
entropy

Article

Integrated Information in Process-Algebraic
Compositions

Tommaso Bolognesi

Institute of Information Science and Technologies, National Research Council (ISTI-CNR), 1, Via Moruzzi,
56124 Pisa, Italy; t.bolognesi@isti.cnr.it

Received: 25 March 2019; Accepted: 14 August 2019; Published: 17 August 2019
����������
�������

Abstract: Integrated Information Theory (IIT) is most typically applied to Boolean Nets, a state
transition model in which system parts cooperate by sharing state variables. By contrast,
in Process Algebra, whose semantics can also be formulated in terms of (labeled) state transitions,
system parts—“processes”—cooperate by sharing transitions with matching labels, according
to interaction patterns expressed by suitable composition operators. Despite this substantial
difference, questioning how much additional information is provided by the integration of the
interacting partners above and beyond the sum of their independent contributions appears
perfectly legitimate with both types of cooperation. In fact, we collect statistical data about
φ—integrated information—relative to pairs of boolean nets that cooperate by three alternative
mechanisms: shared variables—the standard choice for boolean nets—and two forms of shared
transition, inspired by two process algebras. We name these mechanisms α, β and γ.
Quantitative characterizations of all of them are obtained by considering three alternative execution
modes, namely synchronous, asynchronous and “hybrid”, by exploring the full range of possible
coupling degrees in all three cases, and by considering two possible definitions of φ based on two
alternative notions of distribution distance.

Keywords: boolean net; process algebra; parallel composition operator; integrated information

1. Introduction

Integrated Information Theory (IIT) [1,2] is concerned with the study of natural or artificial systems
formed by many interconnected micro-components. One of the key steps in this study is the
identification of the “hidden” macro-components of the system, namely its Minimum Information
Partition (MIP). The macro-components of the MIP can be seen as distinct but interacting parts:
φ measures the added value provided by their integration/composition with respect to the plain sum
of their contributions—how much the integrated whole is more than the sum of the separate parts.

In Boolean Nets [3]—the state transition model predominantly used for illustrating
IIT—the integration/cooperation among the MIP parts occurs via the directed edges that interconnect
them: the parts influence one another by reading each other’s boolean variables—a form of
shared-variable cooperation.

In this paper, we contrast the above cooperation mechanism with an alternative one based
on shared transitions, that arises in Process Algebras (or “Calculi”) [4–8]. Furthermore, viewing the
interacting partners under the process algebraic perspective has suggested us to extend our analysis to
three execution modes for boolean nets: synchronous, asynchronous and “hybrid” (although the second
one is soon dropped).

We have three main objectives in mind.

Entropy 2019, 21, 805; doi:10.3390/e21080805 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0003-0854-2587
http://dx.doi.org/10.3390/e21080805
http://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/21/8/805?type=check_update&version=2

Entropy 2019, 21, 805 2 of 26

The first is to put the interaction mechanisms of shared variables and shared transitions on an equal
footing, and to obtain some numerical characterization of their “performance” with respect to the
ability to produce integrated information.

The second is related to the central application area of IIT—the modeling and quantification of the
emergence of consciousness from the complex structure of the brain. Given that the brain architecture
is indeed intrinsically structured into macro-components, the investigation of alternative or additional
mechanisms of cooperation among them, that explicitly reflect such higher-level structure, could be an
interesting complement to the study of cooperation mechanism that only address micro-components.

The third objective is relevant to the areas from which these additional cooperation mechanisms
are borrowed, namely Process Algebra and, more generally, formal methods for Software Engineering.
Using informational measures from IIT appears as a completely novel and attractive approach to
characterizing quantitatively these practically useful mechanisms and their associated operators.

The paper is organized as follows.
In Section 2, we briefly recall the definition of Boolean Net and introduce the three execution

modes: synchronous, asynchronous and hybrid. The first, yielding deterministic behaviors, is the
traditional mode; however, the nondeterministic asynchronous and hybrid modes appear more
in line with the nondeterminism of the systems typically addressed by Process Algebra. Here, we also
discuss the three modes with respect to the property of conditional independence.

In Section 3, we introduce the interaction mechanism adopted in process-algebraic
calculi/languages, one based on shared labeled transitions (abbreviated “sharTrans”) as opposed
to shared variables (“sharVar”). We in particular illustrate the flexible parametric operator of parallel
composition from the LOTOS language, denoted “|β|”: expression P|β|Q describes a system composed
of two processes P and Q that cooperate by sharing some transitions, where β defines the degree of
coupling between them.

In Section 4, we show that the parallel composition operator |β| can be readily used also for
composing two boolean nets P and Q—still written P|β|Q—provided these are enriched with transition
labels, and regardless of the chosen execution mode. This enables us to put the newly considered
form of composition/integration under the lens of IIT without need to import and discuss any other
element of Process Algebras.

In Section 5, we introduce notation P<α>Q and the idea to control the degree of coupling
between two bool nets P and Q, under the sharVar mechanism, by controlling the number α of edges
crossing between them.

In Section 6, we recall the notion of integrated information, the central concept of IIT, both in its
state-dependent form φ(X) and in its averaged form, which we denote φ̄. These definitions are based on
a distance function d(ycoop, yindep) between two probabilistic state distributions, where ycoop reflects
inter-part cooperation while yindep corresponds to their independent operation. In IIT 2.0 [1], d is
Relative Entropy (or Kullback–Liebler divergence, denoted dkl). We show that the definition of yindep
for the sharVar context is such to avoid the “dkl-mismatch problem” that may arise when applying dkl
to generic distributions. Then, we conduct a statistical analysis of φ̄mode(P<α>Q) in order to study
its dependency on α for the sync and hybrid execution modes of P<α>Q, using 10 pairs (P, Q) of
randomly generated bool nets. For facilitating the comparison of P<α>Q with sharTrans compositions
(in view of potential dkl-mismatch problems in the latter), we extend our statistical analysis by using a
version of φ̄ in which dkl is replaced by Manhattan distance.

In Section 7, we address the problem of defining φ̄ in the very different context of sharTrans bool
net compositions P|β|Q. Here, we have to face two problems: the presence of deadlocks and the
mentioned dkl-mismatches. The first problem is solved easily; a drastic way to bypass the second one
is to switch to the φ̄ variant based on Manhattan distance.

Wishing to stick to the original, dkl-based definition of φ̄, in Section 8, we consider an alternative,
process-algebraic cooperation mechanism, borrowed from CCS (Calculus of Communicating
Systems) [5], that avoids the dkl-mismatch problem. In fact, we combine CCS parallelism (“P|Q”)

Entropy 2019, 21, 805 3 of 26

and restriction (“\γ”) into the convenient syntactic form P[γ]Q ≡ (P|Q)\γ, where parameter γ

still expresses the degree of coupling between the interacting parties. This enables us to compare,
by statistical experiments, the trends of φ̄, in its original dkl-based definition [1], for P<α>Q
and P[γ]Q.

In Section 9, we regroup the 15 plots introduced in the previous sections into a compact table that
facilitates the comparison of mechanisms α, β and γ.

Some closing remarks are given in Section 10.

2. Boolean Nets: Sync, Async and Hybrid Execution Modes

Boolean nets [3] are discrete sequential dynamical systems. An (n, k)-boolean net (“bool net” in the
sequel) is a pair (G(B, E), F) where:

• G(B, E) is a directed graph with n vertices B = {b1, . . . , bn}, and edge set E; each vertex bi ∈ B
has exactly k incoming edges (this limitation on node in-degree is not essential; we adopt it only
for convenience of implementation and notation): bi,1 → bi, . . . , bi,k → bi, so that |E| = nk.

• F = { f1, . . . fn) is a set of n boolean functions of k arguments, one for each vertex in B.

Each vertex bi ∈ B is a boolean variable controlled by boolean function fi(bi,1 . . . bi,k) from F,
where the ordered k-tuple of arguments (bi,1 . . . bi,k) corresponds to the edges incident to bi. In the
sequel, an (n, k)-bool net P is sometimes denoted P(n, k).

A bool net computation is a sequence of steps, assumed to take place in discrete time—one step at
each clock tick. Each step consists of the instantaneous and simultaneous firing of a group of nodes,
called the firing group. A firing group is a subset of B, which can be conveniently identified also by its
characteristic function (i.e., characteristic function {1,1,0} indicates that only the first two nodes fire,
out of three). When node bi fires, its value is updated according to boolean function fi.

Notation. Lower case letters x and y denote discrete random variables. In particular, x or x(t) is the
current state at time t of an (n, k)-bool net, consisting of an n-tuple of binary random variables
(b1(t) . . . bn(t)). Similarly, y or y(t + 1) = (b1(t + 1) . . . bn(t + 1)) is the next state at time (t + 1).
Upper case letters X and Y denote actual n-tuples of bits, i.e., the values that variables x and y
may assume: X = (γ1 . . . γn) and Y = (δ1 . . . δn), where γs and δs are bits. Subscript i in Xi is
used when we want Xi to range in a set of n-tuples, for example in the whole set {0, 1}n—not for
selecting an element inside the tuple! For example, writing prob(x = Xi), where Xi = (γi

1 . . . γi
n),

means prob(b1(t) = γi
1 . . . bn(t) = γi

n). We consistently use identifiers x and X for predecessor
states, and y and Y for successor states.

The densities of random variables x and y, often called here “distributions”, are denoted px and
py, but sometimes also x and y, with symbol overloading; the meaning should be clear from
the context. For example, the probability for variable y to assume value Yi is written py(Yi) but
also y(Yi).

tpm. In the sequel, an essential role is played by the transition probability matrix (tpm), in which entry
tpm(XPQ, YPQ) expresses the conditional probability prob(YPQ|XPQ) obtained by counting all
possible transitions that lead from state XPQ to state YPQ.

Given an (n, k)-bool net, we consider three execution modes for it, which differ in the way we define
FG, the set of firing groups possible at each step. (Note that FG does not depend on the current state.)

Sync. All nodes fire (update) simultaneously. In other words, FG consists of only one firing
group, which includes all n nodes. For example, when n = 3, we have FG = {B} (using
node sets), also represented as FG = {{1, 1, 1}} (using characteristic functions). Evolution is
deterministic: each global state has only one successor. Sync boolean nets are a generalization of
Cellular Automata.

Entropy 2019, 21, 805 4 of 26

Async. Nodes fire one at a time, the choice being made by a uniform random distribution.
In other words, FG consists of n firing groups, each being a singleton. For n = 3, we have
FG = {{b1}, {b2}, {b3}}, or FG = {{1,0,0}, {0,1,0}, {0,0,1}}. Evolution is nondeterministic:
each global state may have multiple successors—as many as n (note that, with fixed current state,
the correspondence between firing groups and next states can be many-to-one).

Hybrid. (I am thankful to Larissa Albantakis for having drawn my attention to this execution mode
and its conditional independence property.) Here, FG consists of 2n firing groups—namely, all the
subsets of the node set B. For n = 3, using characteristic functions, we have FG = {{0,0,0}, {0,0,1},
{0,1,0} . . . {1,1,1}}. The choice is made, again, by a uniform random distribution: the probability
to pick any specific firing group is 1/2n, where n is the number of nodes. Note that this is
equivalent to firing each node with probability 1/2, independently node by node. Evolution
is nondeterministic: each global state may have multiple distinct successors—as many as 2n.
Note that the empty firing group is also included.

We write tpmm
S for denoting the transition probability matrix of bool net S executed in mode m

(sync, async or hybrid).
We soon deal with composite bool nets. The easiest way to compose two independent bool nets P

and Q is to take their union, defined in the obvious way and denoted P∪Q. P and Q are disconnected,
and do not communicate. It is trivial to see that P ∪Q is itself a bool net, which can be executed in any
of the three modes.

Let us then establish some simple facts about the relations between the set FGm
P∪Q of firing groups

of P ∪ Q and sets FGm
P and FGm

Q of firing groups of the components, in the three modes. In the
equations below, firing groups are conceived as node sets.

FGsync
P∪Q = {BP ∪ BQ} = FGsync

P ×∪ FGsync
Q (1)

FGasync
P∪Q = {{b1} . . . {bp}} ∪ {{b′1} . . . {b′q}} = FGasync

P ∪ FGasync
Q (2)

FGhybrid
P∪Q = 2BP∪BQ = 2BP ×∪ 2BQ = FGhybrid

P ×∪ FGhybrid
Q . (3)

In Equation (1), {BP ∪ BQ} is a singleton set—a set whose unique element is the set BP ∪ BQ of nodes.
In sync mode, FG—be it referred to P, Q or P ∪ Q—has only one element, namely the firing group
involving all available nodes. Thus, FGsync

P = {BP} and FGsync
Q = {BQ}. Symbol “×∪” denotes a

Cartesian product that takes the union of the paired elements, which are node sets (e.g., {A, B} ×∪
{C, D} = {A ∪ C, A ∪ D, . . . }.

Executing P ∪Q in async mode (Equation (2)) means to fire (update) one node at a time. Thus, in
this equation, we make use of singleton sets (e.g., {bi} or {b′j}) formed from the individual nodes of P

and Q, where BP = {b1 . . . bp} and BQ = {b′1 . . . b′q}. Set FGasync
P∪Q is then the plain union of sets FGasync

P

and FGasync
Q .

Executing P ∪ Q in hybrid mode (Equation (3)) means to fire any possible subset of BP ∪ BQ,
including the empty set. This set of firing groups can also be seen as the “special” Cartesian product
FGhybrid

P ×∪ FGhybrid
Q .

Note that the FG of the whole system is a Cartesian product only for the sync and hybrid modes,
and that these results clearly hold also when P and Q are connected by some edges, i.e., are not
independent, since firing groups are defined relative to node sets, regardless of node interconnections.

Conditional Independence in the Three Modes

Let x = {b1(t) . . . bn(t)} denote the current global state of an (n, k) bool net at time t,
and y = {b1(t + 1) . . . bn(t + 1)} be the next global state, at time t + 1.

Entropy 2019, 21, 805 5 of 26

Following Pearl [9], we say that, for any i, j ∈ {1 . . . n}, bi(t + 1) is conditionally independent from
bj(t + 1), given x, if

p(bi(t + 1)|x, bj(t + 1)) = p(bi(t + 1)|x), when p(x, bj(t + 1)) > 0. (4)

Once x is known, the additional knowledge of bj(t + 1) does not add anything to what we already
know about bi(t + 1) (and vice versa). Note that the above equation means:

p(bi(t + 1) = δi|x = (γ1 . . . γn), bj(t + 1) = δj) = p(bi(t + 1) = δi|x = (γ1 . . . γn)) (5)

for all γs and δs such that p(x = (γ1 . . . γn), bj(t + 1) = δj) > 0.
Two random variables y1 and y2 are independent if and only if their mutual information [10] is null:

M(y1, y2) = 0. Similarly, two random variables y1 and y2 are conditionally independent, given x, a third
variable, if and only if their conditional mutual information is null: M(y1, y2|x) = 0.

Recall that mutual information M(y1, y2), a symmetric quantity representing the information
provided on average by one variable about the other, is:

M(y1, y2) = ∑
i,j

py1y2(Yi, Yj)Log2
py1y2(Yi, Yj)

py1(Yi)py2(Yj)
, (6)

where py1y2 is the joint distribution of the two variables, while py1 and py2 are the respective
marginal distributions.

The conditional mutual information between variables y1 and y2, relative to variable x, is

M(y1, y2|x) = ∑
i,j,k

py1y2x(Yi, Yj, Xk)Log2
py1y2x(Yi, Yj, Xk)px(Xk)

py1x(Yi, Xk)py2x(Yj, Xk)
, (7)

which can be also formulated as the weighted sum of the mutual information relative to the individual
values Xk of variable x.

IIT attributes much importance to conditional independence: when the property is satisfied,
each element bi, with its function fi(bi,1 . . . bi,k), can be interpreted as an individual causal element within
the system; when it is violated, a possibly undesirable form of instantaneous causal influence between
bi(t + 1) and bj(t + 1) arises.

The three considered execution modes perform differently with respect to conditional independence.

• The sync mode entails conditional independence for the simple reason that, due to transition
determinism, knowledge of the current state X already provides complete information about
bi(t + 1) (and bj(t + 1)).

• With the async mode, conditional independence is violated: knowing bj(t + 1), in the case
bj(t + 1) 6= bj(t), reveals that bj has been the only firing (updating) node, which implies
bi(t + 1) = bi(t)—a conclusion that we cannot draw from the pure knowledge of x.

• The hybrid mode entails conditional independence. As already observed, picking a firing
group with uniform probability 1/2n is equivalent to firing each node with probability 1/2,
independently node by node. Thus, finding that bj has fired does not provide additional
information on whether or not bi has fired, thus on bi(t + 1).

It is straightforward to see that the above definition of conditional independence, and the results
for the three modes, are valid not only for individual nodes but also for groups of nodes, i.e., for parts
of the net, such as P and Q in the sequel.

Entropy 2019, 21, 805 6 of 26

Two-Step Conditional Independence

It could be of some interest to see how conditional dependence/independence carries over to
the case of two or more transitions, e.g., for analyzing behaviors under macro-transitions, or temporal
coarse-graining. Somewhat surprisingly, the scenario changes as follows.

Let x(t), y(t + 1), z(t + 2) be a sequence of global states; we are now to compare prob(bi(t +
2)|x(t), bj(t + 2)) with prob(bi(t + 2)|x(t)).

In sync mode, conditional independence is still valid, for the same argument of the case of one
transition: z(t + 2) is completely defined, once x(t) is known.

In async mode, conditional independence is still violated. If bj(t + 2) 6= bj(t), we know that node
j has fired at least once: this fact reduces the probability that node i has fired at time t + 1 or t + 2,
providing us additional information about bi(t + 2).

The change occurs with respect to the hybrid mode: while the property is satisfied after one
transition, it is violated after two. Informally, finding bj(t + 2) 6= bj(t) reveals that node j has fired at
least once, which yields additional information about bj(t + 1). This, in turn, may provide additional
information about bi(t + 2) beyond what is already given by x(t). Of course, knowing who fired in
the first step still does not say anything about who fired in the second step: the point is that additional
knowledge about the intermediate values of y(t + 1) does refine our knowledge about the possible
final values of z(t + 2).

3. Parallel Composition of LOTOS Processes: P|β|Q

In Process Algebras [4–8], a distributed concurrent system is formally described as a set of
interacting processes. Each of these formalisms offers its own set of operators for specifying actions,
interactions, concurrency, choice, nondeterminism, recursion, etc. By the Structural Operational
Semantics [11], the syntactic expressions built by these operators, describing system structure and
behavior, can be formally interpreted as labeled transition systems.

Of crucial importance for specifying the macro-structure and interaction patterns of the system are
the parallel composition operators. We in particular refer to the flexible, parametric parallel composition
operator of the process-algebraic language LOTOS (Language of Temporal Ordering Specification) [8].

When two processes P and Q are composed by the parallel composition operator “|β|”, where β

is the set of “synchronization labels”, the resulting labeled transition system is obtained by forcing the
processes to proceed jointly—in synchrony—with the transitions with labels in β, while proceeding
independently—in “interleaving”—with their other transitions.

The Structural Operational Semantics provides one or more axioms or inference rules specifying
the transitions associated with (the expressions formed by) each operator. The inference rules are
usually written as “fractions”, and define the transitions of an expression formed by that operator,
appearing in the “denominator” (the conclusion), in terms of the transitions of the operator arguments,
appearing in the “numerator” (the premise).

Three inference rules define the semantics of the LOTOS parallel composition expression P|β|Q,
where P and Q are themselves expressions (processes):

P x−→ P′ ∧ x /∈ β

P|β|Q x−→ P′|β|Q
(LOTOS left interleaving) (8)

Q x−→ Q′ ∧ x /∈ β

P|β|Q x−→ P|β|Q′
(LOTOS right interleaving) (9)

P x−→ P′ ∧Q x−→ Q′ ∧ x ∈ β

P|β|Q x−→ P′|β|Q′
(LOTOS synchronization) (10)

Entropy 2019, 21, 805 7 of 26

For example, when two processes P[a, b, c] and Q[b, c, d], able to perform transitions with labels
in, respectively, sets {a, b, c} and {b, c, d}, are composed by the expression “P[a, b, c]|{b, c}|Q[b, c, d]”,
they will interleave their local transitions labeled a and d, and synchronize those labeled b and c.

When the set of synchronization labels is empty—β = ∅—we have the special case of pure
interleaving composition P|∅|Q, also denoted P|||Q, where “|||” is called the interleaving operator.
In this case, it is clear that the rules in Equations (8) and (9) are still applicable while the rule in
Equation (10) is not; thus, in composition P|||Q, the components can only proceed one at a time.

In the next section, we discuss how to apply the above parallel composition operator to bool nets,
and the way this operator performs with respect to the conditional independence property.

4. Parallel Compositions of Bool Nets: P|β|Q

Bool nets are state transition systems, and since the rules in Equations (8)–(10) for parallel
composition are applicable to labeled transition systems, it is perfectly feasible to apply them to the
composition P|β|Q of boolean nets. The only missing elements are transitions labels!

For our investigations, we adopt pairs (P, Q) of nets with identical (n, k) parameters; for the
labels, we proceed as follows.

First, we choose the label alphabet, which consists of the set {1, 2 . . . 2nk} of natural numbers
(the choice of size 2nk is justified below). We overload symbol β to denote both a natural number,
with 0 ≤ β ≤ 2nk, and the set of synchronization labels {1, 2 . . . β}, so that P|{1, 2 . . . β}|Q is written
P|β|Q. In particular, β = 0 corresponds to the pure interleaving case P|||Q mentioned in the previous
section. As a natural number, β represents the coupling factor between P and Q: the larger is β, the more
frequent will be the steps in which P and Q must synchronize.

Second, we turn P and Q into labeled bool nets by adding two independent functions LP and LQ
that, respectively, assign a label to each transition xP → yP and xQ → yQ:

LP, LQ : {0, 1}n × {0, 1}n → {1, 2 . . . 2nk}. (11)

Aiming at maximum generality, our labels depend both on the source and on the target state,
and are picked at random from set {1, 2 . . . 2nk}.

On this basis, the application of the rules in Equations (8)–(10) to P|β|Q becomes possible also
when P and Q are labeled bool nets. Note that this can be done regardless of the mode—sync, async or
hybrid—in which P and Q are executed.

It is important not to confuse the concept of sync/async execution mode of P and Q with the
(orthogonal) concept of synchronous/asynchronous transition of P|β|Q. The execution mode refers to
the individual component P or Q, and when we attribute some execution mode to the whole P|β|Q
we mean that both P and Q operate, internally, according to that mode; in principle, we could even
imagine composing a P operating in sync mode with, e.g., a Q operating in async or hybrid mode
(but in this paper we never do that). On the other hand, a synchronous transition of P|β|Q is one
in which P and Q proceed jointly, each contributing with a local transition performed according to
its own mode; furthermore, the two local and simultaneous transitions must have the same label
γ, with γ ∈ {1, 2 . . . β}. Conversely, an asynchronous transition of P|β|Q corresponds to a local,
γ-labeled transition performed autonomously (and according to its own mode) by only one of the two
components, where γ /∈ {1, 2 . . . β}.

4.1. Conditional Dependence in Parallel Composition

We discuss the issue of conditional independence in Section 2, relative to pure bool nets. How does
parallel bool net composition P|β|Q perform with respect to this property?

The question involves comparing prob(yP|xPQ, yQ) with prob(yP|xPQ) where, as before, x and y
are states at time t and t + 1, respectively, and the subscripts identify the relevant system components.

Entropy 2019, 21, 805 8 of 26

Regardless of the execution mode of the two components, parallel composition does violate
conditional independence. The reason is that knowing yQ and finding yQ 6= xQ indicates that Q has
indeed performed a local transition, whose label, e.g., γ, we can partly or completely deduce from
labeling function LQ, which is known. If γ /∈ {1, 2 . . . β}, the system as a whole must have performed an
asynchronous (interleaving) transition, in which P must have idled: we immediately deduce yP = xP.
If, conversely, γ ∈ {1, 2 . . . β}, the system as a whole must have performed a synchronous transition,
one in which P has performed a γ-labeled transition jointly with Q: this still tells us something about
yP. In both cases, we acquire more information about yP than what xPQ alone can give.

In the area of formal methods for Software Engineering, to which Process Algebras belong, it is
indeed conditional dependence that plays an important role. Consider, for example, the constraint-oriented
specification style [12,13]. In this style, the parallel composition operator is used as a sort of logical
conjunction: system behavior is specified by progressively accumulating constraints (processes) on
the ordering of communication events and, possibly, on the exchanged data values. Each constraint
reflects a different, partial view on the global system behavior, and all these views should agree on
each global transition x → y. This agreement, governed by the inference rules in Equations (8)–(10),
reflects a sort of on-the-fly communication between P and Q, as the global transition occurs. Overall,
the effect of those rules is to introduce a mutual dependency among local transitions, which, in terms
of conditional mutual information between local state components, means M(yP, yQ|xPQ) 6= 0.

4.2. Deadlocks

No matter which execution mode is considered, a bool net will always be able to perform
transitions from any state. This is not the case for bool net composition P|β|Q, when β > 0. A deadlock
occurs at global state XPQ = XP.XQ, formed by the concatenation of local states XP and XQ, when:
(i) no a-labeled local transitions are possible from state XP or XQ, with a /∈ {1 . . . β} (these would
become global, interleaving, asynchronous transitions by the rule in Equation (8) or Equation (9)); and
(ii) no pair of local b-labeled transitions is possible from XP and XQ, with b ∈ {1 . . . β} (yielding global,
synchronous transitions by the rule in Equation (10)). In this case, XPQ is a deadlock state.

Each tpm row should be a probability vector: its total must be 1. However, when XPQ is a deadlock
state there is no possible successor YPQ, and all elements tpmm

P|β|Q(XPQ, ∗) of the corresponding row
would be 0s, thus violating the probability vector property. One option sometimes adopted for
restoring that property is to set tpm(XPQ, XPQ) = 1, forcing the system to permanently remain in that
state, and turning a static into a dynamic deadlock:

static deadlocks —some tpm rows, called null rows, only have 0s, and are not proper probability vectors;
dynamic deadlocks —all rows are probability vectors, with loop-edges added.

The introduction of dynamic deadlocks preserves the probabilistic nature of the tpm, but does not
discriminate between actual deadlocks and loop-transitions—those for which the source and target
state coincide.

Deadlocks tend to increase as the coupling between the interacting parties becomes stronger:

Proposition 1. Let P and Q be two labeled bool nets, and D(P|β|Q) be the set of deadlock states of system
P|β|Q. Then, β1 < β2 implies D(P|β1|Q) ⊆ D(P|β2|Q).

Proof. We prove by contradiction that if global state x is a deadlock for P|β1|Q, it is also a deadlock
for P|β2|Q. Assume x is not a deadlock for P|β2|Q. Then, P|β2|Q can perform (at least) a labeled
transition x a→ y.

If a ∈ {1 . . . β2}, the transition is a synchronization between P and Q, supported by the inference
rule in Equation (10): then, either a ∈ {1 . . . β1} or a ∈ {β1 + 1 . . . β2}. In the first case, transition x a→ y
would be feasible also for P|β1|Q (a contradiction); in the second case, the two component transitions
xP

a→ yP and xQ
a→ yQ would enable, by the inference rules in Equations (8) and (9), two global,

interleaving transitions of P|β1|Q (a contradiction).

Entropy 2019, 21, 805 9 of 26

If, on the other hand, a /∈ {1 . . . β2}, then x a→ y is an interleaving transition for P|β2|Q,
which would be a fortiori a feasible interleaving transition for P|β1|Q (a contradiction).

Furthermore, given composition P|β|Q , we can establish the following relations among the
deadlock sets for the different execution modes.

Proposition 2. Let P and Q be two labeled bool nets, let Pmode|β|Qmode be system P|β|Q executed in the
specified mode, and let D be the deadlock set function of Proposition 1. Then, (i) D(Phybrid|β|Qhybrid) ⊆
D(Psync|β|Qsync); and (ii) D(Phybrid|β|Qhybrid) ⊆ D(Pasync|β|Qasync).

Proof. Part (i). We show by contradiction that, if global state x is a deadlock for Phybrid|β|Qhybrid,
it is also a deadlock for Psync|β|Qsync. If x were not a deadlock for Psync|β|Qsync, then this system
could escape state x by some transition involving the simultaneous firing of all nodes of NP and NQ
(by the inference rule in Equation (10)), or the firing of all nodes of NP or NQ (by the inference rule in
Equation (8) or Equation (9)). These three firing scenarios are feasible also under the hybrid execution
mode (see the definitions of the firing group sets FG for the three modes in Section 2), yielding a
transition escaping state x also for system Phybrid|β|Qhybrid—a contradiction.

The proof for Part (ii) is analogous.

Figure 1 shows the count of deadlock states, out of 25+5 = 1024 possible states, as a function of
the coupling parameter β, for the parallel composition Pm(5, 3)|β|Qm(5, 3) of two randomly generated,
labeled (5, 3)-bool nets executed in mode m = sync, async or hybrid.

Figure 1. Deadlocks in P(5, 3)|β|Q(5, 3) as a function of coupling factor β, under sync, async and hybrid
execution modes.

The plots in Figure 1 provide experimental evidence for Propositions 1 and 2. Indeed, they might
also suggest that a deadlock state x for Pasync|β|Qasync must also be a deadlock state for Psync|β|Qsync.
However, this is not always the case, as shown by the following simple counterexample.

Assume P and Q are two labeled (n, k)-bool nets with n = 2 and k = 1. P and Q have identical
topology—node 1 reads node 2 and vice versa—and all nodes are associated with the same bit-flip bool
function. The label set is {1, 2, 3, 4}, Assume labeling functions LP and LQ are defined so that

• LP((0, 0), (1, 1)) = 1, LP((0, 0), (1, 0)) = 1, LP((0, 0), (0, 1)) = 2; and
• LQ((0, 0), (1, 1)) = 1, LQ((0, 0), (1, 0)) = 3, LQ((0, 0), (0, 1)) = 4.

Then, if we impose maximum synchronization between P and Q, by writing P|4|Q, we find
that global state x = (0, 0, 0, 0) is a deadlock for Pasync|4|Qasync (since Pasync can only perform local

transitions (0, 0) 1→ (1, 0) and (0, 0) 2→ (0, 1) while Qasync can only offer (0, 0) 3→ (1, 0) and (0, 0) 4→
(0, 1), with no label matching between P and Q) but it is not a deadlock for Psync|4|Qsync (since Psync

and Qsync can synchronize by performing local transitions (0, 0) 1→ (1, 1)).

Entropy 2019, 21, 805 10 of 26

5. Bool Nets as P<α>Q sharVar Compositions

In analogy with the expression P|β|Q for the composition of two separate bool nets P and Q by
shared transitions (Section 4), we let P<α>Q denote a single bool net whose nodes are partitioned
into sets BP and BQ, and where there are exactly α “bridges”, i.e., directed edges with one endpoint in
BP and the other in BQ. Bridges allow the two bool net parts—called P and Q—to share and cross-read
some of their variables; the other edges are “local” to P or Q. We take α as the degree of coupling
between P and Q. Furthermore, Pα and Qα, later equivalently denoted P∗ and Q∗, represent the two
components after separation: a bridge directed from P to Q (or vice versa) turns into a dangling edge
of Q (or P), with no specified source node (the notation Pα and Qα is meant to recall the presence of
α bridges in the original, uncut bool net; however, it may still happen that one of the components,
or both, when α = 0, has no dangling edges after separation).

What if we are now given two independent bool nets P and Q and we want to derive from them
some system P<α>Q with target coupling factor α? This is done by some surgery: we turn α local
edges of P and/or Q into bridges between P and Q. The choice of which local edge to turn into a
bridge is made at random, and so is the choice of a new source node for it.

Thus, while in building P|β|Q the two arguments of the composition are unaffected, except for
the addition of the labeling functions LP and LQ, for building P<α>Q we do change the topology of
the components, although the node sets BP and BQ and the sets of boolean functions FP and FQ are
preserved. Strictly, <α> should not be regarded as an algebraic operator, since the operation affects the
operands. However, notations P<α>Q and P|β|Q are useful for highlighting the system bipartition
and the involved degree of coupling.

Let us now clarify a final, subtle point about execution modes for the two types of
cooperation—<α> and |β|. While expression Pm|β|Qm completely defines the behavior of the system,
expression Pm<α>Qm would not.

In the first case, execution mode m defines the individual behaviors of Pm and Qm in terms of
their possible firing groups, while |β| defines the possible transition pairings, i.e., whether or not, given
current state XPQ, a firing group of P can fire simultaneously with one of Q, which depends on the
involved transition labels. In other words, m defines the firing groups at the local level and |β| controls
them at the global level, by the mediation of transition labels.

In the second case, the potential firing groups of Pm and Qm are well defined too, but we
have no indication of how they should be combined to yield global transitions: should they act
simultaneously or not? The solution is to understand the execution mode as applied to the net as a whole.
Correspondingly, the correct, unambiguous notation for the sharVar cooperation mechanism would be
(P<α>Q)m, although this will often be left implicit.

6. Integrated Information φ̄ for P<α>Q (sharVar)

In very abstract terms, state-dependent integrated information φ(Y), relative to a global system state
Y, reduces to the distance or difference d between two Y-dependent probabilistic distributions xcoop(Y)
and xindep(Y):

φ(Y) = d(xcoop(Y), xindep(Y)). (12)

Note the slight abuse of notation: x(Y) denotes here, and in similar contexts in the sequel,
a distribution x that depends, as a whole, on some (state) value Y; x(X) elsewhere is used to
select a specific element of distribution x. The meaning should be clear from the context, and is
facilitated by our consistent use of symbols x/X and y/Y, for predecessor and successor states. In IIT
terminology, x(Y) denotes a cause repertoire, as is clear in Equation (15); similarly, y(X) would denote
an effect repertoire.

Furthermore, xcoop(Y), xindep(Y) and consequently φ(Y) are defined with a system partition
{P, Q} in mind (we restrict to bipartitions) (strictly, φ should refer to a specific partition, namely the
Minimum Information Partition (MIP) [1,2], but we apply it to any (bi)partition). Distribution xcoop

Entropy 2019, 21, 805 11 of 26

refers to the system behavior in which parts P and Q cooperate according to the relevant interaction
mechanism, e.g., sharVar or sharTrans. With distribution xindep the parts are assumed to operate
independently. Hence, their difference d is meant to measure the added value provided by cooperation
over independent operation.

In IIT 2.0 [1], d is relative entropy dkl (Kullback–Leibler divergence):

dkl[x1||x2] =
N

∑
i=1

x1(Xi)Log2
x1(Xi)

x2(Xi)
, (13)

where x1 and x2 are two distributions on the same discrete domain {X1 . . . XN}. Note that dkl[x||x] = 0:
the dkl of two equal distributions is null. Note also that, in light of Equation (13), one can express the
mutual information in Equation (6) as follows:

M(x1, x2) = dkl[x1x2||x1 × x2], (14)

where x1 and x2 are two random variables with joint distribution denoted x1x2 and respective marginal
distributions x1 and x2 (we hope symbol overloading is no too confusing here!). Symbol “×” in
Equation (14) denotes distribution product, which is defined in the main text.

Consider an (n, k)-bool net (P<α>Q)m executed in mode m (sync, async or hybrid), denoted PQ
for short. The behavior of the net is fully defined by the transition probability matrix tpmm

PQ. It is easy
to see that, regardless of the mode m, tpmm

PQ cannot have null-rows (all 0s), corresponding to deadlocks.
Note, however, that one may find null-columns with the sync and async modes, corresponding to
“Garden of Eden” states YPQ that have no predecessor state XPQ. This does not happen with the hybrid
mode, since the firing groups for this mode include the empty firing group (no node fires), which creates
a loop-edge: any state has itself as a predecessor.

For the subsequent definitions of integrated information for PQ, we also need tpmm
P∗ and tpmm

Q∗:
these are the tpms that characterize the independent behaviors, under mode m, of P∗ and Q∗, i.e., the two
components P and Q after separation, when the data flowing across the α bridges from one to the
other are lost due to the cut, and replaced by white noise, i.e., uniformly distributed bit tuples.

We are finally ready to actualize the abstract definition of Equation (12) into the concrete
definition given in [1]. The state-dependent integrated information φm

P<α>Q(YPQ) for global state
YPQ of (n, k)-bool net PQ = P<α>Q executed in mode m is:

φm
P<α>Q(YPQ) = dkl[prem

P<α>Q(YPQ)||prem
P∗(YP)× prem

Q∗(YQ)] (15)

where:

• prem
P<α>Q(YPQ) is the distribution of the predecessors of state YPQ, obtained by normalizing

tpmm
P<α>Q(∗, YPQ)—the YPQ-indexed column of tpmm

P<α>Q;
• YP and YQ are the P and Q components of state YPQ: YPQ = YP.YQ (concatenation);
• prem

P∗(YP) and prem
Q∗(YQ) are the distributions of the predecessors of, respectively, YP and YQ,

obtained as done for prem
P<α>Q(YPQ) but using, respectively, tpmm

P∗ and tpmm
Q∗; and

• “×” is distribution multiplication: if d1 and d2 are probability distributions defined, respectively,
over {0, 1}n1 and {0, 1}n2—the sets of tuples of lengths n1 and n2—and d = d1 × d2 is the
distribution product, then, for the generic (n1 + n2)-bit tuple Xn1+n2 = Xn1.Xn2, we have
d(Xn1+n2) = d(Xn1) ∗ d(Xn2).

(The interested reader can find in [14] a freely downloadable demonstration tool illustrating
state-dependent φ for bool nets executed in the standard, sync mode, for generic partitions.)

Entropy 2019, 21, 805 12 of 26

The averaged form φ̄m
dkl(P<α>Q) of integrated information (subscript “dkl” is convenient in light

of subsequent developments) is defined as a weighted sum over all states YPQ of the state dependent
φm

P<α>Q(YPQ)s—a weighted sum that we conveniently express as a dot product (“.”):

φ̄m
dkl(P<α>Q) = postm

P<α>Q(x̄PQ).Table[φm
P<α>Q(YPQ)|(YPQ)10 = 0, 1 . . . 2n − 1] (16)

where:

• x̄PQ denotes the uniform distribution of PQ states (n-tuples of bits);
• postm

P<α>Q(x̄PQ), expressing the weights of the sum, is the distribution of the successors of state
distribution x̄PQ. Note that we conceive functions pred and post to be applicable both to a specific
state (some bit tuple X or Y) and to a distribution of such states, e.g., to x̄PQ. No ambiguity
arises, since we always use lowercase to denote random variables or their distributions (x and y),
and uppercase to denote specific state values (X and Y). (Using a distribution as argument of
pred or post is preferred, since a specific state, e.g., state {0, 0, 1} of a three-bit bool net, can be
represented as distribution {0, 1, 0, 0, 0, 0, 0, 0} assigning probability 1 to the second triple of bits,
when these are presented in lexicographic order, and probability 0 to all other triples. In particular,
postm

PQ(x̄PQ) = x̄PQ.tpmPQ.)
• (YP)10 is the decimal representation of bit tuple YP.
• Table[. . .] is the list of φm

P<α>Q(YPQ) values for all bit n-tuples YPQ, listed in lexicographic order.

In [15], it is shown that φ̄dkl(P<α>Q) can also be computed as M(x̄PQ, yPQ)− [M(x̄P∗, yP∗) +

M(x̄Q∗, yQ∗)], where the barred symbols denote uniform distributions (maximum entropy), and M
is mutual information between current and next state, both referred to the global system PQ and to
the two noised components P∗ and Q∗. In our experiments, we took advantage of this alternative
definition, which is computationally more efficient.

6.1. The dkl-Mismatch Problem for P<α>Q

In light of its definition in Equation (13), dkl[x1||x2] is undefined when x1(Xi) > 0 and x2(Xi) = 0
for some state Xi: this is what we call the “dkl-mismatch problem”.

Proposition 3 establishes that this problem does not arise with the φ̄m
dkl(P<α>Q) we are

considering, at least relative to two execution modes.

Proposition 3. Given a partitioned bool net P<α>Q, the dkl-mismatch problem does not arise for
φ̄m

dkl(P<α>Q), when mode m is sync or hybrid.

Proof. In light of the definition in Equation (15), we must prove that, when an element of distribution
prem

P<α>Q(YPQ) is different from zero, so is the corresponding element of distribution prem
P∗(YP)×

prem
Q∗(YQ). For notational convenience, let these two distributions be called, respectively, x1 and x2,

as in Equation (13). Then, we must prove that, for any state XPQ: x1(XPQ) > 0 implies x2(XPQ) > 0,
in sync and hybrid mode. Now, x1(XPQ) > 0 means that there exists (at least) one transition

XPQ
f gm

PQ−→ YPQ

triggered by some firing group f gm
PQ. Correspondingly, tpmm

P<α>Q(XPQ, YPQ) > 0.
Representing firing groups as node sets, and observing that the firing groups of the whole

system P<α>Q and of its parts are independent from α, we can take advantage of Equations (1)–(3),
which refer to P ∪Q ≡P<0>Q, finding that a global firing group can be decomposed into two local
firing groups, under the same mode— f gm

PQ = f gm
P ∪ f gm

Q—only for m = sync and m = hybrid (for
m = async, f gasync

PQ must include exactly one node, while any f gasync
P and any f gasync

P must include one
node each, so that f gasync

P ∪ f gasync
P includes two).

Entropy 2019, 21, 805 13 of 26

As a consequence, using a functional notation for transitions, for m = sync and m = hybrid we
can write:

YPQ = YP.YQ = f gm
PQ(XPQ) = f gm

P (XPQ). f gm
Q(XPQ) = f gm

P (XP.XQ). f gm
Q(XP.XQ).

The fact that YP = f gm
P (XP.XQ) guarantees that tpmm

P∗(XP, YP) > 0: by definition,
element tpmm

P∗(XP, YP) of “noised” matrix tpmm
P∗ is obtained by the cumulative contribution

of all values tpmm
PQ(XP.∗, YP.∗), and we have assumed above that at least one of them,

namely tpmm
P<α>Q(XP.XQ, YP.YQ), gives a non-null contribution. Similarly, we find that

tpmm
Q∗(XQ, YQ) > 0. We conclude that the cut sub-systems P∗ and Q∗ separately support transitions

XP → YP and XQ → YQ, meaning that distribution prem
P∗(YP) (respectively, prem

Q∗(YQ)) assigns a
non-null probability to its XP-indexed (respectively, XQ-indexed) element. Since x2 was defined as
prem

P∗(YP)× prem
Q∗(YQ), we conclude that x2(XP.XQ) > 0.

The “anomaly” of the async mode already observed in Equations (1)–(3), and in Section 2, is further
highlighted in Proposition 3. For these reasons, we drop this execution mode, and in the sequel m is
only sync or hybrid.

The computation of φ̄m
dkl(P<α>Q) is not even affected by the presence of “Garden of Eden” states.

If Y′PQ is such a state, we might perhaps represent the predecessor distribution prem
P<α>Q(Y

′
PQ) as

the null “probability vector”; then, regardless of the second argument prem
P∗(Y

′
P)× prem

Q∗(Y
′
Q) of dkl,

we would obtain φm
P<α>Q(Y

′
PQ) = 0. However, in any case, these null values are selected away in the

weighted sum of the definition in Equation (16), since state distribution postm
P<α>Q(x̄PQ)—providing

the weights—assigns probability 0 to Y′PQ since, by the definition of Garden of Eden state, none of the
XPQs can transition to the latter.

6.2. Statistical Results for φ̄m
dkl(P<α>Q)

Having defined φ̄m
dkl(P<α>Q), we wish to investigate the dependence of this measure on α,

the degree of coupling between P and Q when they cooperate by shared variables.
Letting n = 5 and k = 3, we have built ten pairs (Pi(n, k), Qi(n, k)), i = 1 . . . 10, of randomly

generated (n, k)-bool nets and have derived, for each pair, the sequence of Pi<α>Qi systems for values
α = 0, 1 . . . 2nk (with 2nk = 30), as described at the beginning of Section 5. Then, for each α, we have
computed Mean10

i=1{φ̄
m
dkl(Pi<α>Qi)} and associated standard deviation, for m = sync and hybrid.

The results of the simulation are shown in the plots of Figure 2.

Figure 2. Mean values of φ̄m
dkl(Pi<α>Qi), i = 1 . . . 10, as a function of the coupling factor α,

for execution modes sync and hybrid.

The plots in Figure 2 confirm the intuitive expectation that integrated information grows with
the coupling factor α between P and Q. Recall that φ̄ is a weighted sum of φ(YPQ)s (Equation (16)),
and that φ(YPQ) is a dkl “distance” between an xcoop and an xindep distribution (Equation (15)). As α

grows, it is to be expected that xcoop and xindep drift apart, since a larger α means a stronger mutual

Entropy 2019, 21, 805 14 of 26

influence between the behaviors of P and Q, thus a more marked departure from the behaviors they
exhibit when acting independently.

The fact that φ̄
sync
dkl > φ̄

hybrid
dkl can be intuitively explained as follows. Due to the different sizes

of the involved firing group sets—|FGsync
PQ | = 1 and |FGhybrid

PQ | = 22n—in sync mode the successor
distribution postsync

PQ (XPQ) is “punctual” (one element has probability 1, the others have probability 0),

while posthybrid
PQ (XPQ) is much more spread over the states. An analogous difference in spread can be

observed also when looking backward, with predecessor distributions presync
PQ (YPQ) and prehybrid

PQ (YPQ).
The local post and pre distributions for P and Q follow a similar pattern with respect to sync vs. hybrid.
Then, in

dkl[prem
P<α>Q(YPQ)||prem

P∗(YP)× prem
Q∗(YQ)],

the two argument distributions are closer to each other for m = hybrid than for m = sync, due to
the higher spread of the distributions for the hybrid mode. Note that the local distributions are also
affected by noise injection, which cannot but amplify their spread, pushing them closer to the global
distribution with higher spread, namely the distribution for the hybrid mode, and smaller distance
means smaller φ̄.

6.3. Statistical Results for φ̄m
Manh(P<α>Q) Using Manhattan Distance

We show that, for the sharTrans cooperation mechanism |β|, the dkl-mismatch problem becomes
pervasive. Thus, for enabling comparisons between sharVar and sharTrans cooperation in terms of
integrated information, we consider also a state-dependent version φ̂ of this measure in which the dkl
of Equation (15) is replaced by Manhattan distance (Manh):

φ̂m
P<α>Q(YPQ) = Manh(prem

P<α>Q(YPQ), prem
P∗(YP)× prem

Q∗(YQ)). (17)

φ̂m
P<α>Q(YPQ) is then used, as in Equation (16), for obtaining the corresponding state-independent

φ̄m
Manh(P<α>Q):

φ̄m
Manh(P<α>Q) = postm

P<α>Q(x̄P<α>Q).Table[φ̂m
P<α>Q(YPQ)|(YPQ)10 = 0, 1 . . . 2n − 1]. (18)

We have conducted a statistical analysis for φ̄m
Manh(P<α>Q) analogous to that presented in

Section 6.2. The results are illustrated in Figure 3. This figure indicates that Manhattan distance
broadly agrees with dkl (while not suffering from the mismatch problem), and confirms the two general
facts already established with Figure 2: integrated information grows with the coupling factor α, and is
higher for the sync than for the hybrid execution mode.

Figure 3. Mean values of φ̄m
Manh(Pi<α>Qi), i = 1 . . . 10, as a function of the coupling factor α,

for execution modes sync and hybrid, using Manhattan distance in place of dkl.

Entropy 2019, 21, 805 15 of 26

7. Integrated Information φ̄ for P|β|Q (LOTOS sharTrans)

How can one define integrated information φ̄ for sharTrans composition P|β|Q? The problem
reduces to one of adapting to the new context the state-dependent measure φ(Y) of Equation (12),
which is given a concrete form in Equation (15).

In fact, in dkl(xcoop(Y), xindep(Y)), the first argument is readily defined even in the new setting,
since it refers to the “cooperative” behavior of P|β|Q in which P and Q interact as specified by operator
|β|—a behavior that is fully defined by tpmm

P|β|Q—which is, in turn, fully defined by the inference
rules in Equations (8)–(10). The difficulty arises with the definition of xindep: what does it mean, in the
sharTrans context, for P and Q to operate independently?

Our proposed solution to this problem stems from the observation that, while under sharVar
the cooperating parts share knowledge about each other’s variables, under sharTrans they share
knowledge about the order of transitions in time, since each part must follow the ordering of transitions
of the other, at least limited to the transitions whose labels are in the synchronization set β. We must
then conclude that the absence of cooperation occurs when there is no shared knowledge about local
transition ordering, and no concern to agree on it. This immediately suggests to identify independent
behavior—and xindep in expression dkl(xcoop, xindep)—with the pure interleaving composition P|||Q
(see Section 3). The resulting definition of state-dependent integrated information for the |β|
mechanism is then:

φm
P|β|Q(YPQ) = dkl[prem

P|β|Q(YPQ)||prem
P|||Q(YPQ)]. (19)

Note that the above definition is conceptually (and computationally) simpler than the corresponding
definition for <α> (Equation (15)): no input noise for the cut components (P∗ and Q∗) is involved,
and the second argument of dkl is not a distribution product but simply the first element of the
sequence P|β|Q for β = 0, 1

Then, the definitions of state-independent integrated information φ̄ for P|β|Q and for P<α>Q are
essentially the same (compare with Equation (16)):

φ̄m
dkl(P|β|Q) = postm

P|β|Q(x̄PQ).Table[φm
P|β|Q(YPQ)|(YPQ)10 = 0, 1 . . . 22n − 1]. (20)

Note that n is now the number of nodes in P, which has the same size as Q, yielding a total of
2n nodes.

7.1. The dkl-Mismatch Problem for P|β|Q

As anticipated, the dkl-mismatch problem becomes pervasive with systems of type P|β|Q.
Let state YPQ be fixed and consider distributions x1 = prem

P|β|Q(YPQ) and x2 = prem
P|||Q(YPQ)

in Equation (19). The mismatch occurs when x1(X′PQ) > 0 and x2(X′PQ) = 0 for some X′PQ. In sync

mode, it is easy to imagine a transition X′PQ
P|β|Q−→ YPQ of system P|β|Q such that the two bit tuples

X′PQ and YPQ differ both in their P and in their Q component: this may happen when the transition is
a synchronization. Since X′PQ is a predecessor state of YPQ, we have x1(X′PQ) > 0. On the contrary,
no predecessor of YPQ under system P|||Q can differ from YPQ in both state components, since system
P|||Q must fire one component at a time, as explained at the end of Section 3. Thus, necessarily,
x2(X′PQ) = 0: this yields the mismatch. The argument for the hybrid mode is analogous, the key point
being that a firing group of P|β|Q may involve nodes from both P and Q, while a firing group of P|||Q
involves nodes exclusively from one component, by the definition of “|||”.

To give an idea of how severe the dkl-mismatch problem is for P|β|Q, we have counted the
number of states YPQ yielding a dkl-mismatch for each of the 310 systems (Pi<β>Qi), for i = 1 . . . 10
and β = 0 . . . 30, where the (Pi, Qi) pairs are those already used in Section 6 (Figure 2). These numbers
are collected in the 10× 31 grey-level matrix of Figure 4.

Entropy 2019, 21, 805 16 of 26

Figure 4. Number of states, represented as grey levels, that give rise to a dkl-mismatch for systems
Psync

i <β>Qsync
i , i = 1 . . . 10 (rows), β = 0 . . . 30 (columns). Systems have up to 993 states, out of 1024,

that yield mismatch (the darkest cells), and only 16 systems, out of 310, have none.

7.2. Statistical Results for φ̄m
Manh(P|β|Q) Using Manhattan Distance

In light of the impossibility to use the dkl-based definition of φ (Equation (19)) for |β| cooperation,
we switch, again, to a “hat” version φ̂ in which dkl is replaced by Manhattan distance:

φ̂m
P|β|Q(YPQ) = Manh(prem

P|β|Q(YPQ), prem
P|||Q(YPQ)), (21)

and use it, in turn, for defining the state-independent φ̄m
Manh(P|β|Q), as in Equation (20):

φ̄m
Manh(P|β|Q) = postm

P|β|Q(x̄PQ).Table[φ̂m
P|β|Q(YPQ)|(YPQ)10 = 0, 1 . . . 22n − 1]. (22)

Analogous to Figure 3, in Figure 5, we plot the values of φ̄m
Manh(P|β|Q) as a function of the

coupling factor β, each point obtained by averaging over 10 (P, Q) pairs, both using static deadlocks
(Figure 5, left) and dynamic deadlocks (Figure 5, right).

Figure 5. Mean values of φ̄m
Manh(Pi|β|Qi), i = 1 . . . 10, as a function of the coupling factor β,

for execution modes sync and hybrid, using Manhattan distance in place of dkl, using: static deadlocks
(left); and dynamic deadlocks (right).

The distinction between static and dynamic deadlocks was introduced in Section 4.2. Note that
when using static deadlocks—no 1s added on the diagonal of tpmm

P|β|Q—the weights postm
P|β|Q(x̄PQ) in

Equation (22) will in general not total 1, and must be re-normalized.

8. Integrated Information φ̄ for P[γ]Q (CCS sharTrans)

Kullback–Leibler divergence dkl is a central element of Integrated Information Theory 2.0 [1],
thua it is indeed desirable to apply it in the new sharTrans context without incurring the dkl-mismatch
problem. In this section, we propose a slightly different version of sharTrans cooperation,
directly inspired to Robin Milner’s seminal process algebra CCS (Calculus of Communicating
Systems) [5], that precisely avoids that problem.

Consider the abstract expression:

dkl[prem
coop(YPQ)||prem

indep(YPQ)].

Entropy 2019, 21, 805 17 of 26

How can we conceive the cooperative PcoopQ and independent PindepQ behaviors of bipartite
system PQ (as defined by matrices tpmm

coop and tpmm
indep, from which prem

coop(YPQ) and prem
indep(YPQ)

are derived) so that the dkl-mismatch problem is ruled out?
Clearly, a sufficient condition for avoiding dkl-mismatches is the following:

The existence of a transition X
PcoopQ−→ Y implies the existence of transition X

PindepQ−→ Y between
the same states.

The two CCS behavioral operators of (non-parametric) parallel composition (“P|Q”) and
(parametric) restriction (“\γ”), where γ is a label set {1, 2 . . . γ} (using the same convention as for β),
offer us a way to define cooperation and independence so that they satisfy the above condition.

In CCS, symbol τ denotes a special internal, not observable transition label: no synchronization
is possible with a process that performs a τ-labeled transition. Let A be the set of observable labels
and define A+ = A ∪ {τ}. Symbol a ranges in A and symbol x ranges in A+. We provide below the
four inference rules of the Structural Operational Semantics of CCS for the two mentioned operators
(we depart from the standard definition of Milner [5] only in one aspect: we drop the idea of a
synchronization based on the matching between a label a and its corresponding “co-label” ā, and revert
to the LOTOS requirement that the two labels be simply equal).

P x−→ P′ ∧ x ∈ A+

P|Q x−→ P′|Q
(CCS left interleaving) (23)

Q x−→ Q′ ∧ x ∈ A+

P|Q x−→ P|Q′
(CCS right interleaving) (24)

P a−→ P′ ∧Q a−→ Q′ ∧ a ∈ A

P|Q τ−→ P′|Q′
(CCS synchronization) (25)

P a−→ P′ ∧ a /∈ γ

P\γ a−→ P′
(CCS restriction) (26)

The “interleaving” rules in Equations (23) and (24) establish that any transition that P or Q
could perform locally—in itself—can be performed globally by composite system P|Q. Additionally,
the rule in Equation (25) establishes that parallel composition P|Q can also perform synchronization
transitions whenever two equally labeled observable transitions are available at the two sides. The rule
in Equation (26) defines the restriction P\γ as a filter that enables P (which can be itself a two-process
composition) to perform a transition only if its label is not in the specified set γ of forbidden labels (thus,
τ is always admitted), pruning away all other transitions.

We now combine CCS parallel composition and restriction into the convenient syntactic form

P[γ]Q ≡ (P|Q)\γ, (27)

where parameter γ is enclosed in square brackets to distinguish it from the LOTOS form “|β|”, and use
it for actualizing the cooperation and independence relations between P and Q:

PindepQ = P|Q ≡ P[0]Q (28)

PcoopQ = P[γ]Q. (29)

Note that no deadlock can occur in P|Q. With the LOTOS-based sharTrans composition, we had
assumed PindepQ = P|||Q, a form of independence by which P and Q will never deadlock and will
never synchronize: their respective transitions can only interleave. This is not the case for the CCS-based
approach, where PindepQ = P[0]Q = P|Q: the two independent systems, by the rule in Equation (25),
can indeed synchronize any pair of transitions P a→ P′ and Q a→ Q′ with the same observable label.

Entropy 2019, 21, 805 18 of 26

However, by the rules in Equations (23) and (24), these same transitions can be executed separately,
in interleaving—in independence. Cooperation P[γ]Q ≡ (P|Q)\γ, then, consists in ruling out these
independent transitions—at least those specified in set γ—while preserving their synchronizations.

One could argue that P|Q already entails a sort of cooperation, via all the synchronization
transitions it supports, and that pure LOTOS interleaving P|||Q is a more appropriate form of
independence. This is true only in part. The “cooperation” that takes place in P|Q is not private:
the transition P a→ P′ that P shares with Q, forming a τ-labeled synchronization, is also “offered”
separately by P (and by Q too) for further two-way synchronizations with other potential partners.
When we apply restriction to the composition—(P|Q)\γ—we rule out this possibility, and cooperation
via joint transitions with labels in γ becomes exclusive of the (P, Q) pair, occurring via a global,
τ-labeled transition. In other words, in P|Q, the parties are not forced to wait for each other at specific
transitions, as in P|β|Q, while this effect of mutual influence on transition ordering is enforced in
P[γ]Q, when restriction is in action.

It is clear that the above sufficient condition for ruling out dkl-mismatches is satisfied by our
newly adopted CCS-based definitions:

φm
P[γ]Q = dkl[prem

P[γ]Q(YPQ)||prem
P[0]Q(YPQ)] (30)

φ̄m
dkl(P[γ]Q) = postm

P[γ]Q(x̄PQ).Table[φm
P[γ]Q(YPQ)|(YPQ)10 = 0, 1 . . . 22n − 1] (31)

since, by the definition of the restriction operator, the transitions of P[γ]Q are a subset of those of P[0]Q.

8.1. Deadlocks in P[γ]Q

While deadlocks can never occur in P|Q, they may occur in P[γ]Q ≡ (P|Q)\γ: this happens when
P and Q offer disjoint sets of labels, thus preventing any synchronization between them, and when all
these labels are members of γ, the set of forbidden labels.

In Figure 6, we show the count of deadlock states, out of 1024 possible states, as a function of the
coupling parameter γ, for the composition Pm(5, 3)[γ]Qm(5, 3) of two randomly generated labeled
(5,3)-bool nets executed in modes sync and hybrid.

Figure 6. Deadlocks in P(5, 3)|γ|Q(5, 3) as a function of coupling factor γ, under sync and hybrid
execution modes.

Recall that we have dropped the async mode for its various anomalies. For the remaining
two modes, deadlocks under the [γ] and |β| interaction mechanisms seem to behave quite similarly
(compare with Figure 1).

8.2. Statistical Results for φ̄m
dkl(P[γ]Q)

Before presenting the plots, we need to deal again with static vs. dynamic deadlocks (Section 4.2).
Referring to the sync mode, tpms with dynamic deadlocks turn out to be inappropriate for computing
φ̄

sync
dkl (P[γ]Q), since they would re-introduce the dkl-mismatch problem that we have managed to

rule out by switching to the [γ] cooperation mechanism! The reason is that a static deadlock is made

Entropy 2019, 21, 805 19 of 26

dynamic by adding a “1” on the diagonal of tpmsync
P[γ]Q, at an otherwise null row. This entry is unlikely

to find a non-zero counterpart in tpmsync
P[0]Q, since P[0]Q (i.e., P|Q) has no deadlocks—no 1s added

on the diagonal—and the only possibility to have a non-zero entry on the diagonal is that an actual
loop-transition XPQ → XPQ be possible for that system. However, when P and Q are executed in sync
mode, this is unlikely, both when they operate in interleaving (i.e., when only one of them updates all
its nodes) and, even worse, when they synchronize (i.e., when all nodes of P and Q are updated). Thus,
for the sync mode, the option is to use static deadlocks—no 1s added on the diagonal of tpmm

P[γ]Q.
As observed above for the |β| composition, the weights postm

P[γ]Q(x̄PQ) in Equation (31), will in general
not total 1, and must be re-normalized.

The dkl-mismatch problem does not arise with the hybrid mode since, using the empty firing
group, a loop edge XPQ → XPQ is always possible for system P|Q, for any state XPQ, so the elements

on the diagonal of tpmhybrid
P[0]Q are all different from 0. In this case, we can then safely use both dynamic

deadlocks and static deadlocks with re-normalization.
In Figure 7, we plot the values of φ̄m

dkl(P[γ]Q) as a function of the coupling factor γ, each point
obtained by averaging over 10 (P, Q) pairs, using static deadlocks (for the sync and hybrid modes) and
dynamic deadlocks (only for the hybrid mode).

Figure 7. Mean values of φ̄m
dkl(Pi[γ]Qi), i = 1 . . . 10, as a function of the coupling factor γ, for execution

modes sync and hybrid, using the definitions in Equations (30) and (31). The used tpms implement:
static deadlocks (left); and dynamic deadlocks (right).

8.3. Statistical Results for φ̄m
Manh(P[γ]Q) Using Manhattan Distance

The potential mismatch between distributions d1 and d2 in dkl[d1||d2] is not a concern when using
Manhattan distance Manh(d1, d2) for defining φ̄m

Manh(P[γ]Q) (by equations analogous to Equations (30)
and (31)). Thus, we can handle both static deadlocks, with renormalization of the weights, and
dynamic deadlocks.

Figure 8 is analogous to Figure 7, except that Manhattan distance is used in place of dkl.

Figure 8. Mean values of φ̄m
Manh(Pi[γ]Qi), i = 1 . . . 10, as a function of the coupling factor γ,

for execution modes sync and hybrid, using: static deadlocks (left); and dynamic deadlocks (right).

Entropy 2019, 21, 805 20 of 26

9. Comparisons

Our experimental analysis has involved three dimensions, or degrees of freedom:

• (i) bool net cooperation mechanism (α/β/γ);
• (ii) bool net execution mode (sync/hybrid); and
• (iii) “distance” function for probabilistic distributions (dkl/Manhattan distance).

As stated initially, our interest is primarily in the comparison of cooperation mechanisms (i). It is
then useful to aggregate the statistical data collected in the previous sections so that the plots for α,
β and γ appear in the same diagram. This is done in Figure 9 which shows, for each fixed choice of
execution mode (the columns) and distance function (the rows), the “performance” of the applicable
mechanisms in terms of integrated information, as a function of the coupling factor (“coup”). Note
that Manhattan distance is represented in Rows 2 and 3, corresponding to systems implementing,
respectively, static and dynamic deadlocks: this distinction only affects the β and γ plots, since
the α mechanism is immune to deadlocks. For convenience, the α plots in Row 2 are replicated in
Row 3. (Recall also that the dkl-mismatch problem prevented us from applying distance dkl to the β

mechanism.)

Figure 9. Rearranging the plots of the previous sections for a comparison of the α, β, γ cooperation
mechanisms, given a particular choice of execution mode (columns) and distance function (rows).
For Manhattan distance, we differentiate between systems with static or dynamic deadlocks (Rows 2
and 3).

In the following subsections, we consider all three “dimensions” (iii), (ii) and (i), precisely in this
order, with (i) being the dominant one.

Entropy 2019, 21, 805 21 of 26

9.1. Distribution Distances: Kullback–Leibler Divergence dkl vs. Manhattan

It is not our goal here to assess the various (pseudo-)distances used for defining φ̄: the interested
reader can find an accurate study involving seven options for this metric in [16]. However, we are
interested in checking whether, despite the different ranges of values and plot shapes that they yield,
the two alternative distances give analogous indications about the mutual relations among the α, β and
γ mechanisms.

A quick look at the grid of Figure 9 suggests that the relations between the plots for α and γ

are not “qualitatively” different under dkl (Row 1) and under Manhattan distance (Rows 2 and 3).
By this, we mean that the relative order between φ̄ values for the different mechanisms and modes,
as the coupling factor moves in its range, is substantially the same for the two distances.

More precisely, we can split the comparisons in two steps.
Fix the mode and vary the mechanism. In mode sync (Column 1 of Figure 9), the relation between

the α and γ plots is qualitatively the same for dkl and for Manhattan distance. A similar observation
applies relative to mode hybrid (Column 2).

Fix the mechanism and vary the mode. Consider the α mechanism: under dkl, the relation between

φ̄
sync
dkl and φ̄

hybrid
dkl is depicted in Figure 2; under Manhattan distance, the relation between φ̄

sync
manh and

φ̄
hybrid
manh is qualitatively the same, and is depicted in Figure 3. For mechanism β, the comparison

dkl/Manhattan distance does not apply. For mechanism γ, under dkl the relation between φ̄
sync
dkl and

φ̄
hybrid
dkl is depicted in Figure 7 (left), where static deadlocks are assumed. An analogous relationship is

observed between φ̄
sync
manh and φ̄

hybrid
manh in Figure 8 (left) that also assumes static deadlocks.

In conclusion, the choice to use Manhattan distance as an alternative to dkl, for comparing the α, β

and γ mechanisms appears, a posteriori, convenient and fully legitimate.

9.2. Modes: Sync vs. Hybrid

Having found that the choice of distribution distance does not affect the picture of the relations
among α, β and γ, we may wonder whether the same happens with the choice between sync and
hybrid mode. It turns out that this is not the case: the pictures that emerge under the two modes are
different, as a quick comparison of the two columns of Figure 9 reveals. In light of the findings of the
previous subsection, it is sufficient, convenient and safe to focus on Manhattan distance—Tows 2 and 3.
Indeed, given the minimal differences between these two rows, choosing one or the other is irrelevant:
implementing static or dynamic deadlocks in the tpms does not significantly affect our comparisons.

In sync mode, the α plot is constantly higher than the β and γ plots, which are close to each
other; in hybrid mode, the α plot crosses the other two. This crossing is mainly due to a substantial
decrement of the values of the α plots, when switching from sync to hybrid (Figure 3)—a justification of
this is given in Section 6.2—whereas for the β mechanism the effect of the mode switch is reversed,
with a moderate increase of the values of the hybrid over the sync plot (Figure 5). For the γ mechanisms
(Figure 8) the effect of switching from sync to hybrid is similar.

Why does this happen? Why do the arguments related to distributions spread in Section 6.2 not
apply here? Our conjecture is as follows. Under the α mechanism, the much higher abundance
of transition possibilities provided by the hybrid over the sync mode for system (P<α>Q)hybrid

causes a reduction of the distance between distributions xcoop and xindep in φhybrid = d(xcoop, xindep),
as discussed. On the contrary, in system (P|β|Q)hybrid, written more accurately Phybrid|β|Qhybrid,
the higher abundance of transitions in Phybrid and Qhybrid, with respect to those in Psync and
Qsync, offers more opportunities to Phybrid|β|Qhybrid than to Psync|β|Qsync to perform synchronization
transitions involving P and Q (the reader is invited to recall the discussed difference between sync
execution mode of a bool net and synchronization transition for parallel composition P|β|Q). More
synchronization transitions for Phybrid|β|Qhybrid yield a bigger gap between distributions posthybrid

P|β|Q (XPQ)

and posthybrid
P|||Q (XPQ) (P|||Q cannot perform any synchronization transition), or between distributions

Entropy 2019, 21, 805 22 of 26

prehybrid
P|β|Q (YPQ) and prehybrid

P|||Q (YPQ) (switching from forward to backward reasoning), the latter being the
distributions that feature in the definition of φm

P|β|Q(YPQ) in Equation (19).
The conclusion is that the comparison among α, β and γ cannot be done independently of the

execution mode.

9.3. Mechanisms: α vs. β vs γ

We come finally to the comparison among cooperation mechanisms, one that we must
contextualize to one or the other execution modes, as just established.

For further assessment of the data in Figure 9, we have included in the plots of Row 1, relative
to the dkl distance, a gridline corresponding to the expected relative entropy dkl[rand1||rand2],
where rand1 and rand2 are two random distributions. Similarly, in the plots of Rows 2 and 3,
relative to Manhattan distance, gridlines indicate the expected Manhattan distance Manh[rand1||rand2].
These expected values are established by the next two propositions.

Proposition 4. If p = {p1 . . . pN} and q = {q1 . . . qN} are random discrete distributions over the same
domain of size N, where each element pi (respectively, qi) is obtained by picking a real number xi (respectively,
yi) at random in (0, 1] and normalizing it so that p (respectively, q) is a probability vector, then as N → ∞ the
expected KL-divergence between p and q is:

Mean(dkl[p||q]) = 1/ln(4) = 0.72. (32)

Proof. We have:

Mean(dkl[p||q]) = Mean(
N

∑
i=1

(piLog2(pi/qi))) (33)

= Mean(
N

∑
i=1

(
xi

N/2
Log2(xi/yi))) (34)

= 2Mean(xiLog2(xi/yi)) (35)

= 2
∫ 1

0

∫ 1

0
xLog2(x/y)dxdy (36)

= 2/ln(16) (37)

= 1/ln(4). (38)

For Equation (34), we use the definitions of pi and qi, and Mean(∑N
i=1 xi) = N/2.

For Equation (35), we swap Mean and summation and use the fact that Mean(xiLog2(xi/yi)) is the
same for all is. In Equation (36), we express the Mean as an integral on the unit square. The integral is
routinely solved by parts, yielding Equations (37) and (38), where “ln” is the natural logarithm.

Proposition 5. If p and q are random distributions of length N as defined in Proposition 4, then as N → ∞
the expected Manhattan distance between p and q is:

Mean(Manh[p, q]) = 2/3. (39)

Proof. The easy proof is analogous to that of Proposition 4, and is omitted.

9.3.1. Comparing Mechanisms under the sync Mode

The relevant plots for this comparison are those in Column 1 of the grid in Figure 9, Row 2 or 3.
φ̄ values for the α mechanism are remarkably higher than those attained by the β and γ mechanisms,
which are very close to each other.

Entropy 2019, 21, 805 23 of 26

Bool nets executing in the sync mode exhibit a fully deterministic behavior, and, due to their
simplicity, are probably the model most widely used in the literature for illustrating the basic concepts
of IIT. If we were to accept them as a sufficiently realistic model for consciousness phenomena, then,
according to our findings, we would conclude that the traditional, simple α cooperation mechanism,
outperforms the alternative and, in a way, more sophisticated process-algebraic mechanisms β and
γ in achieving high values of integrated information and, potentially, consciousness. This gap is
particularly marked in the central segment of the range of coupling values, where P and Q show an
even balance of cooperation and independence. However, the ever-lasting debate on determinism vs.
nondeterminism in the natural sciences must invest also the neurosciences, and, although we cannot
provide an accurate picture of the status of this discussion in this field, we believe that the assumption
of a fully deterministic model for the brain appears too restrictive, if not naive. The hybrid mode may
then be a better option. (Of course, the nondeterministic hybrid mode appears a better option if we
restrict ourselves to the relatively small family of models investigated in the paper, but there may well
be other nondeterministic models that lend themselves to interesting and perhaps more appropriate
and realistic applications to neuroscience. For example, an option that seems to have gained attention
inside the IIT community (as emerged in a private communication) is that of noisy mechanisms run in
sync mode, e.g., the idea that the computations performed by the boolean functions associated with
bool net nodes are affected by some percentage of error.)

9.3.2. Comparing Mechanisms under the Hybrid Mode

The hybrid mode produces nondeterministic behavior. Nondeterminism may appear as a desirable
feature, when dealing with complex systems and models in neuroscience; however, it is certainly
a must for system models in Software Engineering. In the early phases of software development,
for example, nondeterminism is typically used to prevent premature design choices that are postponed
to later phases, down to the final implementation—a convenient way to offer implementation freedom.
Then, if we set up to assess the three cooperation mechanisms in the context of formal models for
Software Engineering, or system engineering in general, we believe that it is much more appropriate
to refer to the hybrid execution mode.

Here, the relevant plots are those in the last column of Figure 9, Row 2 or 3. The φ̄ plots for the
LOTOS-inspired mechanisms β and the CCS-inspired mechanism γ end up performing in a similar
way, as it happens under the sync mode. However, the difference between α, on the one hand, and β-γ,
on the other hand, is now considerably reduced, and a faster growth of the α plot in the lower part of
the coup range is counterbalanced by the slightly higher values of the β-γ plots in the upper part.

It seems arduous, and perhaps even pointless, to speculate on the detailed differences among
those three plots, trying to justify them formally—detailed differences that one may well expect,
given the substantial difference between the sharVar and the sharTrans mechanisms. On the other hand,
by taking a coarser look at the mentioned plots, we can reasonably conclude that, in terms of integrated
information, the performances of the three mechanisms are roughly equivalent. Furthermore, by comparing
their plots with the reference values (the gridlines) that derive from purely random distributions, we
can additionally claim that all three methods of coupling two systems P and Q for them to interact, do
their jobs quite well: in their highest values, all of them roughly double those reference values.

10. Conclusions

In this paper, we have addressed the scenario of two state transition systems P and Q that exhibit
different types of cooperation and a variable degree of coupling. We have applied the informational
measure of averaged Integrated Information φ̄ for the assessment and comparison of two fundamentally
different cooperation mechanisms: (i) the standard shared variables mechanism associated to bool
nets and very often adopted in the IIT literature, expressed as P<α>Q; and (ii) the shared transitions
mechanism typical of process algebras, which we have studied in the two forms P|β|Q and P[γ]Q.
In each case, α, β and γ control and measure the degree of coupling between P and Q. Having been

Entropy 2019, 21, 805 24 of 26

able to export φ̄ from its standard application context and to adapt it to a completely novel field,
re-defining what cooperation and independence mean in the new setting, is, in our opinion, one of the
interesting and original contributions of our work, on the conceptual side.

We have modeled P and Q as boolean nets, and have considered three possible execution modes,
namely synchronous, asynchronous and hybrid, although the anomalies of the second mode soon
suggested to drop it. Furthermore, we have considered two variants of Integrated Information,
based on two distinct measures of distribution distance, namely Kullback–Leibler divergence “dkl” and
Manhattan distance, which avoids some limitations of dkl. With the main objective to compare the α,
β and γ cooperation mechanisms (coop), the idea to articulate our experimental analysis along those
two additional dimensions—execution modes (m) and distribution distances (dd)—has been useful for
obtaining a sufficiently large set of plots for

φ̄m
dd(P-coop-Q)

on which to ponder.
In summary, the inspection of these plots has led us to the following main conclusions.

• Adopting a definition of φ̄ based on Manhattan distance rather than dkl makes averaged integrated
information more widely applicable; furthermore, when both variants apply, they yield nicely
compatible indications. For our purposes, Manhattan distance is therefore more convenient,
and safe. It is worth noting that the Earth Mover’s Distance (EMD) [17], adopted in IIT 3.0 [2] but
computationally more costly that Manhattan distance, would also avoid the mismatch problem
arising with dkl.

• Under the deterministic, sync execution mode, the IIT-standard cooperation mechanism α

performs considerably better than β and γ, especially for bipartite systems structured so that the
two parts exhibit an intermediate degree of coupling. Conversely, under the nondeterministic
hybrid mode, which may be more appropriate for cognitive system models, but is definitely more
appropriate for Software Engineering models, the three mechanisms exhibit roughly equivalent
performances, and good ones, at least compared with those achieved by using randomized
state distributions.

Could the latter approximate equivalence be intuitively expected a priori? For the author, this was
not the case. Let us explain.

In the general context of discrete state-transition models for distributed, concurrent systems,
it seems reasonable to consider a cooperation mechanism as effective when the cooperating parts can
produce state distributions—successor or predecessor state distributions, corresponding to effect- or
cause-reasoning—that are markedly different from those achieved when the parts work independently.
The reason one might expect, at least for the hybrid mode, higher φ̄ values for the sharTrans than for
the sharVar mechanism has to do with the difference in intrinsic complexity of the two mechanisms.

For simplicity, let us refer to effect reasoning, i.e., successor state distributions. For finding the
next state yPQ under α-cooperation, we only need to evaluate the n boolean functions of the bool net,
where n is the overall number of nodes; the interactivity between P and Q comes “for free”, depending
only on the fact that, for intermediate values of α, both P and Q read a mix of local and remote nodes.

Under β- and γ-cooperation, boolean function evaluation is still necessary, but then the possible
local transition labels must be computed, and these depend both on current local states xP and
xQ and on next states yP and yQ, according to our labeling policy. Then, transition xPQ → yPQ
is determined after a sort of negotiation between P and Q, based both on the locally available
labeled transitions and on the set β of synchronization labels. It is clear that mechanisms β and
γ are intrinsically more complex than α: they manipulate more information and do more work.
It seemed then plausible that these mechanisms were able to exploit this additional information and
machinery for creating next state distributions ycoop that can depart more markedly from the reference
distribution yindep, thus achieving higher φ̄ values. (We also expected that the noise injected in P∗

Entropy 2019, 21, 805 25 of 26

and Q∗ for computing the distribution product prem
P∗(YP)× prem

Q∗(YQ) in Equation (15) could act as a
limiting factor for the gap between this distribution and distribution prem

P<α>Q(YPQ), thus limiting the
growth of φ̄hybrid(P<α>Q), and keeping it well below φ̄hybrid(P|β|Q) and φ̄hybrid(P[γ]Q).)

Experimental evidence has shown that this expectation was wrong.
The combination of measure φ̄ with mechanisms β and γ may appear bizarre to the IIT expert

(“why β and γ”) as well as to the expert in process algebra (“why φ̄”).
The first expert may criticize the adoption of additional interaction mechanisms for modeling

brain-like systems, when several phenomena related to consciousness have already been successfully
investigated by the plain bool net model without super-imposed features, and given that parallel
compositions |β| and [γ] fail to satisfy conditional independence. Nevertheless, flat bool nets using the
basic α mechanism suffer from serious scalability problems. The state space of an (n, k)-bool net has
size 2n and the associated tpm is a 2n × 2n matrix: given this exponential growth, standard computers
and algorithms can successfully deal only with “toy” models (such as those investigated in this paper),
while there is no hope to handle realistic systems whose size n is, e.g., 5 or 10 orders of magnitude larger.
We still believe that exploring macro-structured bool nets and higher-level interaction mechanisms—β,
γ or others—may help alleviate those problems.

The process-algebra expert, in turn, may be puzzled by the fact that φ̄ is defined in terms of just
one-step xPQ → yPQ of system behavior, but considers the full repertoire of conceivable system states,
including those unreachable from the initial state (in this respect, φ̄, especially in the state-independent
form, reflects the “counterfactual-reasoning” that informs J. Pearl’s Do-Calculus of intervention [9]) φ̄

may then appear: (i) inadequate to cope with systems in which the existence and importance of an
initial state is out of question—as in Process Algebra and Software Engineering; and (ii) insensitive to
phenomena that emerge only with longer transition sequences, e.g., attractors (the interested reader
may look at the demonstration in [18], where attractors play a role for the analysis of asymptotic mutual
information between boolean net components P and Q). With respect to this objection, we do agree
that the two analytical approaches of one-step-from-all-states and all-steps-from-one-state may address
and reveal different system properties, but, of course, we can take them as complementary techniques
and explore their potential synergy. In any case, using φ̄ in the context of formal models and languages
for software engineering is, to our knowledge, a radically novel way to assess the “power” of their
structuring principles and operators.

Funding: This research was partially funded by FQXi, Mini-Grant number FQXi-MGA-1702.

Acknowledgments: I express my gratitude to Larissa Albantakis for many inspiring exchanges, both by e-mail
and in person. Many thanks also to my colleagues Paola Favati, for the manual solution of the integration
step in the proof of Proposition 4, and Franco Mazzanti, for illuminating discussions on the early versions of
the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Balduzzi, D.; Tononi, G. Integrated Information in Discrete Dynamical Systems: Motivation and Theoretical
Framework. PLoS Comput. Biol. 2008, 4, e1000091. [CrossRef] [PubMed]

2. Oizumi, M.; Albantakis, L.; Tononi, G. From the Phenomenology to the Mechanisms of Consciousness:
Integrated Information Theory 3.0. PLoS Comput. Biol. 2014, 10, e1003588. [CrossRef] [PubMed]

3. Kauffman, S.A. Homeostasis and Differentiation in Random Genetic Control Networks. Nature 1969, 224,
177–178. [CrossRef] [PubMed]

4. Nicola, R.D. Process Algebras. In Encyclopedia of Parallel Computing; Padua, D.A., Ed.; Springer: Berlin/Heidelberg,
Germany, 2011; pp. 1624–1636.

5. Milner, R. A Calculus of Communicating Systems; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,
Germany, 1980; Volume 92.

6. Hoare, C.A.R. Communicating Sequential Processes; Prentice Hall: Upper Saddle River, NJ, USA, 1985.

http://dx.doi.org/10.1371/journal.pcbi.1000091
http://www.ncbi.nlm.nih.gov/pubmed/18551165
http://dx.doi.org/10.1371/journal.pcbi.1003588
http://www.ncbi.nlm.nih.gov/pubmed/24811198
http://dx.doi.org/10.1038/224177a0
http://www.ncbi.nlm.nih.gov/pubmed/5343519

Entropy 2019, 21, 805 26 of 26

7. Bergstra, J.; Klop, J.W. Process Algebra for Synchronous Communication. Inf. Control 1984, 60, 109–137.
[CrossRef]

8. Bolognesi, T.; Brinksma, E. Introduction to the ISO Specification Language LOTOS. Comput. Netw. ISDN Syst.
1987, 14, 25–59. [CrossRef]

9. Pearl, J. Causality: Models, Reasoning and Inference, 2nd ed.; Cambridge University Press: Cambridge,
UK, 2009.

10. Cover, T.M.; Thomas, J.A. Elements of Information Theory, 2nd ed.; Wiley: Hoboken, NJ, USA, 2006.
11. Plotkin, G.D. A Structural Approach to Operational Semantics. J. Log. Algebr. Program 2004, 60–61, 17–139.
12. Brinksma, E. Constraint-Oriented Specification in a Constructive Formal Description Technique. In Stepwise

Refinement of Distributed Systems, Models, Formalisms, Correctness, Proceedings of the REX Workshop, Mook,
The Netherlands, 29 May–2 June 1989; de Bakker, J.W., de Roever, W.P., Rozenberg, G., Eds.; Lecture Notes in
Computer Science; Springer: Berlin/Heidelberg, Germany, 1989; Volume 430, pp. 130–152.

13. Bolognesi, T.; Derrick, J. Constraint-oriented Style for Object-Oriented Formal specification. IEE Proc. Softw.
1998, 145, 61–69. [CrossRef]

14. Bolognesi, T. Integrated Information in Partitioned Boolean Nets. The Wolfram Demonstrations Project. 2019.
Available online: http://demonstrations.wolfram.com/IntegratedInformationInPartitionedBooleanNets/
(accessed on 16 August 2019).

15. Oizumi, M.; Amari, S.; Yanagawa, T.; Fujii, N.; Tsuchiya, N. Measuring integrated information from the
decoding perspective. CoRR 2015. [CrossRef] [PubMed]

16. Tegmark, M. Improved Measures of Integrated Information. PLoS Comput. Biol. 2016, 12. [CrossRef]
[PubMed]

17. Rubner, Y.; Tomasi, C.; Guibas, L.J. The Earth Mover’s Distance as a Metric for Image Retrieval. IJCV Int. J.
Comput. Vis. 2000, 40, 99–121. [CrossRef]

18. Bolognesi, T. Mutual Information between Boolean Net Regions. The Wolfram Demonstrations Project. 2018.
Available online: https://demonstrations.wolfram.com/MutualInformationBetweenBooleanNetRegions/
(accessed on 16 August 2019).

c© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S0019-9958(84)80025-X
http://dx.doi.org/10.1016/0169-7552(87)90085-7
http://dx.doi.org/10.1049/ip-sen:19986907
http://demonstrations.wolfram.com/IntegratedInformationInPartitionedBooleanNets/
http://dx.doi.org/10.1371/journal.pcbi.1004654
http://www.ncbi.nlm.nih.gov/pubmed/26796119
http://dx.doi.org/10.1371/journal.pcbi.1005123
http://www.ncbi.nlm.nih.gov/pubmed/27870846
http://dx.doi.org/10.1023/A:1026543900054
https://demonstrations.wolfram.com/MutualInformationBetweenBooleanNetRegions/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Boolean Nets: Sync, Async and Hybrid Execution Modes
	Parallel Composition of LOTOS Processes: P||Q
	Parallel Compositions of Bool Nets: P||Q
	Conditional Dependence in Parallel Composition
	Deadlocks

	Bool Nets as P<>Q sharVar Compositions
	Integrated Information for P<>Q (sharVar)
	The dkl-Mismatch Problem for P<>Q
	Statistical Results for mdkl(P<>Q)
	Statistical Results for mManh(P<>Q) Using Manhattan Distance

	Integrated Information for P||Q(LOTOS sharTrans)
	The dkl-Mismatch Problem for P||Q
	Statistical Results for mManh(P||Q) Using Manhattan Distance

	Integrated Information for P[]Q (CCS sharTrans)
	Deadlocks in P[]Q
	Statistical Results for mdkl(P[]Q)
	Statistical Results for mManh(P[]Q) Using Manhattan Distance

	Comparisons
	Distribution Distances: Kullback–Leibler Divergence dkl vs. Manhattan
	Modes: Sync vs. Hybrid
	Mechanisms: vs. vs
	Comparing Mechanisms under the sync Mode
	Comparing Mechanisms under the Hybrid Mode

	Conclusions
	References

