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Abstract

The two LAGEOS and LARES are laser-ranged satellites tracked with
the best accuracy ever achieved. Using their range measurements many
geophysical parameters were calculated and some General Relativity ef-
fects were directly observed. To obtain precise and refined measurements
of the effects due to the predictions of General Relativity on the orbit of
these satellites, it is mandatory to model with high precision and accu-
racy all other forces, reducing the free parameters introduced in the orbit
determination. A main category of non-gravitational forces to be consid-
ered are those of thermal origin, whose fine modeling strongly depends on
the knowledge of the evolution of the spin vector. We present a complete
model, named LASSOS, to describe the evolution of the spin of the LA-
GEOS and LARES satellites. In particular, we solved Euler equations of
motion considering not-averaged torques. This is the most general case,
and the predictions of the model well fit the available observations of the
satellites spin. We also present the predictions of our model in the fast-
spin limit, based on the application of averaged equations. The results are
in good agreement with those already published, but with our approach
we have been able to highlight small errors within these previous works.
LASSOS was developed within the LARASE research program. LARASE
aims to improve the dynamical model of the two LAGEOS and LARES
satellites to provide very precise and accurate measurements of relativistic
effects on their orbit, and also to bring benefits to geophysics and space
geodesy.

1 Introduction

The two LAGEOS (LAser GEOdynamics Satellite) and LARES (LAser REla-
tivity Satellite) are passive Earth orbiting satellites. They are almost spherical
in shape, with a diameter of about 60 cm and mass of about 407 kg and 405
kg, respectively for LAGEOS and LAGEOS II, and a diameter of 36.4 cm and a
mass of about 387 kg in the case of LARES. A large number of retroreflectors,
the so-called cube-corner retro-reflectors (CCRs), is distributed in the form of
rings over the satellites’ surface. These CCRs allow a precise tracking of the
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orbit of the satellites by means of a network of Earth bound stations coordi-
nated by the International Laser Ranging Service (ILRS), see Pearlman et al.
[2002]. In particular, the two LAGEOS have embedded in their surface 426
CCRs, 422 made of fused silica and 4 of germanium, while the smaller LARES
has 92 CCRs, all made of fused silica.

The older LAGEOS was launched by NASA in 1976, on May 14. LAGEOS
has an orbit inclination of about 109.9◦ over the Earth’s equator, a semi-major
axis of about 12,270 km and an eccentricity of about 0.004. LAGEOS II was
launched by NASA/ASI in 1992, on October 22. LAGEOS II has an orbit
inclination of about 52.7◦ over the Earth’s equator, a semi-major axis of about
12,162 km and an eccentricity of about 0.014. The orbital periods of the two
satellites are respectively of 225.4 min and 222.4 min. LARES was launched
by ASI in 2012, on February 13. LARES has an inclination of 69.5◦ over the
Earth’s equator, a semi-major axis of about 7,820 km, an eccentricity close to
zero and an orbital period of 114.9 min.

The ground stations of the ILRS assure, by means of the Satellite Laser
Ranging (SLR) technique, almost continuous measurements of the round trip
time of narrow laser pulses and, consequently, of the satellites’ distance, which
is usually called range. High quality range data, called Normal Points (NPs),
are produced averaging the tracking measurements over appropriate time spans,
see Sinclair [2012].

The orbital parameters, obtained from the NPs with least squares methods,
can be compared with those calculated using parametric dynamical models,
allowing on one side an accurate evaluation of many geophysical parameters
(see for instance Yoder et al. [1983], Rubincam [1984], Cohen and Smith [1985],
Smith et al. [1990], Lemoine et al. [1998], Bianco et al. [1998], Cox and Chao
[2002] and Chen et al. [2013]) and, on the other side, a direct measurement of
the relativistic gravitational effects acting on the satellite orbit, see for instance
Ciufolini et al. [1996], Ciufolini and Pavlis [2004], Lucchesi [2007], Lucchesi and Peron
[2010] and Lucchesi and Peron [2014].

The dynamical model used to calculate the orbit of these geodetic satellites
must include also forces related with gravitational and non-gravitational pertur-
bations (NGP). A main disturbing role is played by the surface forces strictly
connected with the evolution of the satellites’ spin vector (orientation and
rate), we refer to Bertotti and Iess [1991], Habib et al. [1994], Farinella et al.
[1996], Vokrouhlický [1996], Andrés de la Fuente [2007] for details. These are
the Earth-Yarkovsky and Yarkovsky-Schach thermal effects (see Rubincam et al.
[1987], Rubincam [1988], Afonso et al. [1989], Farinella et al. [1990], Scharroo et al.
[1991], Slabinski [1996], Farinella and Vokrouhlický [1996], Rubincam et al. [1997],
Métris et al. [1997], Métris et al. [1999], Lucchesi [2002], Lucchesi et al. [2004],
Andrés de la Fuente et al. [2006]).

The two LAGEOS satellites and LARES were injected in their orbit with an
initial rotation that slows down in time under the magnetic torque, and with
an initial orientation of their spin that were subject to an evolution from the
precession due to the combined action of three main forces: magnetic, gravi-
tational and surface forces. Several spin models were introduced in the past.
Among these models, those that better describe the experimental data are the
ones valid in the so called fast-spin approximation. In this approximation, the
solutions of the models are valid as long as the satellite rotation period is much
shorter than the orbital one. Nowadays, while LARES spins with a period of
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about 1000 s, one order of magnitude smaller then the orbital period, the two
LAGEOS’ spin periods are, respectively, about 3 · 105 s for the older satellite
and about 3 · 104 s for the younger one. Both satellites spin less than one revo-
lution during each orbit, therefore a more general model is needed beyond the
fast-spin approximation.

The aim of the present work is to introduce our spin model. This model has
been developed within the activities of the LAser RAnged Satellites Experiment
(LARASE) Lucchesi et al. [2015, 2016]. The main new characteristic of our
model is its capacity to simulate completely the spin trend of LAGEOS and
LARES satellites in the general case, with no restriction to the mentioned fast-
spin approximation. In other words, the model is valid for any rotational period
of the satellite. After a brief summary about the models developed in the past
(see section 2), in section 3 we focus on the equations we used and the different
torques we considered. Starting from these formulas we have been also able
to calculate the solution valid for averaged equations in the limit of the fast-
spin approximation. In section 4 we describe the numerical integration methods
used to solve the equations in the general case and we compare the obtained
results with the available experimental observations. In section 5 we provide
a discussion on the importance of a refined modeling for the spin evolution,
and we also focus on the order of magnitude of other torques that are however
negligible with respect to those taken into account in previous sections. Finally,
in section 6 our conclusions and recommendations are provided together with
the work needed to further improve the free parameters that characterize our
model for the spin of LAGEOS-like satellites.

2 Previous models for the spin of the two LA-

GEOS satellites

The problem of the comprehension of the rotational behavior of the older of
the two LAGEOS satellites was first studied by Bertotti and Iess [1991]. In
that paper the authors, in order to model the spin of LAGEOS, considered
two torques acting over the satellite. The first torque is the one produced
by the interaction of the magnetic moment of the satellite with the Earth’s
Geomagnetic field. The magnetic moment is the one produced by the eddy
currents (or Foucault currents) induced in the conductive body of the satellite
from its rotation and motion in the same field. The second torque arises from
the action of the Earth gravitational field, because of the non spherical mass
distribution of the satellite.

Bertotti and Iess [1991] solved the problem in the fast-spin approximation
by averaging the torques on the satellite orbital period and on the Earth rota-
tional period. In that work for the first time the measured decay of the spin
of LAGEOS was explained with a good accuracy and, at the same time, the
complexity and variety of the results in different regions of the space of param-
eters were shown. An additional significant result of Bertotti and Iess [1991]
model was that, with respect to the inversion of the initial sense of rotation of
the satellite, the evolution of both the direction and rate of the spin are not
invariant.

The analysis of the spin model of LAGEOS — as well as the results of this
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first successfully work — were successively extended by Farinella et al. [1996]
and Vokrouhlický [1996]. In Farinella et al. [1996], some small errors present
in the formulas published by Bertotti and Iess [1991] were corrected and, most
importantly, these authors extended the model in order to take in account of a
possible misalignment between the spin and symmetry axes. They also showed
that the Bertotti and Iess [1991] spin model leads to a successful fit of the along–
track residuals of the two LAGEOS related with the orbital perturbation pro-
duced by the main thermal effects, once the force mechanisms related with the
direction of the satellite spin vector were properly modeled.

Finally, Farinella et al. [1996] considered other possible torques connected to
atmospheric skin forces and radiation pressure: one first torque connected to the
difference of reflectivity between the two LAGEOS’s hemisphere Scharroo et al.
[1991] and the second arising from the non coincidence between the geometric
center and the center of mass of the satellite. However, they wrongly concluded
that likely these torques would not play an important role in the evolution of
the spin of the two LAGEOS satellites, because negligible and that, at first
order, they should be ignored. We refer to Vokrouhlický [1996] for details. This
conclusion was probably dictated by the fact that these authors have not tuned
their spin model with the available (at that time) observations of the spin of the
two LAGEOS satellites, but, conversely, with the residuals in their semi-major
axis.

These two (much smaller) torques were inserted later in the LOSSAM (La-
geOS Spin Axis Model) model (see Andrés et al. [2004], Andrés de la Fuente
[2007]), that till now was the most complete and reliable model to describe the
spin behavior of LAGEOS satellites in the fast-spin approximation (Kucharski et al.
[2013]) and recently it was also applied with success to LARES, see Kucharski et al.
[2014]. Indeed, the LOSSAM model has represented a huge improvement in
modelling the evolution of the spin of the two LAGEOS satellites with respect
to previous models, even if the bulk of the characteristics of the torques con-
sidered are exactly the one previously developed by Bertotti and Iess [1991] —
for the magnetic and gravitational torques — and by Farinella et al. [1996] for
what concerns the additional (minor) torques related with the radiation pres-
sure asymmetry and the possible offset between the satellites geometric center
and their center of mass.

The key aspects that have led to the development of a so successful model
can be summarized in the following main points:

1. the collection of all available observations (up to 2007) of the spin of the
two LAGEOS satellites, both in their rate and orientation, see Sullivan
[1980], Avizonis [1997], Bianco et al. [2001] and Otsubo et al. [2004];

2. a careful analysis of all the parameters that enter in the models, i.e., in
the mathematical expressions of the various torques;

3. the tuning of a suitable subset of these parameters by means of a least-
squares fit of the LOSSAM model to all the available observations.

It is important to underline that, in order to analyze the spin evolution
under the most general conditions, the torques expressions used in the equations
should not be averaged. In this case it is handy to work in the rotating frame of
the satellite and use the Euler’s equations. Habib et al. [1994] were the first to
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formulate the problem in this way. Their aim was to qualitatively analyze the
time evolution of the satellites rotation, and they did not care if their solution did
not fit to the experimental data. Anyway, their model was too much simplified
to replicate the measured data because of several assumptions. In fact: i) the
expression adopted for the polarizability of the satellite is too far from reality,
ii) the expression of the magnetic torque is the same of Bertotti and Iess [1991]
and Farinella et al. [1996], that is valid only in the fast-spin approximation, iii)
the Earth magnetic field is simplified as a pure dipole field along the Earth
rotation axis, finally iv) the equations of motion are written in a non inertial
reference frame, neglecting the precession of the orbital plane with respect to
an inertial reference frame related to the Earth.

However, despite of these excessive oversimplifications, Habib et al. [1994]
have correctly introduced the general approach to be followed and based on the
resolution of the Euler dynamical equations, and they also introduced the correct
general expression for the rate of precession in the case of the gravitational
torque, correcting the expression given by Bertotti and Iess [1991] (that was
anyway used later by Farinella et al. [1996]).

The Habib et al. [1994] approach based on the numerical solution of the full
set of the Euler equations was resumed a few years later by Williams [2002],
removing the simplifications of the previous model but, at the end, still with
an unsuccessful fit to the available observational data. Later on, this more
general model was also considered by Andres et al. [2002] and Andrés et al.
[2003], that developed the so called ”real-time” LOSSAM formulation. We could
not find in literature any example of practical application of these models. In
fact, Andrés de la Fuente [2007] wrote in his PhD thesis work that “real-time”
LOSSAM had not given a better result than the model developed by Williams
[2002], giving implicitly a negative judgment on the results obtained by both
models.

3 The LASSOS model for the evolution of the
spin

In the following we present our new model for the spin of LAGEOS and LARES
satellites, that aims to be general and complete. All the main known torques
were considered and their mathematical expressions were written in a general
(not averaged) way in the rotating frame of the satellite adopting the Euler’s
rotational equations.

3.1 Reference frames

For our analysis, in the following, we will adopt two different reference frames:

• the Earth Mean Equator and Equinox of Date Frame (J2000)

• the satellite Body Frame (BF).

The J2000 is identified by three axes (x̂E, ŷE, ẑE). The origin of this Carte-
sian reference frames coincides with the Earth’s center, the (x̂E, ŷE) plane co-
incides with the Earth’s mean equatorial plane. The x̂E axis is directed to the
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vernal equinox �, intersection between the mean equator and the mean equinox
of date. The J2000 represents a quasi-inertial frame.

The BF (also known as Body-Fixed reference frame) is centered in the body’s
center of mass with the axes (x̂b, ŷb, ẑb) aligned along the principal axes of
inertia. The position of the BF can be conveniently expressed with respect to
the J2000 reference frame as function of the three Euler’s angles θ, φ and ψ. The
nutation angle θ is the angle between ẑE and ẑb, the spin angle ψ is the angle
between the nodal line and x̂b axis, the precession angle φ is the angle between
x̂E axis and the nodal line, where the nodal line is the intersection between
the two planes (x̂E, ŷE) and (x̂b, ŷb). The transformations of a vector V from
J2000 to BF reference frame Vb = R VE is given by the rotation matrix R,
that in terms of Euler’s angles is (Goldstein et al. [2000]):

R =





cosφ cosψ − cos θ sinφ sinψ sinφ cosψ + cos θ cosφ sinψ sin θ sinψ
− cosφ sinψ − cos θ sinφ cosψ cos θ cosφ cosψ − sinφ sinψ sin θ cosψ

sin θ sinφ − cosφ sin θ cos θ



 . (1)

The satellite motion along its orbit, supposed to be quasi-circular with radius
a, will be identified by the Keplerian orbital parameters measured in the J2000
frame: Ω, the right ascension of the ascending node, I, the orbit inclination over
the Earth’s equator, ω, the argument of pericenter, and M0, the mean anomaly.

3.2 Equations of motion

The spin evolution can be conveniently described by the Euler’s equations

Ix ω̇
b
sx − ωb

syω
b
sz(Iy − Iz) =Mx

Iy ω̇
b
sy − ωb

sxω
b
sz(Iz − Ix) =My (2)

Iz ω̇
b
sz − ωb

sxω
b
sy(Ix − Iy) =Mz

where Ix, Iy , Iz are the moments of inertia with respect to the principal axes
of inertia of the satellite body, while Mx,My and Mz are the components of
total torque M along the same axes. The components of the angular velocity
measured with respect to the body axes, ωb

sx, ω
b
sy and ωb

sz can be substituted by
their expressions in term of the Euler angles in the J2000 reference frame [see
Goldstein et al., 2000]:

ωb
sx = φ̇ sin θ sinψ + θ̇ cosψ

ωb
sy = φ̇ sin θ cosψ − θ̇ sinψ

ωb
sz = φ̇ cos θ + ψ̇. (3)

We finally obtain the Euler’s equations in term of Euler’s angles measured
in the J2000 reference frame:

θ̈ =
Mx

Ix
cosψ − My

Iy
sinψ − Iz

Iy
φ̇ψ̇ sin θ +

Iy − Iz
Ix

φ̇2
sin(2θ)

2

+
Ix − Iy
Ix

Λ

Iy

[

θ̇
(

ψ̇ + φ̇ cos θ
) sin(2ψ)

2
+ φ̇2

sin(2θ)

2
sin2 ψ − φ̇ψ̇ sin θ

(

Iy − Iz
Λ

− sin2 ψ

)]

(4)
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φ̈ =
My

Iy

cosψ

sin θ
+
Mx

Ix

sinψ

sin θ
+
Iz
Iy

ψ̇θ̇

sin θ
− Λ

Ix

cos θ

sin θ
φ̇θ̇ +

Ix − Iy
Iy

Λ

Ix

[

1

sin θ

(

sin2 ψ − Ix
Λ

)

ψ̇θ̇ − sin(2ψ)

2

(

cos θφ̇+ ψ̇
)

φ̇− cos θ

sin θ
φ̇θ̇ cos2 ψ

]

(5)

ψ̈ =
Mz

Iz
− cos(θ)

sin(θ)

(

My

Iy
cos(ψ) +

Mx

Ix
sin(ψ)

)

+ φ̇θ̇
1

sin θ

(

Iy − Iz
Ix

cos2 θ + 1

)

− Iz
Iy
ψ̇θ̇

cos θ

sin θ
+

(Ix − Iy)

[

1

Iz
φ̇θ̇

1

sin θ

(

sin2 θ cos(2ψ) +
Λ

IxIy
cos2 ψ cos2 θ

)

− θ̇2
1

2Iz
sin(2ψ)− φ̇2

1

2Iz
sin(2ψ)

(

ΛIz
IxIy

cos2 θ − sin2 θ

)

− ψ̇θ̇
1

Iy

cos θ

sin(θ)

(

Λ

Ix
sin2 ψ − 1

)

+
Λ

2IxIy
φ̇ψ̇ cos θ sin(2ψ)

]

, (6)

where Λ = Ix + Iy − Iz .

These equations were written without hypothesizing any peculiar symmetry
for the satellite, that is we assumed Ix 6= Iy 6= Iz differently from Habib et al.
[1994], who instead have adopted an axial symmetry for the satellite. Coher-
ently, our expressions (4), (5) and (6) converge, in the limit of Ix = Iy (cylin-
drical symmetry), to expressions (9)-(14) of Habib et al. [1994]. We underline
that even if in this limit the formal expressions are equal, our Euler angles
are expressed in the J2000 reference, while Habib et al. [1994] adopted as main
reference frame the orbital one.

In our analysis, for the torques to be included in equations (4)-(6) we con-
sidered four contributions:

• Mmag, i.e. the torque from the Earth magnetic field (section 3.3.1)

• Mgrav, i.e. the torque from the Earth gravitational field (section 3.3.2)

• Moff , i.e. the torque arising from radiation pressure acting on the geo-
metric center of the satellite, if it does not coincide with its center of mass
(section 3.3.3)

• Masy, i.e. the torque from radiation pressure acting on the two oppo-
site hemispheres of the two LAGEOS satellites, which have a different
reflectivity (section 3.3.4)

therefore M = Mmag +Mgrav +Moff +Masy.

3.3 Torques in time domain

In the following sub-sections we will calculate the expressions of the main
torques, to be inserted in previous equations (4), (5) and (6), as function of
time.

3.3.1 Torque from the Earth magnetic field

Both LAGEOS satellites (Cohen and Smith [1985], Visco and Lucchesi [2016])
and LARES (Paolozzi and Ciufolini [2013]) are made of conductive material,
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and even if they are supposed to be uncharged, they assume a magnetic mo-
ment while they are spinning inside the Earth magnetic field, the value and the
direction of which change along their orbit. The induced magnetic moments
m, because of the Earth magnetic field B, produce a torque on the satellites
(Mmag = m×B).

In the previously quoted papers, to describe such a phenomena, the LAGEOS
satellite was modeled (Bertotti and Iess [1991], Habib et al. [1994], Farinella et al.
[1996]) as a conductive sphere rotating in a static magnetic field. The value of
this constant magnetic field was calculated averaging the magnetic field of the
Earth over the entire orbit of the satellite. The solution to this problem is well
known in the literature, see for instance Landau and Lifshitz [1960].

This solution, which is completely valid in a quasi-stationary field, can be
suitably used as long as the the rotation period of the satellite is much shorter
than its orbital period as well as of the Earth’s rotation period, but it could
produce wrong results when is used in slow-spin conditions, as in Habib et al.
[1994]. These authors have probably adopted this simplification due to the lack
of an handy model for a sphere rotating in an alternating magnetic field. The
only solution apparently available till now in the literature is the one by Hayes
[1964] that unfortunately it is not easy to deal with.

In order to obtain a more general expression of the magnetic torque we
faced the problem to find an easily integrable expression for the torque acting
on a conducting sphere rotating in an alternating magnetic field. We found an
expression for the torque that was applied to the satellites (modeled like perfect
conducting spheres) while rotating and moving along their orbit:

ME
mag = V

∑8

i=0

|Bi|
2

2|ωs|
{−A′′

i [1 + cos(2ωit+ 2ϕi)] +D′
i sin(2ωit+ 2ϕi)}ω

E
s +

V
∑8

i=0

Bi·ωs

2|ωs|
2 {[α′(ωi)− A′

i] [1 + cos(2ωit+ 2ϕi)]− [D′′
i + α′′(ωi)] sin(2ωit+ 2ϕi)}

(

ωE
s ×Bi

)

+

V
∑8

i=0
Bi·ωs

2|ωs|
{A′′

i [1 + cos(2ωit+ 2ϕi)]−D′
i sin(2ωit+ 2ϕi)}Bi,

(7)

where

A′
i =

α′(ωE

s
−ωi)+α′(ωE

s
+ωi)

2
D′

i =
α′(ωE

s
−ωi)−α′(ωE

s
+ωi)

2

A′′
i =

α′′(ωE

s
−ωi)+α′′(ωE

s
+ωi)

2
D′′

i =
α′′(ωE

s
−ωi)−α′′(ωE

s
+ωi)

2
.

(8)

In the above expressions, α (ω) = α′+jα′′ is the complex fourier transform of
the magnetic polarizabilty per unity of volume of the satellite, V is the satellite
volume, ωi are the angular velocities of the harmonic components of the mag-
netic field, while ωE

s is the satellite spin angular velocity in J2000 frame, whose
components can be expressed in term of the Euler angles [see Goldstein et al.,
2000]:

ωE
s x = θ̇ cosφ+ ψ̇ sin θ sinφ

ωE
s y = θ̇ sinφ− ψ̇ sin θ cosφ

ωE
s z = ψ̇ cos θ + φ̇. (9)
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In appendix A we calculated the magnetic field experienced by the satellite as
function of time along its orbit using the dipole approximation for the Earth’s
magnetic field (see appendix A for explicit expressions of Bi):

B =

8
∑

i=0

Bi cos(ωit+ ϕi), (10)

where

ω0 = 0

ω1 = ω2 = ω⊕ − 2n

ω3 = ω4 = ω⊕ + 2n (11)

ω5 = ω6 = 2n

ω7 = ω8 = ω⊕,

and

ϕi =

{

−π
2 for i=2,4,6,8
0 for i=0,1,3,5,7.

In the previous expressions ω⊕ represents the Earth’s rotational angular
velocity, while n represents the satellite mean motion in the hypotheses of a
circular orbit having radius a:

n =

√

GM⊕

a3
(sin I sinΩ,− sin I cosΩ, cos I), (12)

where M⊕ and G are, respectively, the Earth’s mass and the gravitational
constant.

The torque that originated from Earth magnetic field (7) shows compo-
nents at the magnetic field harmonics (11) and their multiples. The torque is
expressed as sum of several contributions: i) along the satellite angular speed
direction (ωE

s ), ii) along the magnetic field directions Bi and iii) along directions
orthogonal to the previous ones

(

ωE
s ×Bi

)

.
The expression (7) is calculated in J2000 frame, the matrix R transforms it

into the equivalent expression in body frame, to be used in the equations of mo-
tion (3): Mb

mag = R ME
mag. We have not determined an analytic expression for

Mb
mag, because it is calculated numerically while solving the Euler’s equations.

The complex fourier transform of the magnetic polarizability of the satellite
α (ω) can be approximated with the expression valid for a perfect sphere: we
adopted the one included in Bidinosti et al. [2007] calculated for a sphere having
radius R, electrical conductivity σ, in a magnetic uniform field changing with
an angular frequency ω:

α(ω) = α′ + jα′′ =

=
3

8π

{

2µr [1− k · cot(k)] +
[

1− k2 − k · cot(k)
]

µr [1− k · cot(k)]− [1− k2 − k · cot(k)]

}

, (13)
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where

k(ω) =
R

δ(ω)
(1 + j) , (14)

δ(ω) =
c√

2πωσµr

. (15)

This expression contains the dependence from the relative magnetic perme-
ability µr, that was ignored by all the other authors (Bertotti and Iess [1991],
Habib et al. [1994], Farinella et al. [1996], Andrés de la Fuente [2007]). Even if
µr can be very close to 1 (for instance for aluminum µr − 1 ∼= 2.2 · 10−5), its
contribution could be non negligible at very low frequencies, where it represents
the residual magnetic polarizability of a non-spinning satellite.

Past experience with the two LAGEOS (Bertotti and Iess [1991], Farinella et al.
[1996], Andrés de la Fuente [2007], Kucharski et al. [2012]) has shown that the
calculated values of the time evolution of the spin of LAGEOS satellites fit well
the experimental data only if a low frequency approximation is chosen for (13):

α(ω) = α
′ + jα

′′ = (16)

≃

[

3

4 π

µr − 1

µr + 2
−

9

350π

µr (µr + 9)

(µr + 2)3

(

R

δ

)4
]

β
′ + j

9

20π

µr

(µr + 2)2

(

R

δ

)2

β
′′
,

β′ and β′′ are dimensionless constants to be determined experimentally in
order to take in account the differences of the satellite’s shape with respect to
an ideal sphere.

There is no trivial explanation to justify such a simplified empirical model.
It was hypothesized that the composite structure of LAGEOS, an inner cylin-
drical core made of brass inserted in two hollow aluminum hemispheres, would
invalidate the assumption of a uniform sphere as a model for LAGEOS. We will
devote a forthcoming paper to discuss in detail this case that, for now, we adopt
as a matter of fact. In the case of LARES, made of a unique block of metal, we
believe that it is more correct to apply the expression (13).

The first term of the real part of (16) is introduced for the first time in this
work, and it is an important term, because it represents the residual polarizabil-
ity at zero frequency. This term dominates the real part of the polarizability at
frequencies lower than ωc:

ωc =
5c2

12πR2σ

(µr + 2)

µr

√

42 (µr − 1)

µr (µr + 9)
. (17)

This bound frequency corresponds for the two LAGEOS to a period of about
Tc = 2π/ωc ∼ 400 s, that was already reached by both satellites.

We underline that there is a big difference between the formula we have
used for the torque of magnetic origin (7), and that valid for static magnetic
fields used till now by the others authors (see for instance (2), (5) and (6) of
Farinella et al. [1996]). In formula (7), the torque along the satellite angular
velocity ωs could change sign when ωs = ωi, depending on A′′

i that switch from
negative to positive. In this case the angular velocity ωs could be maintained
equal to ωi by the magnetic force. This resonant condition, however, appears
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only if the ratio R
δ(ωi)

is greater than a threshold value that is not reached

anyway by LAGEOS or LARES. A more detailed discussion around these very
important issues will be included in a forthcoming work.

We point out that two possible exponents can be used in the Fourier trans-
form (i.e. jω or −jω) and, consequently, we can have two different expressions
with different complex conjugate for α. One must be careful to maintain the
same convention in the inversion formula in order to anti-transform in the time
domain.

3.3.2 Torque from the Earth Gravitational field

In this section we calculate the components of the torque of gravitational origin
Mgrav, also known as gravity gradient torque, to be included in equations (4),
(5) and (6). In fact, because the satellites do not have a perfect spherical
symmetry in their mass distribution, the Earth gravitational field produces a
torque on them. We restrict our analysis to the monopole component of this
field, whose general expression is given by (Beletskii [1966]):

M
b
grav = 3n2

{

ŝ
b ×

[

Ix
(

ŝ
b · x̂b

)

x̂
b + Iy

(

ŝ
b · ŷb

)

ŷ
b + Iz

(

ŝ
b · ẑb

)

ẑ
b
]}

= 3n2





(Iy − Iz) s
b
y s

b
z

(Iz − Ix) s
b
x s

b
z

(Ix − Iy) s
b
x s

b
y



 ,

(18)

where ŝb is the unit vector Earth-to-satellite, having components sbx, s
b
y, s

b
z

in the BF reference frame.
To be conveniently included in the equations of motion (4-6), (18) must be

expressed as a function of the Euler angles with respect to the J2000 reference
frame.

The expression of the three components of the Earth-to-satellite unit vec-
tor can be easily calculated in the J2000 reference frame (see for instance
Montenbruck, O. and Gill, E. [2005]) and can be further converted into the BF
reference frame using (1) for the rotation matrix R, finally obtaining:

s
b
x = cos(ω +M0 + n · t) [cos(φ− Ω) cos(ψ)− cos(θ) sin(φ−Ω) sin(ψ)] +

sin(ω +M0 + n · t) {sin(φ− Ω) cos(I) cos(ψ) + [sin(θ) sin(I) + cos(θ) cos(φ− Ω) cos(I)] sin(ψ)}

s
b
y = − cos(ω +M0 + n · t) [cos(θ) sin(φ−Ω) cos(ψ) + cos(φ− Ω) sin(ψ)] + (19)

sin(ω +M0 + n · t) {[sin(θ) sin(I) + cos(θ) cos(φ−Ω) cos(I)] cos(ψ)− sin(φ− Ω) cos(I) sin(ψ)}

s
b
z = cos(ω +M0 + n · t) sin(θ) sin(φ− Ω) +

sin(ω +M0 + n · t) [cos(θ) sin(I)− sin(θ) cos(φ− Ω) cos(I)] .

Obviously, from equation (18) follows that the gravitational torque is zero if
the satellite has a perfect spherical symmetry (i.e. Ix = Iy = Iz). Moreover, the
unit vectors of Eqs. (19) are periodic with the satellite mean motion frequency
n, therefore their product in the expression (18) for the gravitational torque
produces a constant component plus one periodic component with a frequency
2n.
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3.3.3 Offset torque

The radiation pressure on the satellite surface acts, at the end, on the geometric
center of the satellite. If the geometric center does not coincide with the center
of mass of the satellite, the radiation pressure produces a torque (Vokrouhlický
[1996]). If the vector hb identify the geometric center position respect to the
center of mass in the body reference frame, the torque expression is:

Mb
off = νπR2 Φ⊙

c
CR

(

hb×ŝb⊙
)

. (20)

In this equation R is the radius of the satellite, CR represents its radiation
coefficient (related with the reflectivity of its surface), Φ⊙ is the solar flux at the
Earth-Sun distance, ŝb⊙ is the satellite-to-Sun unity vector, finally ν (with 0 ≤
ν ≤ 1) represents the shadow function. This function measures the percentage
of solar flux that reaches the satellite during the eclipses by Earth (with ν = 1
when there is not an eclipses, and ν = 0 when the eclipse is complete; see
for instance Montenbruck, O. and Gill, E. [2005]). The expression (20) is more
general of the one by Vokrouhlický [1996], that hypothesized the coincidence
between the rotation and symmetry axes.

To include the torque coming from the offset (20) into the equations of
motion (4-6), the unit vector ŝb⊙ must be expressed in the BF reference frame
in term of the Euler angles with respect to the J2000 reference frame.

If the motion of the Sun in the J2000 reference frame is considered circular
with constant angular velocity ω⊙ along the ecliptic, by denoting with ǫ the
angle between the plane of the ecliptic and the Earth’s equator, and with λ⊙
the Sun’s ecliptic longitude at t=0, the three components sb⊙x, s

b
⊙y and sb

⊙z of
the Earth-to-Sun unit vector in the BF reference frame are:

s
b
⊙x = sin(λ⊙ + ω⊙ · t) [cos(ǫ)(sin(φ) cos(ψ) + cos(θ) cos(φ) sin(ψ)) + sin(ǫ) sin(θ) sin(ψ)] +

cos(λ⊙ + ω⊙ · t) [cos(φ) cos(ψ)− cos(θ) sin(φ) sin(ψ)]

s
b
⊙y = − sin(λ⊙ + ω⊙ · t) [cos(ǫ)(sin(φ) sin(ψ)− cos(φ) cos(ψ) cos(θ))− cos(ψ) sin(ǫ) sin(θ)]−

cos(λ⊙ + ω⊙ · t) [cos(φ) sin(ψ) + cos(ψ) cos(θ) sin(φ)] (21)

s
b
⊙z = sin(λ⊙ + ω⊙ · t) [sin(ǫ) cos(θ)− cos(ǫ) cos(φ) sin(θ)] + cos(λ⊙ + ω⊙ · t) sin(θ) sin(φ).

This torque, slowly changing with a period of one solar year, is modulated
by the shadow function ν.

3.3.4 Anisotropic reflection torque

A difference in the reflectivity of the two hemisphere of LAGEOS was hypoth-
esized by Scharroo et al. [1991] in order to explain the observed along-track
residuals in acceleration of the satellite. This empirical result was reasonably
explained by Lucchesi [2003, 2004] as due by a possible asymmetry in the satel-
lite’s reflection of the visible solar radiation introduced by the four germanium
CCRs. If the relative difference between the reflectivity of North and South
hemispheres is ∆ρ = (CN

R − CS
R)/C̄R, with C̄R = (CN

R + CS
R)/2, the following

torque is produced (Vokrouhlický [1996]):
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M
b
ar = ν

2

3
R

3 Φ

c
∆ρ CR (ẑb × ŝ

b
⊙)

∣

∣ẑ
b × ŝ

b
⊙

∣

∣ = ν
2

3
R

3 Φ

c
∆ρ CR

√

(

sb⊙x

)2
+
(

sb⊙y

)2





−sb⊙y

sb⊙x

0





. (22)

The difference in reflectivity between the two hemispheres has as consequence
the non-coincidence of the center of mass of the satellite with the point of ap-
plication of the solar radiation pressure. Therefore, we could have described the
effect within the torque (20) analyzed in previous section (3.3.3). However, we
preferred to maintain the expressions for two distinct torques, as done by previ-
ous authors, in order to better connect the torque to the measurable parameters,
as ∆ρ for this second torque.

As we can see from Eq. (22), also this torque is slowly changing with a
period of one solar year and it is modulated by the shadow function ν.

3.4 The solution with averaged equations

The numerical solution of the equations (4 - 6) can be more quickly found,
if averaged expressions are adopted for the torques. This simplification does
not modify the result until the satellite spins with a time scale shorter (or
comparable) than the orbital period of the satellites’s and of the Earth rotational
period. The averaged values for the torques are calculated by integration on
these longer periods. In this case, both the magnetic (7) and the gravitational
(18) torques can be averaged since these torques vary with time scales that are
related with the pulsation of the satellite mean motion n and of the Earth’s
angular speed ω⊕, as well as with their combinations.

3.4.1 Averaged Magnetic Torque

The averaged magnetic torque can be easily calculated starting from expression
(7), and integrating each one of the harmonic components over its characteristic
period. Therefore, in this limit, the variables introduced in (8) become: D′ =
D′′ = 0, A′

i = α′ and A′′
i = α′′. For the magnetic (averaged) torque expression

we obtain:

〈Mmag〉 = −V < |B|2 > α
′′ (ωs)

ωs

|ωs|
+ V

α′(0) − α′(ωs)

|ωs|
2

〈(B · ωs) (ωs ×B)〉+ V
α′′(ωs)

|ωs|
〈(B · ωs)B〉 =

= −V α′′ (ωs)
ωs

|ωs|

(

< |B|2 > −
〈

BB
T
〉)

+ V
α′(0)− α′(ωs)

|ωs|
2

ωs ×
(〈

BB
T
〉

ωs

)

, (23)

where we used the two relations:

〈(B · ωs) (ωs ×B)〉 = ωs ×
(〈

BBT
〉

ωs

)

, (24)

〈(B · ωs)B〉 =
〈

BBT
〉

ωs. (25)

By averaging on the nine frequency characteristic of the magnetic field, see
Eq. (11), we get the different terms to be inserted in (23), that is:
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〈BiBj〉
(

a6

d2

)

= αi,j =
1

8
·
[

9 sin2 I +
1

2
sin2 θp(20− 27 sin2 I)

]

δi,j (26)

−1

8

(

1− 3 cos2 θp
)

EiEj

+
3

8
cos I

(

1− 3 cos2 θp
)

(Ein̂j + Ej n̂i)

−3

8
n̂in̂j

[

3
(

1− 3 cos2 I
)

− 1

2
sin2 θp(5 − 27 cos2 I)

]

,

〈

B2δi,j −BiBj

〉

(

a6

d2

)

= βi,j =

{

1 +
1

8
·
[

3 sin2 I +
1

2
sin2 θp(4 − 9 sin2 I)

]}

δi,j

+
1

8

(

1− 3 cos2 θp
)

)EiEj (27)

−3

8
cos I

(

1− 3 cos2 θp
)

(Ein̂j + Ej n̂i)

+
3

8
n̂in̂j

[

3
(

1− 3 cos2 I
)

− 1

2
sin2 θp(5− 27 cos2 I)

]

,

< |B|2 >=<
8

∑

i=0

|Bi|2 > =

3
∑

1

αi,i = −1

4

[

10− 6 cos2 I − sin2 θp(3− 9 cos2 I)
]

,

(28)

where E = [0, 0, 1] is the unit vector along the Earth rotation axis, δi,j is
kronecker’s delta and n̂ is the mean motion unit vector normal to the orbital
plane of the satellite.

We introduced αi,j and βi,j to use the same notation of expressions (7a)
and (7b) of Farinella et al. [1996]. The first line of Eq. (27) differs from the
analogous expression (7a) and also the last line of Eq. (28) differs from the
correspondent line of (7b). We are confident in our calculations, that follow a
very different path with respect to those of Farinella et al. [1996], and we believe
that the expressions (7a) and (7b) by Farinella et al. [1996] contain some small
errors, as they do not satisfy some obvious conditions. In fact, βi,j +αi,j has to

be diagonal and equal to
∑3

1 αi,i. Conversely, these conditions are satisfied by
our expressions.

3.4.2 Averaged Gravitational Torque

The gravitational torque (18) has one constant component and one varying at a
frequency twice of the satellite mean motion n. Integrating on the corresponding
period is therefore possible to calculate the averaged torque, we obtain:

〈Mgrav〉 =
3

32
n2

∣

∣

∣

∣

∣

∣

(Iy − Iz)(M1 cos(ψ)−M2 sin(ψ))
(Iz − Ix)(M1 sin(ψ) +M2 cos(ψ))
(Ix − Iy)(−M3 sin(2ψ)−M4 cos(2ψ))

∣

∣

∣

∣

∣

∣

,

(29)
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where

M1 = 2 {3 cos(2I) + cos(2φ− 2Ω) [cos(2I)− 1] + 1} sin(2θ)− 8 sin(2I) cos(φ−Ω) cos(2θ)

M2 = 4 [cos(2I)− 1] sin(2φ− 2Ω) sin(θ)− 8 sin(2I) sin(φ−Ω) cos(θ)

M3 = [1 + 3cos(2I)] [cos(2θ)− 1] + cos(2φ− 2Ω) [cos(2I)− 1] [cos(2θ) + 3] + 4sin(2I)cos(φ− Ω)sin(2θ)

M4 = 4 sin(2φ− 2Ω) [cos(2I)− 1] cos(θ) + 8 sin(φ− Ω) sin(2I) sin(θ). (30)

4 Solutions of the equations for the torques

The equations (4-6) cannot be integrated analytically. We built a code based on
MATLAB routines in order to solve for the differential equations. We used as
independent variables the three Euler angles θ, φ, ψ and their time derivatives
θ̇, φ̇ and ψ̇, in such a way to transform the solution into that of a system of six
first-order differential equations.

4.1 Physical quantities and initial conditions

A very critical point in solving the equations is in choosing the most likely initial
conditions and in defining, with the highest possible precision, the parameters
that appear in them.

The moments of inertia Ix, Iy, Iz of the two LAGEOS were not directly
measured before their launch, but were estimated with a careful analysis by
Visco and Lucchesi [2016]. Unfortunately, we could not found any document
containing the values for the moments of inertia of LARES. In this regard,
Kucharski et al. [2014] computed the moment of inertia of LARES in the hy-
pothesis that the satellite is an homogeneous and symmetrical sphere (with no
oblateness). They obtained I = 5.125 kg ·m2. With an approach a similar to
the one adopted for the two LAGEOS in Visco and Lucchesi [2016], we built
also for LARES a 3D-model and we calculated the values reported in Table
1. The reported error is calculated considering that the structure of LARES
was designed with the possibility to add small masses to tune the moments of
inertia. In the simulations we opted for a very small oblateness, but a spherical
symmetry is nevertheless possible within the errors.

Table 1: Mechanical parameters used in the equations: moments of inertia I,
ray R and offset h of the satellites.

LAGEOS LAGEOS II LARES
Ix [kg ·m2] 10.96± 0.03 11.00± 0.03 4.76± 0.03
Iy [kg ·m2] 10.96± 0.03 11.00± 0.03 4.76± 0.03
Iz [kg ·m2] 11.42± 0.03 11.45± 0.03 4.77± 0.03
R [cm] 30 30 18.2
hx [cm] 0.000 0.000 0.000
hy [cm] 0.000 0.000 0.000
hz [cm] 0.040 0.055 0.000
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In Table 2 we report the values of the electromagnetic quantities we used in
our analyses and simulations. We started from the range of possible changes of
the values reported in Andrés de la Fuente [2007], modifying them within their
errors with the aim to minimize the residuals between the predictions of our
model and the available observations.

Table 2: Electromechanical parameters used in the equations: dimensionless
magnetic factors β′ and β′′, electrical conductivity σ and the relative magnetic
permeability µr.

LAGEOS LAGEOS II LARES
β′ < 10−2 < 10−2 1
β′′ 0.22 0.23 1
σ[s] 2.37 · 1017 2.38 · 1017 5.1 · 1016
µr − 1 2.2 · 10−5 2.2 · 10−5 3.3 · 10−7

In Table 3, the overall optical properties of the surface of each satellite are
reported. These values are the ones that we found to be the most likely in the
literature, and that we confirmed with an independent analysis.

Table 3: Optical parameters used in the equations: radiation coefficient CR and
reflectivity difference between the hemispheres ∆ρ of the satellites.

LAGEOS LAGEOS II LARES
CR 1.13 1.12 1.07
∆ρ 0.013 0.012 0

The data of Table 4 relative to the initial conditions for the spin vector of the
two LAGEOS satellites are taken from Andrés de la Fuente [2007], and modified
within their variability interval to fit the experimental data. Finally, in Table
5, the values of the keplerian parameters of the orbit of the three satellites are
shown. These values were calculated averaging the output values from a precise
orbit determination (POD) made using the GEODYN II software (Putney et al.
[1990], Pavlis and al. [1998]).

Table 4: Spin initial conditions: reference epoch in Modified Julian Date (MJD),
rotational period Ps, right ascension RA and declination dec.

LAGEOS LAGEOS II LARES
Epoch [MJD] 42913.5 48918 55970

Ps [s] 0.48 0.81 11.8
RA [degree] 150 230 186.5
dec [degree] -68 -81.8 -73

4.2 Numerical solution and experimental data

In this section we present our results for the time evolution of the spin of the
two LAGEOS and LARES satellites. This evolution has been calculated using
the equations of motion previously introduced, namely Eqs. (4), (5) and (6).
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Table 5: Orbital parameters used in the equations
LAGEOS LAGEOS II LARES

Day of reference [MJD] 48989 49003 55975
Semimajor axis a [cm] 1.2270 · 109 1.2162 · 109 7.82035 · 108

Eccentricity e 0.004 0.014 0.001
Inclination I [degree] 109.84 52.66 69.49

Ascending node longitude Ω [degree] 313.72 60.62 236.4

Ascending node longitude rate Ω̇ [degree/day] 0.34 -0.63 −1.71
Argument of pericenter ω [degree] 39.90 251.82 296.055

Argument of pericenter rate ω̇ [degree/day] -0.21 0.44 -0.95
mean anomaly M0 [degree] 79.51 103.36 63.933

The expressions that we used for the torques were of two types: the more
general one, that we have discussed in section 3.3, and the averaged one (see
section 3.4). This last solution differs from the general one for the magnetic
and gravitational torques. For the other two torques that we considered, that
vary with the periodicity of one year and are locally modulated by the Earth’s
shadow function, we adopted the general expressions (20) and (22).

The parameters and the initial conditions we used are those reported in
Tables 1–5. For each satellite it has been calculated and drawn the period
of rotation and the orientation (right ascension and declination) of the spin
as function of time. In Figures (1) and (2) we show the results for the older
LAGEOS, while in Figures (3), (4) and in Figures (5), (6) we show, respectively,
the results in the case of LAGEOS II and for the newly LARES.

In all these plots the results for both the general model (red continuous
line) and the averaged model (blue dashed line) are shown. These results are
compared with all the available measurements. All these comparisons validate
very well our models. As specified at the beginning of section 3, we refer to our
new general model as to LASSOS, that is the acronym of LArase Satellites Spin
mOdel Solutions.

The bulk of the experimental measurements are of two kind for the two
LAGEOS: those obtained using Sun’s light reflected by the CCR mirrors (see
Avizonis [1997]), and those obtained observing the modulation of the laser light
reflected back by the satellite’s CCR (see Bianco et al. [2001]). The last mea-
surements are indeed available for all three satellites (see Kucharski et al. [2012,
2013]). The latter method has increased a lot in efficiency after the introduc-
tion of high frequency (kHz) repetition laser in several SLR stations, the first
of these stations has been in 2003 Graz.

In the comparison between models and observations, a disagreement is present
for LAGEOS’s declination in the years 1983-1987. The reason for this disagree-
ment with the data analyzed by Kucharski et al. [2013] could come from the
still low quality of the laser used by the ILRS stations in that years. Another
disagreement is present in the case of LAGEOS in the measurements after 1996,
and for LAGEOS II after 2008. These periods correspond to the decrease of the
spin frequency of the satellites, close to the limit of the possible measurements
with kHz laser. We notice that the same disagreements between experimental
measurements and model are present when the LOSSAM model is applied, see
Figure 1 of Kucharski et al. [2013].
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Figure 1: Spin period of LAGEOS. The continuous red line is the result of
the numerical integration using our new model LASSOS, which is based on
general expressions for the torques. The dashed blue line represents the solution
obtained using averaged torques. The black points are measurements got from
Fig.3 of Kucharski et al. [2013]. The red crosses are measurements reported by
Andrés de la Fuente [2007].

Using our model LASSOS we have also computed the time evolution of the
absolute value and of the components of the different torques acting on the
satellites in the J2000 reference frame. For instance, in the case of LAGEOS
in Figure (7) we show the modulus of the torques due to the Earth’s gravity
gradients and magnetic field, both when they are averaged and when they are
not averaged, while in Figure (8) the values of the two torques due to radiation
pressure are shown for the same period. The amplitude of these torques is
modulated by the eclipses, that bring these torques to zero value. During the
first period the dominating torque is the magnetic one, later it is overcome by
the torque from gravity gradients. In the last years, the effect of the torques
that arise from radiation pressure becomes comparable with that of the other
two torques.

Finally, in Figure (9) and (10), the three components of the considered
torques on LAGEOS during the first 20 years of its life, and in the body ref-
erence frame, are shown. The torque due to the Earth magnetic field is the
only one acting on the ẑb axis with a despinning effect. If the geometric center,
where the radiation pressure force is applied, has coordinates hx or hy different
from zero, a further component of the torque along the ẑb axis will appear; in
this case the torque could also have an effect in increasing the spin rate of the
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Figure 2: Right ascension (top) and declination (bottom) of LAGEOS. The
continuous red line is the result of the numerical integration using our new
model LASSOS, which is based on general expressions for the torques. The
dashed blue line represents the solution obtained using averaged torques. The
black points are measurements reported by Kucharski et al. [2013]. The red
crosses are measurements reported by Andrés de la Fuente [2007].

satellite.
Similar considerations to those obtained in the case of LAGEOS are also

valid for LAGEOS II and LARES.

5 Discussion about the results

In this work we have faced the problem of the knowledge of the spin evolution of
LAGEOS-like satellites. Our first goal in this field was to significantly improve
the time evolution of the spin vector of the passive LAGEOS, LAGEOS II and
LARES satellites. The knowledge of the right spin evolution for these satellites,
both in rate and orientation, is of fundamental importance in order to correctly
model the thermal thrust forces acting on their surface, as well as the asymmetric
reflectivity observed in the case of the two LAGEOS. The ability to manage
these non-gravitational perturbations through reliable models is, consequently,
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Figure 3: Spin period of LAGEOS II. The continuous red line is the result
of the numerical integration using our new model LASSOS, which is based
on general expressions for the torques. The dashed blue line represents the
solution obtained using averaged torques. The black points are measurements
reported by Kucharski et al. [2013]. The red crosses are measurements reported
by Andrés de la Fuente [2007].

of utmost importance. This not only for studies focused on measurements of
fundamental physics by means of the analysis of the orbit of these satellites, but
also for the potential benefits in the fields of space geodesy and geophysics.

For instance, in this regard, the ILRS determinations of the tracking sta-
tion coordinates and of the Earth Orientation Parameters (EOP), represent the
starting point for the determination of the Earth’s geocenter and the definition
of the Earth’s International Terrestrial Frame (ITRF). These, and other geo-
physical products, require a careful orbit determination of the two LAGEOS
and (now) LARES (and other) satellites. Indeed, a POD should be based on
the continuous refinement of the perturbations included in the dynamical model
of each satellite.

In Section 3 we have introduced the main torques acting on the two LAGEOS
and LARES satellites. Of course, the four effects there considered are not the
only physical effects able to produce a torque on a spacecraft in orbit around
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Figure 4: Right ascension (top) and declination (bottom) of LAGEOS II. The
continuous red line is the result of the numerical integration using our new
model LASSOS, which is based on general expressions for the torques. The
dashed blue line represents the solution obtained using averaged torques. The
black points are measurements reported by Kucharski et al. [2013]. The red
crosses are measurements reported by Andrés de la Fuente [2007].

our planet. However, these torques are the most important to take into account
at the current level of the orbit modelling of the LAGEOS and LARES satellites
and also of the their corresponding POD, that depends not only by the models
implemented in the software but also from the tracking observations and the
Reference Frames accuracy. In fact, the other possible torques that we can take
into consideration are negligible, at least by two or three order of magnitude,
with respect to the torque due to the asymmetric reflectivity and the one due
to the offset between the satellite center of mass and the center of pressure (i.e.
the geometric center), that is the current smallest torques that have a maximum
magnitude of about 10−9Nm, see Figure 8.

For these reasons we have not performed a complete analysis to model
torques that a priori should be orders of magnitude smaller than those con-
sidered, but we simply estimated the order of magnitude of the effects not
included in our model. In particular, we evaluated the order of magnitude of
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Figure 5: Spin period of LARES. The continuous red line is the result of the
numerical integration using our new model LASSOS, which is based on gen-
eral expressions for the torques. The dashed blue line represents the solution
obtained using averaged torques. The black points are measurements from
Kucharski et al. [2014].

five additional torques originated by:

• Neutral drag

• Charged drag

• Earth Yarkovsky

• Yarkovsky-Schach

• Inner eddy currents

We show in Table 6 the order of magnitude of the acceleration and of the
corresponding torque produced by these physical effects in the case of LAGEOS.
These orders of magnitude are still valid in the case of LAGEOS II. The first
four torques are in principle null for a satellite with a perfectly spherical in
shape mass distribution. Deviations from this distribution are due to an offset
between the geometrical center of the satellite and its center of mass. In the
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Figure 6: Right ascension (top) and declination (bottom) of LARES. The con-
tinuous red line is the result of the numerical integration using our new model
LASSOS, which is based on general expressions for the torques. The dashed
blue line represents the solution obtained using averaged torques. The black
points are measurements from Kucharski et al. [2014].

Table 6: Additional torques and their order of magnitude in the case of the two
LAGEOS satellites.

Perturbing effect Acceleration [m/s2] Torque [N m]
Neutral drag 3× 10−13 1× 10−13

Charged drag 5× 10−12 2× 10−12

Thermal drag 7× 10−12 3× 10−12

Yarkovsky-Schach 1× 10−10 4× 10−11

Inner eddy currents 4× 10−13 3× 10−11

estimation of the torques that arise from these effects a very conservative value
of 1 mm for the offset of the three satellites was adopted. The margin adopted
in the estimation can be evaluated comparing the value of the offset of 1 mm
with those used in the current work that were estimated on the basis of our fit
of the available spin observations of the satellites, see previous Table 1.

The accelerations acting on the satellite in the case of neutral drag have
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Figure 7: Absolute value (modulus) of the gravity gradient and magnetic torques
acting on LAGEOS during the first 20 years of its life in J2000 reference frame.

been obtained from Lucchesi et al. [2015], and from Andrés de la Fuente [2007]
— as a very pessimistic upper bound — in the case of the drag produced by the
Coulomb interaction of the charged spacecraft with the surrounding charged par-
ticles. The thermal drag acceleration produced by the Earth-Yarkovsky effect
has been obtained as an upper limit of the acceleration estimated by Rubincam
[1988], while in the case of the solar Yarkovsky-Schach effect the value is the
one estimated by Lucchesi [2002].

These last two torques have to be considered as torques related to a thermoe-
lastic deformation of the satellites, and are operative only if the temperature
distribution across the satellite surface is effective in changing the spacecraft
mass distribution. Finally, the last effect is related with the electrodynamical
force produced by the eddy currents generated by the photoelectric emission of
the satellite, see also Andrés de la Fuente [2007] and Nakagawa et al. [2000].

In Table 7 the order of magnitude of possible additional torques are shown in
the case of LARES. Among the non-gravitational perturbations acting on this
satellite, the effects of the neutral atmosphere drag need a special attention,
since the relatively low orbit of the satellite, at an height of about 1,450 km
where the residual Earth atmosphere cannot be neglected (see Pardini et al.
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Figure 8: Absolute value (modulus) of the two torques due to radiation pressure
acting on LAGEOS during the first 20 years of its life in J2000 reference frame.

[2017]).

Table 7: Additional torques and their order of magnitude in the case of the
LARES satellite.

Perturbing effect Acceleration [m/s2] Torque [N m]
Neutral drag 1× 10−11 4× 10−12

Other effects 2× 10−13 8× 10−14

The neutral drag produces on LARES an acceleration of about 1×10−11[m/s2]
and a torque, in the presence of the cited offset, of about 4×10−12[Nm], a factor
≈ 40 larger than that obtained in the case of the two LAGEOS, but still negli-
gible with respect to the smaller torque of those considered within the LASSOS
model.

The last line of Table 7 accounts for the possible cumulative contribution to
the torque in the presence of an offset of about 1 mm from the other smaller
perturbing effects.
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Figure 9: The three components of the gravity gradients and magnetic torques
acting on LAGEOS during the first 20 years of its life in the body reference
frame.

6 Conclusions and future work

The work here presented falls in the LARASE research program, whose ultimate
goal is to provide refined measurements of relativistic physics on the orbit of
laser-ranged satellites, as the ones considered in the present paper: the two
LAGEOS and LARES. Indeed, a very important prerequisite in order to reach
refined measurements of the tiny gravitational effects on the orbit of a satellite,
as those predicted by Einstein’s theory of General Relativity, is the inclusion
of accurate models for the handling of both gravitational and non-gravitational
perturbations in the data reduction of the orbit of a satellite. In particular,
the non-gravitational perturbations are responsible of very subtle effects on
the orbit, really quite complex to model in a reliable fashion. Their modeling
will first impact the orbit determination of the satellites considered for the
relativistic measurements of interest and, finally, will have a deep impact in the
robustness of the final error budget of the measurements.

In the present work we have described the effects of the torques due to:

• Earth’s magnetic field
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Figure 10: The three components of the radiation pressure torques acting on
LAGEOS during the first 20 years of its life in the body reference frame.

• Earth’s gravitational field

• not coincidence between geometrical center and center of mass of the satel-
lite

• asymmetries in the reflectivity of the satellite surface.

The model for the spin presented in this paper, i.e. LASSOS, is, to our
knowledge, the only model — among all the models developed so far — that
has succeeded at the same time in answering to all the following aspects:

1. it implements not-averaged torques

2. it can be used for any orientation of the satellite rotation axis

3. it is valid for any spin rate

4. it has produced results compatible with the available observations.

The good agreement with the experimental measurements is also conse-
quence of the independent evaluation of the moments of inertia of the satellites
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(Visco and Lucchesi [2016]). A further innovation is the introduction of a de-
scription of the torque from Earth’s magnetic field using its local values along
the satellites’ orbit, and not simply by means of a static average value for the
magnetic field. Indeed, this represents a very important result.

A step forward of LASSOS with respect to previous models is also repre-
sented by the expression that we used for the magnetic polarizability per unit
of volume α of the satellite. In particular, we considered the dependence of α
from the relative magnetic permeability µr, that provides the residual magnetic
polarizability in the case of a non-spinning satellite. This aspect is quite im-
portant for the considered satellites. Indeed, the rotational period of LAGEOS
is quite long, probably of the order of about 1 day, while for LAGEOS II it is
probably of the order of its orbital period. In the case of LARES the rotational
period is probably of a few thousands of seconds, but its slowing down is much
faster than that of the two LAGEOS. An average of our solution on the day and
the orbital period, in such a way to reproduce the limit of the spin evolution
valid in the so-called fast-spin approximation, has allowed us to point out also
some errors present in previous works, which are based on simplified averaged
models.

In order to further improve (if possible) the knowledge of the parameters
that enter in our spin model, in the near future we plan to develop a more
sophisticated tool regarding the fit procedures that we used for the comparison
of the available observations (i.e. the measurements of the orientation and rate)
of the spin and the corresponding predictions by the LASSOS model. We retain
that this tool will be fundamental in order to increase the robustness for the
prediction of the spin evolution in the periods not covered by measurements,
and during which the spin rate is so low that only our spin model, and not
one model based on averaged equations, is able to provide a reliable foresight.
Of course, the possibility of comparing the predictions of LASSOS with new
observations of the spin would be very interesting. Considering the techniques
applied till now for the determination of the spin of the satellites, this is not
an easy task in the case of the two LAGEOS, since their very low rotational
rate, but it is still possible for LARES with a spectral analysis of the range data
obtained by means of kHz lasers.

A further and very important step to be performed in the near future is to
include the contribution of the predictions of the spin provided by LASSOS in
a thermal model of the satellites and compute the changes in their orbit. These
changes should than be compared with the corresponding orbital residuals of
the satellites obtained within a dedicated POD, in order to see how well these
residuals will be reduced by modeling the thermal effects.

The development of a new thermal model for the considered satellites is one
of the main targets of LARASE, and we are confident to present soon the model
and the results that can be obtained applying the model to a POD. Neverthe-
less, we preliminary tested the LASSOS model in this direction with a POD
performed for the two LAGEOS with GEODYN in the case of the Yarkovsky
thermal drag. We obtained a slightly reduction in the RMS of the satellites
range residuals over a timespan of several years: from 2.8 cm to 2.5 cm in the
case of LAGEOS and from 2.5 cm to 2.2 cm for LAGEOS II. It is important
to underline that the thermal model included in Geodyn is a very old model
not up-to-date, and it is valid only in the case of the fast spin approximation.
Moreover, the starting epoch of the data reduction was that of LAGEOS II
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launch, consequently LAGEOS was not rotating fast, while LAGEOS II was in
the condition of fast rotation only during the first years of the analysis.

However, this preliminary result represents an argument in favour of the fact
that we are on the right path with the LASSOS model.
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A The Earth magnetic field calculated along the
orbit of a satellite

If the Earth magnetic field is approximated by a dipole dE (with d > 0) tilted
with respect to the Earth rotational axis in such a way that αp and θp are the
longitude and colatitude of the magnetic north pole, the dipole in the J2000
reference frame evolves in time as:

dE(t) = d





cos (αp + ω⊕ t) sin(θp)
sin(αp + ω⊕ t) sin(θp)

cos(θp)



 . (31)

The satellite motion is approximated on a circular orbit with Keplerian pa-
rameters measured in J2000 frame: M0, the mean anomaly at t=0; Ω, the
longitude of ascending node, I, the orbit inclination, ω, the argument of peri-
center and a, the semimajor axis. Than the satellite motion in the J2000 frame
is:

s = a cos (M0 + nt)





cosΩ cosω − cos I sinΩ sinω
sinΩ cosω + cos I cosΩ sinω

sin I sinω



+

−a sin (M0 + nt)





cosΩ sinω + cos I sinΩ cosω
sinΩ sinω − cos I cosΩ cosω

− sin I cosω



 . (32)

The magnetic field as function of time over the satellite orbit is therefore
given by:

BE =
3 s(dE · s)

a5
− dE

a3
=

8
∑

i=0

Bi cos(ωit+ ϕi), (33)
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where

ω0 = 0

ω1 = ω2 = ω⊕ − 2n

ω3 = ω4 = ω⊕ + 2n (34)

ω5 = ω6 = 2n

ω7 = ω8 = ω⊕

ϕi =

{

−π
2 for i=2,4,6,8
0 for i=0,1,3,5,7

(35)

B0 = −
3 d cos θp

4 a3

[

− sin(2I) sinΩ
sin(2I) cos Ω
− 1

3
+ cos(2I)

]

(36)

B1 = −
3 d sin θp (1 + cos I)

8 a3

[

(1− cos I) sin(2ω + 2M0 − φp) + (1 + cos I) sin(2Ω + 2ω + 2M0 − αp)
(1− cos I) cos(2ω + 2M0 − φp)− (1 + cos I) cos(2Ω + 2ω + 2M0 − αp)

−2 sin I · cos(Ω + 2ω + 2M0 − αp)

]

(37)

B2 = −
3 d sin θp (1 + cos I)

8 a3

[

(1− cos I) cos(2ω + 2M0 − φp) + (1 + cos I) cos(2Ω + 2ω + 2M0 − αp)
−(1− cos I) sin(2ω + 2M0 − φp) + (1 + cos I) sin(2Ω + 2ω + 2M0 − αp)

2 sin I · sin(Ω + 2ω + 2M0 − αp)

]

(38)

B3 = −
3 d sin θp (1− cos I)

8 a3

[

−(1 + cos I) sin(2ω + 2M0 + φp) + (1− cos I) sin(2Ω− 2ω − 2M0 − αp)
(1 + cos I) cos(2ω + 2M0 + φp)− (1− cos I) cos(2Ω− 2ω − 2M0 − αp)

2 sin I · cos(Ω− 2ω − 2M0 − αp)

]

(39)

B4 = −
3 d sin θp (1− cos I)

8 a3

[

(1 + cos I) cos(2ω + 2M0 + φp) + (1− cos I) cos(2Ω− 2ω − 2M0 − αp)
(1 + cos I) sin(2ω + 2M0 + φp) + (1− cos I) sin(2Ω− 2ω − 2M0 − αp)

−2 sin I · sin(Ω− 2ω − 2M0 − αp)

]

(40)

B5 = −
3 d cos θp sin I

2 a3

[

cos Ω cos(2ω + 2M0)− cos I sin(Ω) sin(2ω + 2M0)
sinΩ cos(2ω + 2M0) + cos I · cos(Ω) sin(2ω + 2M0)

sin I sin(2ω + 2M0)

]

(41)

B6 = −
3 d cos θp sin I

2 a3

[

cosΩ sin(2ω + 2M0) + cos I sin(Ω) cos(2ω + 2M0)
sinΩ sin(2ω + 2M0)− cos I cos(Ω) cos(2ω + 2M0)

− sin I cos(2ω + 2M0)

]

(42)

B7 = −
3 d sin θp

8 a3





(1− cos(2I)) sin(2Ω− φp)− sin(φp)
(

1
3
+ cos(2I)

)

−(1− cos(2I)) cos(2Ω− φp) + cos(φp)
(

1
3
+ cos(2I)

)

2 sin(2I) cos(Ω− φp)



 (43)

B8 = −
3 d sin θp

8 a3





(1− cos(2I)) cos(2Ω− φp) + cos(φp)
(

1
3
+ cos(2I)

)

(1− cos(2I)) sin(2Ω− φp) + sin(φp)
(

1
3
+ cos(2I)

)

−2 sin(2I) sin(Ω− φp)



 . (44)
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