary compressed
techniques.

In this paper, we propose an alternative approach suitable to be
implemented in secondary memory. We exploit a surrogate text
representation of the features that allows us to exploit an existing
text retrieval engine to build a content-based image retrieval system.
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The key idea is to represent the CNN features as permutations
and, in turn, to transform them into surrogate text using the basic
approach developed in [7].

The CNN feature that we have used in this work is the Regional
Maximum Activation of Convolutions (R-MAC) [16], which is a
very effective image representation for instance-level retrieval in
CBIR systems. This feature is the result of the spatial aggregation
of the activations of a convolution layer of a CNN and therefore
robust to scale and translation. Gordo et al. [9] extended the R-
MAC representation by improving the region pooling mechanism
and including it in a differentiable pipeline trained end-to-end for
retrieval tasks.

In this paper, we extend and improve our previous work on
surrogate text representation [1] based on the approach of deep
permutation [2], by adopting the Concatenated Rectified Linear
Unit (CReLU) transformation [15]. The advantage of this approach
is a better estimate of the matching score among R-MAC features
by preserving both positive and negative activation information,
which leads to an improvement of effectiveness at the same cost
when using the conventional deep permutation approach. We have
also improved the quality of the experimental evaluation providing
a comparison with the FAISS library [12], which implements PQ-
compressed inverted-file indexes in main memory. Moreover, we
have tested the scalability of our solution, by distributing our index
across multiple nodes with Elasticsearch (https://www.elastic.co).

The rest of the paper is organized as follows. Section 2 provides
background for the reader. In Section 3, we introduce our approach
to generate permutations for R-MAC features. Section 4 presents
some experimental results using a real-life dataset. Section 5 con-
cludes the paper.

2 BACKGROUND

Recently, a new class of image descriptor, built upon Convolutional
Neural Networks, have been used as an effective alternative to
descriptors built using local features such as SIFT, ORB, BRIEF, etc.
CNNs have attracted an enormous interest within the Computer
Vision community because of the state-of-the-art results achieved
in challenging image classification tasks such as the ImageNet Large
Scale Visual Recognition Challenge (http://www.image-net.org). In
computer vision, CNNs have been used to perform several tasks,
including image classification, as well as image retrieval [4, 5] and
object detection [8], to cite some. Moreover, it has been proved that
the representations learned by CNNs on specific tasks (typically
supervised) can be transferred successfully across tasks [5, 14]. The
activation of neurons of specific layers, in particular the last ones,
can be used as features to semantically describe the visual content
of an image.

Tolias et al. [16] proposed the R-MAC feature representation,
which encodes and aggregates several regions of the image in a
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dense and compact global image representation. To compute an R-
MAC feature, an input image is fed to a fully convolutional network
pre-trained on ImageNet. The output of the last convolutional layer
is max-pooled over different spatial regions at different position and
scales, obtaining a feature vector for each region. These vectors are
then [2-normalized, PCA-whitened, [2-normalized again, and finally
aggregated by summing them together and /2-normalizing the final
result. The obtained representation is an effective aggregation of
local convolutional features at multiple position and scales that it
can be compared with the cosine similarity function.

In our work, we used the ResNet-101 trained model provided
by Gordo et al. [9] as an R-MAC feature extractor, which has been
shown to achieve the best performance on standard benchmarks.
We extracted the R-MAC features using fixed regions at two differ-
ent scales as proposed in [16] instead of using the region proposal
network. Defined S as the size in pixel of the minimum side of an
image, we computed the multi-resolution descriptor aggregating
the ones extracted at S = 550, 800 and 1, 050, resulting in a dense
2.048-dimensional real-valued image descriptor.

3 SURROGATE TEXT REPRESENTATION FOR
CNN FEATURES

The basic idea of permutation-based indexing techniques is to rep-
resent feature objects as permutations built using a set of reference
object identifiers as permutants.

Given a domain D, a distance functiond : D X D — R, and
a fixed set of reference objects P = {p1...pn} C D that we call
pivots, we define a permutation-based representation II, (briefly
permutation) of an object 0 € D as the sequence of pivots identifiers
sorted in ascending order by their distance from o [3].

Formally, the permutation-based representation II, =
(ITp(1),. .., II(n)) lists the pivot identifiers in an order such that
Vi€ {1,...,n—1}, d(o,pm,(j)) < d(o.pm,(j+1)) Where pr (j
indicates the pivot at position j in the permutation associated
with object o. If we denote as IT,!(i) the position of a pivot p;,
in the permutation of an object 0 € D, so that I,(II; (i) = i,
we obtain the equivalent inverted representation of permutations
;! = (;1(1),...,1,1(n)). In I, the value in each position of
the sequence is the identifier of the pivot in that position. In the
inverted representation Hgl, each position corresponds to a pivot
and the value in each position corresponds to the rank of the
corresponding pivot. The inverted representation of permutations
IT,, is a vector that we refer to as vector of permutations, and
which allows us to easily define most of the distance functions
between permutations. Permutations are generally compared using
Spearman rho, Kendall Tau, or Spearman Footrule distances.

So far, we have presented the general approach of permutation-
based indexing. However, when objects to be indexed are real-
valued vectors as in the case of deep features, we can use the
approach presented in [2]. It allows us to generate a sequence
of identifiers not associated with pivots. The basic idea is as fol-
lows. Permutants are the indexes of elements of the deep feature
vectors. Given a deep feature vector, the corresponding permu-
tation is obtained by sorting the indexes of the elements of the
vector, in descending order with respect to the values of the cor-
responding elements. Suppose for instance the feature vector is

fv = 10.1,0.3,0.4,0,0.2] (in reality, the number of dimensions
is 2,048 or more). The permutation-based representation of fv is
Mgy, =(3,2,5,1,4), that is permutant (index) 3 is in position 1, per-
mutant 2 is in position 2, etc. The vector of permutations introduced
above is therefore H}i =(4,2,1,5,3), that is permutant (index) 1
is in position 4, permutant 2 is in position 2, etc.

The intuition behind this is that features in the high levels of the
neural network carry out some sort of high-level visual information.
We can imagine that individual dimensions of the deep feature
vectors represent some sort of visual concept and that the value of
each dimension specifies the importance of that visual concept in
the image. Similar deep feature vectors sort the visual concepts (the
dimensions) in the same way, according to the activation values.

Without entering the technical details of this approach, let us
just stress the fact that although the vector of permutations is of
the same dimension of CNN vectors, the advantage is in that they
be easily encoded into an inverted index. Moreover, following the
intuition that the most relevant information of the permutation is
in the very first, we can truncate the vector of permutations to the
top-K elements (i.e., truncated permutations at K). The elements of
the vectors beyond K can be ignored, allowing us to modulate the
size of vectors and reduce the size of the index.

A key aspect of the R-MAC vector is the presence of a com-
parable number of positive and negative elements (activations)
and, more important, both negative and positive elements con-
tribute to informativeness. However, negative activations are prac-
tically neglected, when using conventional deep permutations,
since we sort the indexes of the elements of the vector, in de-
scending order with respect to the values of the corresponding
elements. In order to prevent this imbalance towards positive ac-
tivations at the expense of negative ones, we use the Concate-
nated Rectified Linear Unit (CReLU) transformation [15]. It simply
makes an identical copy of vector elements, negate it, concatenate
both original vector and its negation, and then apply ReLU alto-
gether. More precisely, we denote ReLU as [-]+ = max(-,0), and
define CReLU of the vector fv as fo* = ([fv]+, [ fv]+). For in-
stance, if fv = [0.1,-0.3,-0.4, 0, 0.2], the CReLU applied on fov
is fo™ =10.1,0,0,0,0.2,0,0.3,0.4, 0, 0]. Finally, the vector permu-
tations is then Hﬁﬁ = (4,5,6,7,3,8,2,1,9,10) (ties take random
positions). Notice that in general, this operation is lossy since the dot
product between vectors is not preserved, i.e., for- foy < fof - foy.
However, this transformation allows us to apply the deep permu-
tation approach without completely neglecting the negative acti-
vations of the R-MAC features. After applying the CReLU to the
vectors fv, the rest of the procedure is the same as the deep per-
mutation on vectors fv+, and everything else proceeds as for the
conventional deep permutation approach.

Finally, in order to index the permutation vectors with a text-
retrieval engine as Elasticsearch, we use the surrogate text repre-
sentation introduced in [7], which simply consists in assigning a
distinct codeword to each item of the permutation vector II-! and
repeating the codewords a number of times equal to the comple-
ment of the rank of each item within the permutation. However,
since our permutation vectors are of 4,096 dimensions (2 X 2,048
due to CReLU), and since we want to promote a sparse represen-
tation, we also truncate permutations at their top-K elements. In



our running example, using K = 4 we have that the new truncated
vector is HJZZIH = (4,5,5,5,3,5,2,1,5,5). This means that all the
positions greater than four are clipped to position five. To repre-
sent this vector using a surrogate text, let first 7; be the codeword
corresponding to the i-th component of the permutation vector.
We then consider only the first four positions and ignore the ele-
ments of the vector greater then four, i.e., we generate the following
surrogate text: “ry 75 75 77 77 77 T3 T3 Ty T3 - We eventually repeat
the codeword corresponding to the i-th component a number of
times proportional to its, say, importance in the vector (i.e., if i-th
component is at position 1, we repeat 7; K times, if j-th component
is at position 2, we repeat 7; K — 1 times, and so on). The idea is
based on the fact that the scalar product adopted by the search
engine at query time will return the same ranking obtained by the
Spearman rho distance applied to the original permutation vectors
(see [7] for more clarifications).

4 EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of the proposed solu-
tion in a multimedia information retrieval task. In particular, we
extracted the R-MAC features from INRIA Holidays [10] dataset,
which is a standard benchmark for image retrieval consisting in a
collection of 1,491 images representing a large variety of scene type
(natural, man-made, water, etc). The authors of INRIA Holidays
selected 500 queries and manually identified a list of qualified re-
sults for each of them. In the literature, this benchmark is extended
with the distractor dataset MIRFlickr including 1M images called
MIRFlickr1M (http://press.liacs.nl/mirflickr/).

We compared the performance of our approach with state-of-the-
art inverted-file-based approximate nearest neighbor algorithms
based on product quantization (PQ) [11]. In PQ, the original vector is
divided into M sub-vectors which are then independently quantized.
A codebook is learned via k-means for each of the M sub-division,
and each sub-vector is compressed by storing the nearest centroid
index. We used the FAISS library [12] as an implementation of PQ-
compressed inverted-file indexes, denoted IVFPQ. In IVFPQ, the
feature space is partitioned into N Voronoi cells, each associated
with a particular posting list of the inverted file. Each posting list
contains the PQ-compressed difference between samples belonging
to that cell and the cell centroid. When building the index, both
the cell centroids and the PQ-compression codebooks have to be
pretrained on a subset of the data. When querying the index, we
probe the posting lists of the P Voronoi cells nearest to the query,
and we reconstruct the samples using the codebooks. The number
of Voronoi cells N controls the number and length of the postings
lists, while the number of PQ sub-quantizer M controls the amount
of memory occupied by a sample, also known as code size C. In the
implementation of FAISS, we directly choose the code size C, and
M is set accordingly by the software. Since FAISS is an in-memory
index, C is usually set to the maximum code size to fit the whole
dataset we want to index in main memory. While N and C are fixed
parameter chosen at indexing time, the number of nearest neighbor
Voronoi cells to probe P can be adjusted at query time and can be
tuned to control the effectiveness-efficiency trade-off.
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Figure 1: mAP vs AFDA. Lines with diamond markers show
the trade-off of Deep Permutation approaches for increas-
ing values of K (reported near each point). Lines with circle
markers correspond to PQ-compressed inverted-file-based
indexes (FAISS) for increasing number of Voronoi cell ac-
cessed. The horizontal line represents the baseline mAP, i.e.
the one computed using the original R-MAC vectors.

For a fair comparison, we used a configuration for FAISS which
gives the best trade-off between effectiveness and efficiency, choos-
ing a relatively big code size C = 1024 and number of Voronoi
cells N = 16k. However, this configuration has long index train-
ing times and a large memory footprint (for 1M images, FAISS
(C = 1024) requires about 1GB in main memory, against about
0.7GB of our solution in secondary memory in the larger configu-
ration for K = 400), and this could limit its scalability, especially in
systems with limited main memory.

Evaluation of the Effectiveness. We generated different sets
of permutations from the original features using different values
of K (i.e., we consider top-K truncated permutations), and for each
configuration, we measured the mAP (mean Average Precision)
obtained and the query execution times for each configuration.
In Figure 1, we report the mAP (on the y-axis) in function of the
Average Fraction of Database elements Accessed (AFDA in brief, on
the x-axis). The AFDA for surrogate text representation techniques
can easily be derived as follows. Let D the dimension of the vector
(2,048 for fov and 4,096 for fv+ in the case of R-MAC), and d; the
density of i-th dimension (computed as the fraction of samples in
the database having a non-zero i-th dimension). Given a query g, we
access the i-th posting list only if the i-th dimension of ¢ is non-zero,
which is true with probability d;. The i-th posting list contains the
elements of the database having non-zero i-th dimension, that is a
d; fraction of the database. Hence, we can compute AFDA = ZP dlg,
because the i-th posting list contains a d; fraction of the database,
and we access it with d; probability. Note that, in a surrogate text
representation, we associate a distinct codeword to each dimension
of the vector, and the smaller the AFDA is, the more balanced
are the posting lists of the inverted index. The greater is K, the
lower is the sparsity, and hence the greater is the mAP and the
average fraction of database accessed. Since we are dealing with
an approximate approach, the baseline mAP computed with the
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K| 4 48 70 100 400
avg. time (msec) | 51 60 93 155 1,381

Table 1: Average query times using Elasticsearch on MIR-
Flickr1M.

# nodes (imgs.) | 1(1IM) 2 (2M) 3 (3M) 4 (4M)
avg. time (msec) | 274 193 189 227
Table 2: Scalability of the queries for K = 100 using Elastic-
search on a cluster of up to four nodes.

original features can be considered as an upper-bound. We can see
that we reach satisfactory levels of effectiveness for an AFDA of
1072, Moreover, we have shown the remarkable advantage of the
CReLU preprocessing on R-MAC vectors in comparison with the
deep permutation method applied directly on the original vectors.

Figure 1 also reports the performance of FAISS indexes when
varying the number of Voronoi cells probed. The two curves related
to FAISS correspond to two different datasets used for learning the
codebooks: MIRFlickr1M and T4SA [17]. The former is the one on
which the mAP evaluation is performed, while the latter is a large
collection of images collected from the live stream of random 5%
of global tweets using the Twitter Streaming APIL The reason for
this choice is to show how the performance of FAISS is sensitive
to the specific dataset distribution on which it has been trained.
Indeed, we see the impact of this aspect is really strong, and it
could, in real applications, influence the scalability of the system or
require continuous codebook adjustments, forcing to re-indexing
the data periodically. Our solution has an intermediate performance
but does not require any training procedure and therefore any re-
adjustments.

Evaluation of the Efficiency. In order to see the impact of
truncation of permutations on efficiency, we report in Table 1 the
average query time when varying the parameter K. Clearly, by
increasing K the query time increases. The times reported in Table
1 are measured using only the NoSQL database (Apache Lucene)
upon which Elasticsearch is built around. When we take into con-
sideration the execution time of the overall Elasticsearch queries,
a little performance degradation due to the communication and
computation overheads of Elasticsearch has also to be taken into ac-
count. However, one of the advantages of Elasticsearch consists in
its ability of horizontal scaling and balancing the loading between
the nodes in a cluster.

Table 2 shows the scalability of the average query time using
Elasticsearch and permutations with truncation at K = 100 as we
increase the number of nodes to accommodate the increment in
size of the search database. In particular, we increased the size of
the database from one to four million items and incremented the
number of nodes from one to four, accordingly. As can be seen,
the average query response time remains fairly stable; the oscilla-
tions are mainly due to nodes having different types of commodity
hardware.

5 CONCLUSION

In this paper, we present an approach for indexing CNN features
as permutations to build a CBIR system. We rely upon the full-text
retrieval engine Elasticsearch, which works in secondary memory
and provides horizontal scalability and reliability.

In a nutshell, the idea is to exploit the same activation values of
the neural network as a means to associate CNN feature vectors
with permutations. Specifically, we have explored the impact of
introducing a (CReLU) preprocessing phase on R-MAC dense de-
scriptors, which allowed us to regain the informative contribution
of the negative elements of the vectors. We also observed how our
approach exhibits interesting performance in terms of efficiency
and effectiveness compared to state-of-the-art approaches, which
operate in main memory and hardly scale to large-scale applica-
tions.
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