
Innovations in Systems and Software Engineering manuscript No.
(will be inserted by the editor)

Timed Service Contract Automata

Davide Basile · Maurice H. ter Beek · Axel Legay

Received: date / Accepted: date

Abstract We equip a recently developed model for the spec-
ification of service contracts with real-time constraints. Ser-
vice contracts offer a means to define the behavioural com-
pliance of a composition of services, typically dictated in
a Service-Level Agreement (SLA), as the fulfilment of all
service requests through service offers. Depending on their
granularity, SLAs vary according to the level of criticality of
the involved services and also contain real-time aspects, like
the services’ response or expiration time. A standard method
to refine a spurious service composition into a compliant
one is via the synthesis of a safe orchestration, in the form
of the most permissive controller from Supervisory Control
Theory (SCT). Ideally, safe orchestrations solve competition
among matching service requests and offers, in light of their
criticalities and their timing constraints, in the best possible
way. In this paper, we introduce timed service contract au-
tomata as a novel formal model for service contracts with
real-time constraints on top of services with varying levels
of criticality. We also define a means to efficiently compute
their composition and their safe orchestration, using the con-
cept of zones from timed games. The innovations of our
contribution are illustrated by intuitive examples and by a
preliminary evaluation.

Keywords Services · Contracts · Automata · Real-Time ·
Synthesis · Orchestration · Games

D. Basile
Università degli Studi di Firenze, Italy
E-mail: davide.basile@unifi.it

M.H. ter Beek
ISTI–CNR, Pisa, Italy
E-mail: maurice.terbeek@isti.cnr.it

A. Legay
Université Catholique de Louvain, Belgium
E-mail: axel.legay@uclouvain.be

1 Introduction

Service computing is an emerging discipline concerned with
the creation, publication, discovery and orchestration of ser-
vices [24, 32]. A typical application is an orchestration of
services that are created and published by different organi-
sations and that are dynamically discovered. In the recently
published Service Computing Manifesto [18], service de-
sign is listed as one of the four emerging research chal-
lenges in service computing for the next 10 years. The au-
thors of [18] signal that “Service systems have so far been
built without an adequate rigorous foundation that would en-
able reasoning about them” and claim that “The design of
service systems should build upon a formal model of ser-
vices”. This paper is part of an encompassing effort to ad-
dress these issues [7, 11, 13].

Several formal models of service contracts are surveyed
in [14, 5]. These concern specification frameworks to for-
malise the externally observable behaviour of services in
terms of obligations (i.e. service offers) and requirements
(i.e. service requests) to be matched. Contracts that are ful-
filled characterise agreement among services as an orches-
tration (i.e. a composition) of them based on the satisfaction
of all requirements through obligations. Orchestrations must
be able to dynamically adapt to the discovery of new ser-
vices, to service updates and to services that are no longer
available [6].

In this paper, we include notions of time in one particular
such formal model for service contracts, with a precise se-
mantics, namely the (service) contract automata from [7]1.
A service contract automaton represents either a single ser-
vice (called a principal) or a multi-party composition of ser-
vices. The goal of each principal is to reach an accepting
(final) state by matching its requests with corresponding of-

1 Our (service) contract automata are not to be confused with the ho-
monym contract automata of [4], cf. the related work discussed below.

2 Davide Basile et al.

fers of other principals. The underlying composition mech-
anism is orchestration. Service interactions are implicitly
controlled by an orchestrator synthesised from the princi-
pals, which directs them in such a way that only finite exe-
cutions in agreement actually happen. Through service con-
tracts it is then possible to characterise the behaviour of an
ensemble of services. The (verifiable) notion of agreement
characterises safe executions of services (i.e. all requests are
matched by corresponding offers).

Our formalism also builds upon [11], where service con-
tract automata are equipped with modalities that distinguish
between necessary and permitted requests to mimic the un-
controllable and controllable actions, respectively, as known
from Supervisory Control Theory (SCT) [31, 20]. In the re-
sulting (modal) service contract automata, only service re-
quests can be classified as necessary; instead, all service
offers are by definition permitted, based on the assumption
that a service contract may always withdraw its offers that
are not needed to reach agreement. A synthesis algorithm
was defined to orchestrate services in agreement by guaran-
teeing the satisfaction of all necessary requests and negoti-
ating the maximum number of permitted requests that can
be satisfied without leading to a spurious service composi-
tion. In this case, contracts thus adapt to the agreement by
renouncing to permitted but unsatisfiable requirements.

Contribution In this paper, we introduce timed service con-
tract automata (TSCA) by endowing service contract au-
tomata with real-time constraints, which must be fulfilled in
successful orchestrations. TSCA also allow to specify dif-
ferent types of necessary requests, called urgent, greedy and
lazy, with decreasing levels of criticality borrowed from [9].
These different criticality levels are key aspects to ensure
that certain necessary requests must always be satisfied (e.g.
in each possible context) while others must eventually be
satisfied (e.g. in specific contexts). To deal with such ac-
tions requests in a synthesis algorithm for TSCA, a novel no-
tion of semi-controllability is used, which encompasses both
the notion of controllability and that of uncontrollability as
used in classical synthesis algorithms from SCT [31, 20].
Our synthesis algorithm mixes and extends techniques from
SCT with notions from timed games [3, 21].

A TSCA orchestration thus solves multi-party compe-
titions on service actions and as well as on the associated
timing constraints, which is a natural scenario in service
computing, and provides a winning strategy by which con-
tract requirements are matched by available offers. More-
over, TSCA offer a lot of flexibility in the design of service
systems through different levels of critical requests and, in
particular, by allowing to indicate those service offers and
requests that can possibly be (temporarily) ignored in an or-
chestration to avoid it to become unsafe. This neatly delim-
its those fragments (i.e. executions) of service compositions

that are allowed in safe orchestrations (cf. Fig. 8 discussed
in Sect. 4). By changing the timing constraints or criticality
levels, designers can fine-tune such fragments according to
their specific needs.

Our contribution can thus be summarised as follows:
(i) we introduce TSCA, a novel formal model for service
contracts equipped with (ii) real-time constraints and with
(iii) different types of service requests of varying levels of
criticality, as well as with a means to efficiently compute
(iv) composition and (v) safe orchestration of TSCA; we
(vi) illustrate the functioning of our formalism with a TSCA
model of a Hotel service reservation system and, finally, we
(vii) provide a preliminary evaluation of our approach to
show the advantages of native support for the above features.
We are not aware of any other formalism for service con-
tracts or from component-based software engineering with
native support for these features. In fact, the preliminary
evaluation compares the innovations of our approach with
respect to the model of timed I/O automata [22], but the
comparison remains valid with respect to related formalisms,
like Interface Automata [1].

Related Work Several foundational formalisms for service
contracts and session types are surveyed in [25]. Our model
is fundamentally different, since all of the surveyed models
lack an explicit notion of time and none of them considers
different levels of criticality of services.

Well-known component-based formalisms from software
engineering, such as Interface automata [1] and (timed) (I/O)
automata [29, 2, 22] cannot model contracts that compete
for the same service offer or request, a key feature of TSCA,
and also do not cater for modelling services with different
levels of criticality (cf. the comparison in Section 5).

Modal transition systems and their extensions [26], as
adopted for instance in software product line engineering,
like modal I/O automata [27] and modal transition systems
with variability constraints [15], do of course distinguish
may and must modalities, thus admitting some actions to
be more critical than others, but the other aforementioned
differences with TSCA remain.

The accidentally homonym contract automata of [4] are
meant to formalise generic natural language legal contracts
among two parties. They are finite state automata whose
states are tagged with deontic modalities in the form of obli-
gations and permissions. A contract is satisfied if all deon-
tic modalities are honoured, and violated otherwise. TSCA
target a different domain, viz. multi-party service contracts.
Necessary and permitted requirements do resemble such obli-
gations and permissions, but the latter are defined on states
while the former are defined on actions. Moreover, the con-
tract automata of this paper distinguish different types of
necessary requirements that stem from the multi-party com-
position not addressed in [4]. Finally, contrary to TSCA, the

Timed Service Contract Automata 3

contract automata of [4] are not compositional and also do
not consider synthesising orchestrations of services in agree-
ment.

To conclude, our synthesis algorithm for TSCA (cf. Sec-
tion 3) resembles a timed game, but it differs from classical
timed game algorithms [3, 21, 22] in the following aspects.
The synthesis algorithm for TSCA solves both reachability
and safety problems, and a TSCA might be such that all
‘bad’ configurations are unreachable (i.e. it is safe), while at
the same time no final configuration is reachable (i.e. the re-
sulting orchestration is empty). TSCA strategies are defined
as relations: the orchestration being the maximal winning
strategy, which is computable since only finite traces are al-
lowed [19] and all services terminate by definition. The or-
chestrator enforces only fair executions. More detailed tech-
nical differences are given in Section 3.

Outline Section 2 formalises TSCA, including their seman-
tics, composition, and the controllability of (service) actions.
Section 3 presents a synthesis algorithm for computing the
safe orchestration of TSCA via zone operators. Section 4
contains examples of the applicability of TSCA. Section 5
highlights the innovations of this paper by means of a pre-
liminary evaluation of TSCA. Section 6 concludes the paper.

This paper is a revised version of a conference publica-
tion at VECoS [13], extended with detailed proofs of our
results and with a preliminary evaluation of our approach.
Moreover, based on suggestions coming from the audience
at VECoS, we slightly revisited the formalism by incorpo-
rating state invariants for modelling controllability over time.

2 Modelling Real-time Service Contracts

Contract automata were introduced to provide a rigorous
formal technique for describing and composing to describe
and compose service contracts [7]. A contract automaton
represents the behaviour of a set of principals (possibly a
singleton) which can either request, offer or match services
(a match is a pair of complementary request-offer services)
or remain idle. The number of principals in a contract au-
tomaton is called its rank. The states and actions labelling
the transitions of a contract automaton (of rank n) are vec-
tors (of rank n) over the states of its principals and over the
actions that each performs, respectively.

Notation We first introduce some notation. Given a finite
set S, we denote its complement by S, while ∅ denotes the
empty set. A vector v = (e1, . . . ,en) of rank n≥ 1 is denoted
by rv. We let v(i) denote its ith element, with 1≤ i≤ rv. We
denote the concatenation of m vectors vi by v1 · · ·vm.

The set of basic actions of a contract automaton is de-
fined as Σ = R∪O∪ {•}, where R = {a,b, . . .} is the set

Table 1: Classification of (basic) actions of TSCA

permitted offers permitted requests necessary requests
lazy greedy urgent

a a3 a2` a2g a2u

of requests, O = {a,b, . . .} is the set of offers, R∩O = ∅,
and • 6∈R∪O is a distinguished element representing an idle
move. We define the involution co(·) : Σ 7→Σ s.t. co(R)=O,
co(O) = R and co(•) = •.

We stipulate that in an action vector a over Σ there is
either a single offer or a single request, or a single pair of
request-offer that matches, i.e. there exist i, j such that a(i) is
an offer and a(j) is the complementary request, or vice versa;
all the other elements of a contain the symbol • (meaning
that the corresponding principals remain idle). We let •m de-
note a vector (•, . . . ,•) of rank m.

Definition 1 (Actions) Let a be an action vector over Σ .
Let n1,n2,n3 ≥ 0.

If a= •n1α•n2 , then a is a request (action) on α if α ∈R,
whereas a is an offer (action) on α if α ∈ O.

If a = •n1α •n2 co(α)•n3 , then a is a match (action) on
α , with α ∈ R∪O.

Actions a and b are complementary, denoted by a 1 b,
iff the following holds: (i) ∃α ∈ R∪O s.t. a is either a re-
quest or an offer on α; (ii) a is an offer on α implies that b
is a request on co(α); (iii) a is a request on α implies that b
is an offer on co(α).

In [11], the contract automata of [7] were equipped with
a notion of ‘action’ variability by means of necessary (2)
and permitted (3) modalities that can be used to classify
requests (and matches), whereas all offers are by definition
classified as permitted. Permitted requests and offers reflect
optional behaviour and as such they can thus be discarded in
compositions of contract automata.

2.1 Timed Service Contract Automata

In this paper, the set of necessary requests of the service
contract automata of [11] is partitioned into urgent, greedy,
and lazy requests as borrowed from [9]. Since these requests
must be matched to reach an agreement among contracts,
they add a layer of ‘timed’ variability to the formalism: a
means to specify ‘when’ certain (service) requests must be
matched in a composition (contract). Table 1 classifies the
different types of actions that are considered in this paper.

Notation We borrow some notation concerning clocks from
[21]. Let X be a finite set of real-valued variables, called
clocks. Let C(X) denote the set of constraints ϕ generated
by the grammar ϕ ::= x∼ k | x−y∼ k | ϕ ∧ϕ , where k ∈ Z,

4 Davide Basile et al.

x,y ∈ X , and∼∈ {<,≤,=,>,≥}. Let B(X) denote the sub-
set of C(X) that uses only rectangular constraints of the form
x ∼ k. For simplicity, we consider only such constraints. A
valuation of the variables in X is a mapping X 7→R≥0. Let 0
denote the valuation that assigns 0 to each clock. For Y ⊆ X ,
we denote by v[Y] the valuation assigning 0 for any x ∈ Y
and v(x) for any x ∈ X \Y . Let v+ δ for δ ∈ R≥0 denote
the valuation s.t. for all x ∈ X , (v+ δ)(x) = v(x)+ δ . For
g ∈C(X) and v ∈RX

≥0, we write v |= g if v satisfies g and [g]
denotes the set of valuations {v ∈RX

≥0 | v |= g}. A zone Z is
a subset of RX

≥0 s.t. [g] = Z for some g ∈C(X).

Definition 2 (TSCA) A timed service contract automaton
(TSCA) of rank n≥ 1 is a tuple

〈Q,q0,A3,A2u ,A2g ,A2` ,Ao,X ,T, I,F〉

in which

– Q = Q1×·· ·×Qn is the product of finite sets of states
– q0 ∈ Q is the initial state
– A3, A2u , A2g , A2` ⊆R are (pairwise disjoint) sets of per-

mitted, urgent, greedy, and lazy requests, respectively,
and we denote the set of requests by Ar = A3 ∪ A2,
where A2 = A2u ∪A2g ∪A2`

– Ao ⊆ O is the finite set of offers
– X is a finite set of real-valued clocks
– T ⊆Q×B(X)×A×2X×Q, where A= (Ar∪Ao∪{•})n,

is the set of transitions partitioned into permitted transi-
tions T 3 and necessary transitions T 2 with T = T 3 ∪
T 2 s.t., given t = (q,g,a,Y,q′)∈ T , the following holds:

- a is either a request, an offer, or a match
- ∀i ∈ 1 . . .n : a(i) = • implies q(i) = q′(i)
- t ∈ T 3 iff a is either a request or a match on a ∈ A3

or an offer on a ∈ Ao; otherwise t ∈ T 2

– I : Q 7→ B(X) is a function assigning an invariant to each
state

– F ⊆ Q is the set of final states

A principal TSCA (or just principal) has rank 1 and it is
such that Ar ∩ co(Ao) =∅.

Unless stated differently, we will assume a fixed TSCA
A = 〈QA ,q0A

,A3
A ,A2u

A ,A2g
A ,A2`

A ,Ao
A ,XA ,TA , IA ,FA 〉 of

rank n in the sequel. Subscript A may be omitted when no
confusion can arise. Moreover, if not stated otherwise, each
operation op(Ar) (e.g. union) is intended to be performed
homomorphically on op(A3), op(A2), op(A2u), op(A2g),
and op(A2`). Finally, abusing notation, we may write T 3∪2

as shorthand for T 3 ∪ T 2 and likewise for other transition
sets, and we may write a transition t as a request, an offer,
or a match, whenever its label is such.

Pictorially, offer actions are overlined while request ac-
tions are not. Furthermore, permitted actions label dotted
transitions and are suffixed by 3, whereas urgent, greedy,

qH0 qH1 qH2

y≥ 50
discount

y← 0

room
y← 0

yyy≤≤≤ 555

y≥ 5
card3
y← 0

y≥ 5
receipt
y← 0

y≥ 4
cash3
y← 0

Fig. 1: TSCA model Hotel

qD0 qD1 qD2 qD3
discount2` card receipt3

Fig. 2: TSCA model DiscountClient

and lazy necessary actions label solid transitions (red, or-
ange, and green in the pdf) suffixed by 2u, 2g, and 2`, re-
spectively (cf. Table 1).2 Finally, a state’s invariant is written
in bold and omitted in case it is true (cf. Fig 1).

Example 1 Figures 1 and 2 depict two TSCA models. The
one in Fig. 1 specifies a hotel booking system that offers
two room types (a normal room and a discount room). The
discount room is only available upon waiting at least 50
time units (t.u. for short). The hotel requests payment from
clients, either in cash (which takes at least 4 t.u.) or by card
(at least 5 t.u.). Only in the latter case, the hotel also offers a
receipt after at least 5 t.u. Note, moreover, that the presence
of the invariant yyy ≤≤≤ 555 in state qH1 effectively requires the
payment by card to occur (instantaneously) precisely when
y = 5 holds (for the sake of example).

The TSCA in Fig. 2 depicts a hotel client, who requests
(lazily) a discount room, after which she offers to pay by
card and requests a receipt. Note that the model has no real-
time constraints and all its state invariants are true.

2.2 Semantics

A TSCA recognises a trace language over actions and their
modalities. Let A be a TSCA and let # ∈ {3,2u,2g,2`}.
From now on we use# as placeholder for necessary (2) and
permitted (3) transitions. A configuration of a TSCA is a
triple (w,q,v)∈ (A∪{#})∗×Q×RX

≥0 consisting of a recog-
nised trace w, a state q, and a valuation v of clocks. Recog-
nised traces are such that from a configuration (w,q,v), a
TSCA either lets time progress or performs a discrete step
to reach a new configuration. This is formally defined by the
transition relation→ by which a step (w,q,v) a#−→(w′,q′,v′)
is executed iff w = a#w′ and (q,g,a,Y,q′) ∈ T #, in which
either v |= g, v′ = v[Y], and v′ |= I(q′), or else, for some δ ≥

2 In this paper, there are no examples of greedy necessary actions.

Timed Service Contract Automata 5

0, we have (w,q,v) δ−→(w,q,v′) if v′ = v+ δ and v′ |= I(q).
We let time progress δ be a silent action in the languages
recognised by TSCA.

The semantics of a TSCA A is a labelled transition sys-
tem TSA = (C,c0,→), where C = (A∪{#})∗×Q×RX

≥0
is the set of configurations, c0 = (w,q0,0) ∈ C is the initial
configuration, for some w ∈ (A∪{#})∗, and→ is the tran-
sition relation with set of transition labels (A{#})∪R≥0.
A run of A is a sequence of alternating time and discrete
transitions in TSA. Note that the traces recognised by TSCA
languages are finite.

By an abuse of notation, the modalities can be attached
to basic actions or to their action vector (e.g. (a2`,a) ≡
(a,a)2`). Configurations may be written as (q,v) whenever
w is immaterial, discrete steps as (q,v) a#−→ whenever (q′,v′)
is immaterial, and (time or discrete) transitions as (w,q,v)→
(w′,q′,v′) whenever a# or δ are immaterial. Let→∗ denote
the reflexive and transitive closure of→. The language of A
is defined as

L (A) = {w | (w,q0,0)−→∗(ε,q,v), q ∈ F }

Behavioural analysis of TSCA is based on exploring a
(finite) simulation graph, whose nodes are symbolic config-
urations, defined as pairs (q,Z), where q∈Q and Z is a zone
of RX

≥0. Let C ⊆ C be a set of configurations and let a ∈ A.
We define the a-successor of X as

PostA ,a(C) = {c′ | ∃c ∈C : c a◦−→c′ }

and the a-predecessor as

PredA ,a(C) = {c | ∃c′ ∈C : c a◦−→c′ }

We moreover define the match/offer predecessor as

moPredA (C) =
⋃

a match or offer

PredA ,a(C)

The timed successors and predecessors of C are defined by

C↗ = {(q,v+δ) | (q,v) ∈C, v∧ v+δ |= I(q), δ ∈ R≥0 }

and

C↙ = {(q,v−δ) | (q,v) ∈C, v∧ v−δ |= I(q), δ ∈ R≥0 }

respectively. We define → to be the transition relation de-
fined over symbolic configurations by (q,Z) a#−→(q′,Z′) if
(q,g,a,Y,q′) ∈ T # and Z′ = ((Z∩ [g])[Y])↗.

2.3 Composition

A set of TSCA is composable iff their sets of clocks are
pairwise disjoint.

Definition 3 (Composable) A set {Ai | i∈ 1 . . .n} of TSCA
is said to be composable iff ∀Xi,X j, i 6= j : Xi∩X j =∅.

The operands of the composition operator ⊗ are either
principals or composite services. Intuitively, a composition
interleaves the actions of all operands, with only one restric-
tion: if two operands are ready to execute two complemen-
tary actions (i.e. ai 1 a j), then only their match is allowed
whilst their interleaving is prevented. The formal definition
precedes an intuitive explanation. Recall from Definition 2
that the set of actions is A ⊆ (Ar ∪Ao ∪{•})m. Also recall
that we set # ∈ {3,2}.

Definition 4 (Composition) Let Ai be a composable TSCA
of rank ri, with i ∈ 1 . . .n. The composition

⊗
i∈1...n Ai is the

TSCA A of rank m = ∑i∈1...n ri, in which

– Q = Q1×·· ·×Qn, with q0 = q01 · · ·q0n
– Ar =

⋃
i∈1...n Ar

i
– Ao =

⋃
i∈1...n Ao

i
– X =

⋃
i∈1...n Xi

– T # ⊆Q×B(X)×A×2X ×Q s.t. (q,g,a,Y,q′)∈ T # iff,
when q = q1 · · ·qn ∈Q, either case (1) or case (2) holds:
1. ∃ i, j,1≤ i < j ≤ n, s.t. (qi,gi,ai,Yi,q′i) ∈ T #

i ,
(q j,g j,a j,Yj,q′j) ∈ T #∪3

j , ai 1 a j holds, and
a = •uai •v a j•z,with u = r1 + · · ·+ ri−1,

v = ri+1 + · · ·+ r j−1, z = r j+1 + · · ·+ rn,

|a|= m, g = gi∧g j, Y = Yi∪Yj, and
q′ = q1 · · ·qi−1 q′i qi+1 · · ·q j−1 q′j q j+1 · · ·qn

or
k,k′ ∈ {i, j}, k 6= k′, g = gk ∧¬gk′ , Y = Yk,

a = •uak•v,with u = r1 + · · ·+ rk−1,

v = rk+1 + · · ·+ rn, |a|= m, and
q′ = q1 · · ·qi−1 q′i qi+1 · · ·qn

2. ∃ i,1≤ i≤ n, s.t. (qi,gi,ai,Yi,q′i) ∈ T #
i , and

∀ j 6= i,1≤ j ≤ n, s.t. (q j,g j,a j,Yj,q′j) ∈ T #∪3
j ,

ai 1 a j does not hold, and
a = •uai•v,with u = r1 + · · ·+ ri−1,

v = ri+1 + · · ·+ rn, |a|= m, g = gi, Y = Yi, and
q′ = q1 · · ·qi−1 q′i qi+1 · · ·qn

– I is s.t. ∀q ∈ Q.I(q) =
∧

i∈1...n I(qi)

– F = {q1 · · ·qn ∈ Q | qi ∈ Fi, i ∈ 1 . . .n}

The composition of (untimed) contract automata has been
carefully revisited in Definition 4.

Case (1) generates match transitions starting from com-
plementary actions of two operands’ transitions, say ai 1 a j.
If (q j,g j,a j,Yj,q′j) ∈ T 2, then the resulting match transi-
tion is marked necessary (i.e. (q,g,a,Y,q′)∈ T 2), with g =

gi∧g j the conjunction of the guards. If both operands’ com-
plementary actions ai and a j are permitted, then so is their

6 Davide Basile et al.

resulting match transition t. All principals not involved in t
remain idle. In case two complementary actions ai and a j
are available for a match, i.e. ai 1 a j as before, but only one
of their guards (i.e. either gi or g j) is satisfied, then only the
interleaving is possible and the guard g = gk∧¬gk′ requires
the guard of principal k (either gi or g j) to be satisfied and
that of principal k′ 6= k not.

Case (2) generates all interleaved transitions whenever
no complementary actions can be executed from the com-
posed source state (i.e. q). Now one operand executes its
transition t = (qi,gi,ai,Yi,q′i) and all other operands remain
idle. Indeed, only the guard of principal i must be satis-
fied. The resulting transition is marked necessary (permit-
ted) only if t is necessary (permitted, respectively). Note that
condition ai 1 a j excludes pre-existing match transitions of
the operands to generate new matches.

Example 2 Figure 3 shows an excerpt of the composition
Hotel⊗DiscountClient of the TSCA Hotel and Discount-
Client of Figs. 1 and 2. The more relevant part of the TSCA
is depicted, viz. whose semantics is an orchestration (from
initial to final state). Note that, in the initial state, request
discount2` can either be matched with the offer discount if
y≥ 50 or not matched if y < 50. Recall, moreover, that state
invariants are omitted whenever they are true.

2.4 Controllability

We now revisit the different types of actions of TSCA (cf.
Table 1) in light of the orchestration synthesis algorithm we
will present in the next section.

To begin with, we define dangling configurations, i.e.
those configurations that are either not reachable or from
which no final state can be reached (i.e. which are not suc-
cessful). The orchestration synthesis will be specified as a
safety game, in which reachability of final states is satis-
fied through a dangling predicate. The following definition
makes use of a set C of ‘bad’ configurations that are not to
be traversed. Recall that A is a fixed TSCA.

Definition 5 (Dangling configuration) Let C ⊆ C and let
c = (q,v) ∈C.

– We say that c is reachable in A given C, denoted as
c ∈ ReachableA (C), iff (q0,0) w−→∗c without traversing
configurations (qr,vr) ∈C.

– We say that c is successful in A given C, denoted as c ∈
SuccessfulA (C), iff c w−→∗(qf,v′) ∈ F without traversing
configurations (qr,vr) ∈C.

The set of dangling configurations in A given C is defined
as

DanglingA (C) = ReachableA (C)∩SuccessfulA (C)

Table 2: Controllability of actions requests and matches

action requests matches
urgent 2u uncontrollable uncontrollable
greedy 2g semi-controllable uncontrollable

lazy 2` semi-controllable semi-controllable
permitted 3 controllable controllable

In the sequel, abusing notation, we simply say that a
state q ∈ Q is dangling (in A given C), denoted by q ∈
DanglingA (C), iff (q,v) ∈ DanglingA (C) for all possible
valuations v. Moreover, let Dangling(A) = DanglingA (∅).

As anticipated in the Introduction, orchestration synthe-
sis for (service) contract automata resembles the synthesis
of the most permissive controller known from SCT [31, 20].
Intuitively, the aim of SCT is to synthesise a most permissive
controller enforcing ‘good’ (a.k.a. successful) computations,
i.e. runs reaching a final state without traversing any given
‘bad’ (a.k.a. forbidden) state. To do so, SCT distinguishes
controllable events (which the controller can disable) from
uncontrollable events (which cannot be disabled). Ideally,
actions that ruin a so-called safe orchestration of service
contracts (a notion formally defined in Sect. 3, resembling
a most permissive controller) should thus be removed by the
synthesis algorithm. However, this is only allowed for ac-
tions that are effectively controllable in the orchestration.

Hence we need to characterise when an action of a TSCA
(and the transition it labels) is controllable and when not.
We also define ‘when’ a necessary request can be matched,
stemming from the composition of TSCA (interleavings in
Definition 4). Indeed, in TSCA it is possible to require that
a necessary action (either a request or a match) must be
matched in every possible configuration of the orchestration.
Additionally, it is possible to require that a necessary action
must be matched in at least one configuration from which it
is executed. In the latter situation, it is possible to safely re-
move those requests (or matches) from the orchestration, as
long as they do appear as part of a match in some other tran-
sition of the orchestration. Such necessary actions are called
semi-controllable. Basically, a controllable action becomes
uncontrollable in case all possible matches are removed, but
not vice versa. Table 2 summarises the controllability of re-
quests and matches of TSCA.

Recall that action offers are by definition permitted. All
permitted actions (offers, requests, and matches) are fully
controllable. As anticipated in the Introduction, necessary
actions (urgent, greedy, and lazy requests) have an increas-
ing degree of (semi-)controllability. An urgent request must
be matched in every possible state in which it can be exe-
cuted. Accordingly, both urgent requests and urgent matches
are uncontrollable. A greedy request can be disabled by the
controller as long as it is matched elsewhere; once it has
been matched, it can no longer be disabled. In this case,

Timed Service Contract Automata 7

qH0
qD0

qH0
qD1

qH1
qD0

qH1
qD1

qH2
qD2

qH1
qD2

qH0
qD3

qH2
qD3

y≥ 50
(discount,discount)2`

y← 0

y < 50
(•,discount)2`

(room,•)3
y← 0

yyy≤≤≤ 555

y≥ 5
(card,card)3

y← 0
yyy≤≤≤ 555

y≥ 4
(cash,•)3

y← 0

y < 3
(•,card)3

yyy≤≤≤ 555

y≥ 5
(receipt,receipt)3

y← 0

y < 5
(•,receipt)3

Fig. 3: Excerpt of composition Hotel⊗DiscountClient of the two TSCA in Figs. 1 and 2

greedy requests are semi-controllable, while greedy matches
are uncontrollable. Finally, a lazy action only requires to be
matched: its matches are controllable in the orchestration,
provided that at least one match is available (i.e. both lazy
requests and lazy matches are semi-controllable).

In the remainder of this section, we characterise semi-
controllability of transitions (cf. Definition 6). Since we deal
with real-time systems, this notion is defined on configura-
tions. Recall from Table 2 that permitted actions are always
controllable, while urgent actions are always uncontrollable.

A semi-controllable transition t is either a (greedy or
lazy) request or a lazy match, and it is controllable in a
TSCA A given C if there exists a (greedy or lazy) match
transition t ′ in A , which is reachable given C, and in both
t and t ′ the same principal, in the same local state, does
the same request, and additionally the target configuration
is successful given C. Otherwise, t is uncontrollable. Recall
that A is fixed.

Definition 6 (Semi-controllable transition) Let C⊆C and
let t = (q1,g1,a1,Y1,q′1) be a transition of A .

Transition t is semi-controllable if it is a request on a ∈
A2g∪A2` or a match on a∈A2` . At the same time, t is either
controllable or uncontrollable in A given C.

– We say that transition t is controllable in A given C if
∃ t ′ = (q2,g2,a2,Y2,q′2) ∈ T 2, s.t. a2 is a match, ∃v s.t.
(q2,v) ∈ ReachableA (C), (q′2,v

′) ∈ PostA ,a2((q2,v)↗),
(q′2,v

′)∈ SuccessfulA (C), q1(i)=q2(i), and a1(i)=a2(i)∈
R∩ (A2g ∪A2`)

– Otherwise we say that transition t is uncontrollable in A
given C

In Definition 6, it does not suffice to require q2 or q′2 to
be in DanglingA (C). This is because it could be the case that
q′2 is only reachable from a trace not passing through transi-
tion t ′, while q2 only reaches a final configuration through a
trace not traversing t ′. Hence, we need to explicitly require
that for some v, (q2,v) is reachable, and (q′2,v

′) is a (timed)
successor of (q2,v) that reaches a final configuration.

Example 3 In Fig. 3, all transitions are permitted, except for
the lazy discount actions that can be executed from the ini-
tial state. The transition (•,discount)2` is thus a control-
lable lazy request, since the same request of DiscountClient
is matched in the transition (discount,discount)2`. In the
resulting orchestration (cf. Section 4) this will be the only
match available for such a necessary action.

We thus call a transition uncontrollable if one of the
above cases holds (i.e. urgent or greedy match, uncontrol-
lable greedy or lazy request, or uncontrollable lazy match).

3 Orchestration Synthesis

In this section, we define the aforementioned synthesis of
safe orchestrations of TSCA, considering both timing con-
straints and service requests with different levels of critical-
ity. To this aim, we carefully adapt the synthesis algorithm
for (modal) service contract automata defined in [11], which
was based on the synthesis of the most permissive controller
from SCT [31, 20]. To respect the timing constraints, the
synthesis algorithm of TSCA presented below is computed
using the notion of zones from timed games [3, 21].

The algorithm we will propose differs from the classi-
cal ones presented in [3, 21, 22] by combining two separate
games, viz. reachability games and safety games. Indeed, as
said before, the orchestration synthesis of TSCA is based on
the synthesis of the most permissive controller from SCT,
which ensures that (i) forbidden states are never traversed
(a.k.a. a safety game) and (ii) marked states must be reach-
able (a.k.a. a reachability game). In the TSCA formalism,
marked states are the final states of the composition of con-
tracts, whereas bad states are those states that ruin an agree-
ment among contracts (cf. Definitions 7 and 9 below).

We start by recalling the notions of agreement and safety
on the languages of service contract automata from [11]. In-
tuitively, a trace is in agreement if it is a concatenation of
matches, offers, and their modalities, while a TSCA is safe
if all traces of its language are in agreement, and it admits

8 Davide Basile et al.

agreement if at least one of its traces is. Recall that A is a
fixed TSCA.

Definition 7 (Agreement, safety) A trace accepted by A
is in agreement if it belongs to the set

A= {w ∈ (Σ n#)∗ | ∀i s.t. w(i) = a#,

a is a match or an offer, n > 1}

We say that A is safe if L (A)⊆A; otherwise A is said to
be unsafe. If L (A)∩A 6=∅, then A admits agreement.

Basically, an orchestration of TSCA enables the largest
sub-portion of a composition of TSCA that is safe. Given the
timed setting, the orchestration must consider clock valua-
tions for each contract. Hence, the underlying transition sys-
tem of a TSCA is inspected by the synthesis algorithm. The
orchestration will be rendered as a strategy on this transition
system such that only traces in agreement are enforced. We
start by introducing the notion of strategy on TSCA and that
of a well-formed strategy, i.e. a strategy avoiding dangling
configurations.

Definition 8 (Strategy) A strategy f is a relation defined
as f : (Σ n{#}∪RX

≥0)
∗× (Σ n{#}∪RX

≥0) mapping traces of
A to actions or delays s.t. given a trace (q0,0) w−→∗(q,v) of
A , then (q,v) λ−→(q′,v′), for some λ ∈ f (w) and (q′,v′)∈C.

Furthermore, f is said to be well-formed given C ⊆ C if
it is never the case that (q′,v′) ∈ DanglingA (C).

The language recognised by A following the strategy f
is denoted by L f (A) and fC denotes the strategy allowing
to traverse all and only configurations in C.

We discuss some further differences compared to timed
games. A TSCA strategy game can be seen as a 2-player
game, in which a controller (i.e. an orchestrator) executes
controllable transitions to enforce agreement among con-
tracts, while an opponent executes uncontrollable transitions
to drive the orchestrator to some ‘bad’ configuration, from
which an agreement can no longer be enforced (cf. Defini-
tion 9). The opponent has precedence over the orchestrator,
as long as its uncontrollable transitions are enabled (i.e. sat-
isfied clock guards). Finally, fairness of TSCA guarantees
that a final state is eventually reached, because traces recog-
nised by TSCA languages are finite.

In timed games, strategies cannot prevent uncontrollable
transitions from being executed. This follows from the no-
tion of outcome of a strategy, which is used to characterise
winning strategies. In TSCA, winning strategies are defined
as those avoiding ‘bad’ configurations, while at the same
time enforcing agreement among contracts. Next we will
formally define bad configurations, i.e. configurations in un-
controllable disagreement. Basically, a configuration is in
uncontrollable disagreement if the orchestrator cannot pre-
vent a request of a principal from being executed without a

corresponding offer (i.e. no match). In such configurations,
the controller loses and thus the orchestration is unsafe. Note
that the opponent can only win by reaching one such config-
uration. Indeed, unfair traces are ruled out in TSCA.

Definition 9 (Configuration in uncontrollable disagree-
ment) Let C ⊆ C.

We say that a transition t = q a−→ ∈ TA is forced from a
configuration (q,v) given C iff (q,v) a−→ and (i) t is uncontrol-
lable in A given C or (ii) q 6∈ F and no other t ′ = q a′−→∈ TA

is s.t. (q,v) δ−→(q,v′) a′−→ for some delay δ .
A non-dangling configuration (q,v1) 6∈ DanglingA (C)

is said to be in uncontrollable disagreement in A given C
iff (q,v1)

w−→∗(q1,v2) s.t. only timed or forced transitions are
enabled and either (i) w 6∈ A, (ii) some configuration in C
was traversed, or (iii) @w′∈ A s.t. (q1,v2)

w′−→∗(q f ,v3) with
q f ∈ FA without traversing configurations in C.

A safe orchestration of TSCA can be interpreted as a
winning strategy in terms of timed games, as defined next.
Basically, a winning strategy enforces agreement among con-
tracts, i.e. no bad configurations will ever be traversed.

Definition 10 (Winning strategy) Let f be a strategy given
C ⊆ C and let U be a set of configurations in uncontrollable
disagreement in A given C.

We say that f is a winning strategy given C if it is well-
formed given C, it never traverses configurations in U , and
L f (A) ⊆ A. A winning strategy f given C is maximal if
there is no winning strategy f ′given C s.t. Lf (A)⊆Lf ′(A).

Notation Before defining the synthesis of a safe orchestra-
tion, we define some auxiliary notions. Given a set of con-
figurations C ⊆ C of a A , the uncontrollable predecessor
predicate uPredA (C) is defined as all configurations from
which some configuration in C is reachable by executing an
uncontrollable transition. Formally,

uPredA (C) = {c | ∃c′∈C,

c a2−→c′ is uncontrollable in A given C}

We borrow the notion of safe timed predecessor of a set
C1 ⊆C with respect to a set C2 ⊆C from [21]. Intuitively, a
configuration c is contained in the (safe timed) predecessor
predicate PredA , t(C1,C2) if from c it is possible to reach a
configuration c′ ∈C1 by time elapsing and the trace from c
to c′ avoids configurations in C2. Formally,

PredA , t(C1,C2) = {c ∈ C | ∃δ ∈ R≥0 s.t. c δ−→c′,

c′ ∈C1, and PostA ,[0,δ](c)⊆C2 }

in which

PostA ,[0,δ](c) = {c′ ∈ C | ∃ t ∈ [0,δ] s.t. c t−→c′ }

Timed Service Contract Automata 9

and

C2 = C\C2

We are now ready to define the synthesis of a safe or-
chestration of TSCA. Let A − denote the TSCA obtained
from A by replacing TA with TA − = { t = q a◦−→ | t ∈ TA and
(# 6=3∨a is not a request)}, i.e. all permitted requests are
pruned from A .

Definition 11 (Safe orchestration) Let φ : 2C → 2C be a
monotone function on the complete partial order (2C,⊆) s.t.
φ(Ci−1) = Ci, where

C0 = {c | c ∈ C, c a2−→,

a is an uncontrollable request in A − given ∅}

and

Ci = PredA −, t(Ci−1∪uPredA −(Ci−1),moPredA −(Ci−1))

∪DanglingA −(Ci−1)∪Ci−1

and let

C∗ = sup({φ
n(C0) | n ∈ N})

be the least fixed point of φ .
The safe orchestration of A is defined as the strategy:

f ∗ =

{
⊥ if (q0,0) ∈ C∗

fC
∗

otherwise

This definition is such that whenever the initial configu-
ration (q0,0) belongs to C∗, then the orchestration is empty
(i.e. there exists no strategy to enforce agreement among
contracts, while avoiding configurations in uncontrollable
disagreement). If (q0,0) does not belong to C∗, then the set
C∗ identifies a winning strategy that characterises a safe or-
chestration of contracts. This strategy allows as many tran-
sitions as possible without ever traversing configurations in
C∗. Indeed, the controller can avoid principals reaching bad
configurations in C∗, meanwhile guaranteeing all require-
ments to be satisfied. C∗ moreover identifies the maximal
winning strategy, i.e. f ∗ allows all controllable match/offer
transitions to configurations not belonging to C∗ (recall that
f ∗ is not a function). Note that f ∗ is computable due to the
finiteness of the symbolic configurations and the monotonic-
ity of the fixed-point computation [21]. As the next theorem
states, f ∗ is the maximal well-formed winning strategy.

Theorem 1 (Maximal winning strategy) Let strategy f ∗

be as computed through Definition 11.
If f ∗=⊥, then there exists no well-formed winning strat-

egy f given C∗. Otherwise, f ∗ is the maximal well-formed
winning strategy in A given C∗.

Proof If (q0,0) ∈ C∗, then trivially there exists no well-
formed strategy f given C∗ (i.e. (q0,0) ∈ Dangling(C∗)).
It remains to prove that if (q0,0) 6∈C∗, then (1) f ∗ is a well-
formed winning strategy given C∗ and (2) f ∗ is the maximal
winning strategy.

1. By Definition 10, we distinguish the next three cases:
(1a) f ∗never traverses configurations in DanglingA (C∗),
(1b) L f ∗(A)⊆A (i.e. it recognises traces in agreement),
and (1c) f ∗ never traverses configurations in U .
(a) From Definition 11 and the fixed-point computation,

it follows that DanglingA (C∗) ⊆ C∗, hence f ∗ is
well-formed given C∗.

(b) First, by Definition 11, all controllable requests are
disabled in f ∗ via A −. Hence, it remains to prove
that no uncontrollable requests can be fired by f ∗.
By contradiction, we assume that there exists a trace
(q0,0)−→∗(q,v) λ−→(q′,v′) with λ = a2 allowed by f ∗

s.t. (q0,0) · · ·(q,v) 6∈ C∗ and (q′,v′) is the first con-
figuration encountered s.t. a is an uncontrollable re-
quest in C∗ (i.e. a trace not in agreement is recog-
nised by f ∗). Assume i−1 to be the fixed-point iter-
ation s.t. a is an uncontrollable request in Ci−1. By
Definition 11, we have (q,v) ∈ Ci ⊆ C∗ by PredA , t ,
a contradiction.

(c) Again by contradiction, we assume that there exists
a trace (q0,0)−→∗ (q,v)−→(q′,v′) allowed by f ∗ s.t.
(q0,0) · · ·(q,v) 6∈ C∗ and (q′,v′) is the first configu-
ration encountered s.t. (q′,v′) ∈U given C∗. As we
already proved that (q′,v′) 6∈ DanglingA (Ci−1), i.e.
case (1a), and requests cannot be fired, i.e. case (1b),
it follows that conditions (1) and (3) of Definition 9
are not met. It remains to show that condition (2) of
Definition 9 leads to a contradiction.
Assume by contradiction that condition (2) holds,
i.e. from (q′,v′) a configuration c ∈C∗ is reached by
only executing forced transitions and time steps, and
let i−1 be the first fixed-point iteration s.t. c ∈Ci−1.
We proceed by induction on the length of the trace
(q′,v′)−→∗c. In the base case, (q′,v′) δ−→(q′,v′′) a2−→c
for some delay δ and an uncontrollable transition
(q′,v′′) a2−→. Now note that it cannot be the case that
(q′,v′′) a3−→ (i.e. item (ii) of forced transition in Defi-
nition 9). Indeed, in this case we would have (q′,v′)∈
DanglingA (Ci−1), a contradiction. Then (q′,v′) ∈
PredA , t(Ci−1 ∪ uPredA (Ci−1), moPredA (Ci−1))

and, by Definition 11, (q′,v′) ∈ Ci ⊆ C∗. Thus tran-
sition t = (q,v) λ−→(q′,v′) is not allowed in f ∗ (recall
that f ∗ only allows transitions to configurations in
C∗), a contradiction. For the inductive step, we as-
sume (q′,v′) δ−→(q′,v′′) a2−→(q′′,v′′)−→∗c and (q′′,v′′)∈
C j, for some j > i, by the induction hypothesis. Sim-
ilarly to the base case, we reach the contradiction
(q′,v′) ∈ C j+1 ⊆ C∗.

10 Davide Basile et al.

2. We need to show that f ∗ is the maximal well-formed
winning strategy given C∗. Assume by contradiction that
there exists another winning strategy f ′ given C∗ s.t.
L f ∗(A)⊂L f ′(A). By Definition 11, all transitions that
are disabled by f ∗ are either (2a) controllable requests or
(2b) transitions leading to configurations in C∗. Hence,
f ′ enables a transition satisfying either case (2a) or (2b):

(a) In this case, L f ′(A) 6⊆ A, i.e. f ′ is not winning, a
contradiction.

(b) By Definition 11,

PredA −, t(C∗∪uPredA −(C∗),moPredA −(C
∗
))

∪DanglingA −(C∗) = C∗

This implies that f ′ enables a transition to a config-
uration into one of the following two cases. Either
(2(b)i) PredA −, t(C∗∪uPredA −(C∗),moPredA −(C

∗
))

or (2(b)ii) DanglingA −(C∗).
i. In this case, by Definition 11, it is not difficult to

see that PredA −, t computes exactly all config-
urations from which an uncontrollable request
cannot be avoided to be executed or a dangling
configuration cannot be avoided to be reached,
i.e. configurations that are in uncontrollable dis-
agreement given C∗. Hence, by Definition 10, f ′

is not a winning strategy, a contradiction.
ii. In this case, by Definition 10, f ′ is not well-

formed, and hence not a winning strategy, a con-
tradiction. ut

Example 4 Recall the composition Hotel⊗DiscountClient
from Fig. 3. We can apply the synthesis algorithm to com-
pute its safe orchestration f ∗. In f ∗, the request transition
(•,discount2`) is removed because it is controllable (cf. Ex-
ample 3). So the language recognised by f ∗ is the singleton

L f ∗(Hotel⊗DiscountClient) =

{(discount,discount)2`(card,card)3(receipt,receipt)3}

From [21] (Theorem 4), we can reduce the computation
of the set PredA , t to the following basic operations on zones:

PredA , t(C1,C2) = (C↙1 \C↙2)∪ ((C1∩C↙2)\C2)
↙

Similarly, we will now provide procedures to compute the
newly introduced sets moPredA , uPredA , and DanglingA

using basic operations on zones. Together, these provide an
effective procedure for computing C∗ (and hence a safe or-
chestration). The set moPredA can be computed from PredA

by only considering discrete steps that are not requests. Con-
versely, both uPredA and DanglingA require visiting the
symbolic configurations of A . We now show how to com-
pute these sets, first DanglingA and then uPredA .

Theorem 2 (Compute dangling configuration) Let C⊆C
and let φ be as defined in Definition 11 s.t. φ(Ci−1) = Ci
and C∗ = sup({φ n(C0) | n ∈ N}).

1. The set of reachable configurations in A given C is com-
puted as ReachableA (C) = C∗, with

C0 = (q0,0)↗ \C↗

and

Ci =
⋃
a
(PostA ,a(Ci−1)

↗ \C↗)∪Ci−1

2. The set of successful configurations in A given C is
computed as SuccessfulA (C) = C∗, with

C0 = {(q f ,v) | q f ∈ FA and v ∈ RXA
≥0 }\C

and

Ci = PredA , t(Ci−1∪ (PredA (Ci−1)\C),C)∪Ci−1

3. The set of dangling configurations in A given C is com-
puted as

DanglingA (C) = SuccessfulA (C∪ReachableA (C))

Proof Note that in the first two cases (i.e. computing the
sets of reachable and successful configurations) the function
φ is monotonic, and by finiteness of the symbolic graph all
fixed-point computations are computable.

1. We have to prove ReachableA (C)=C∗. By Definition 5,
the set ReachableA (C) contains all configurations that
are (1a) reachable without (1b) traversing configurations
in C.
(a) By the definition of timed successor ↗ and PostA ,a,

we only have to prove that the set difference op-
eration does not introduce disconnected configura-
tions, or else all configurations are trivially reach-
able. Take a configuration c ∈ C∩PostA ,a(Ci−1)

↗

for some Ci =
⋃

a (PostA ,a(Ci−1)
↗ \C↗) ∪Ci−1,

where i is the least index s.t. c appears. (The case
for C0 is identical.)
By hypothesis, c 6∈Ci−1 and Ci−1 is such that it only
contains reachable configurations. Given a configu-
ration c′ ∈ PostA ,a(Ci−1), either there exists a time
interval δ s.t. c′ δ−→c, or δ = 0 and c= c′. It remains to
prove that ∀δ ′@c′′ ∈ Ci s.t. c δ ′−→c′′. Indeed, c′′ would
be the only possible case of a disconnected config-
uration belonging to Ci. By definition of timed suc-
cessor, ∀δ ′∀c′′ s.t. c δ ′−→c′′ implies c′′ ∈C↗, hence by
set difference c′′ 6∈ Ci, and the statement follows.

(b) By contradiction, assume there exists c∈C∗∩C, and
let i be the iteration s.t. Ci = C∗. Then either Ci =

(q0,0)↗ \C↗ or Ci =
⋃

a(PostA ,a(Ci−1)
↗ \C↗)∪

Ci−1, and in both cases by definition of set difference
c 6∈C, a contradiction.

Timed Service Contract Automata 11

2. We now prove SuccessfulA (C) = C∗. By Definition 5,
SuccessfulA (C) contains all configurations from which
it is possible to reach a final configuration without traver-
sing configurations in C. Similar to the previous case,
we must prove that (2a) no disconnected configurations
(from all final configurations) are contained in C∗ and
(2b) C∩C∗ =∅.
(a) To begin with, all configurations in C0 are trivially

connected to a final configuration. Furthermore, by
the definition of PredA , t , each configuration in Ci
is connected to some configuration in Ci−1 (and by
induction to a final configuration) by time delay and
by a discrete step (i.e. PredA (Ci−1)).

(b) For the base case it holds that C∩C0 = ∅. Further-
more, for each Ci, it follows from the definition of
PredA , t(Ci−1 ∪ (PredA (Ci−1) \C),C) that no con-
figuration in C is ever traversed.

3. Finally, we must prove the following: DanglingA (C) =

SuccessfulA (C ∪ ReachableA (C)). From Definition 5,
DanglingA (C)=ReachableA (C)∩SuccessfulA (C), i.e.
all configurations that are not reachable or not success-
ful. In a similar way, SuccessfulA (C∪ReachableA (C))

contains by definition all configurations that are success-
ful without traversing either unreachable configurations
given C or configurations in C. This then implies that
SuccessfulA (C ∪ ReachableA (C)) ⊆ ReachableA (C),
i.e. it contains only successful configurations given C
that are reachable given C, which implies the statement.
In comparison with ReachableA (C)∩SuccessfulA (C),
the computation of SuccessfulA (C∪ReachableA (C)) is
quicker because it first computes all reachable configura-
tions given C′, and then all successful ones. Indeed, un-
reachable configurations are identified as ‘bad’ to avoid
them in the computation of the SuccessfulA predicate,
which is not the case for the former definition. ut

Note that the dangling configurations are efficiently com-
puted by combining a forward exploration (i.e. reachable
configurations) with a backward exploration (i.e. successful
configurations), which makes it possible to ignore unreach-
able successful configurations. We have thus determined an
effective procedure to compute DanglingA (C) by means of
basic operations on zones.

It remains to show how to compute the set uPredA of
uncontrollable predecessors. To this aim, we define the fol-
lowing procedure, which makes use of Theorem 2.

Lemma 1 (Compute uncontrollable predecessors) Let
C ⊆ C.

The set of uncontrollable predecessors of C in A is com-
puted as

uPredA (C) = {c ∈ C | ∃c′ ∈C : c a2−→c′ ∈ uncA (C)}

in which

uncA (C) = {(q,v) a2−→ | (q,v) ∈ C∧
(a is urgent ∨ a is a greedy match ∨
(@(q2,v) ∈ ReachableA (C),(q′2,v

′) ∈ SuccessfulA (C).

(q′2,v
′) ∈ PostA ,a′(q2,v)↗∧ a(i) = a′(i) = a ∈ R

∧ a′ is a match ∧ q(i) = q2(i)))}

Proof By definition, an uncontrollable transition has an ac-
tion that is either urgent, a greedy match, an uncontrollable
greedy or lazy request, or an uncontrollable lazy match. As
action a is classified as necessary (2), it remains to show that

(@(q2,v) ∈ ReachableA (C),(q′2,v
′) ∈ SuccessfulA (C).

(q′2,v
′) ∈ PostA ,a′(q2,v)↗∧ a(i) = a′(i) = a ∈ R

∧ a′ is a match ∧ q(i) = q2(i))

is a predicate that identifies exactly those transitions that are
an uncontrollable greedy or lazy request or an uncontrol-
lable lazy match (given C). This follows trivially from Defi-
nition 6. ut

By combining the above results, a safe orchestration of
TSCA could now be implemented using available libraries
for timed games [23, 28] that offer primitive operations on
zones (i.e. ∪, ∩, \, ↗, and ↙).

4 Running Example Revisted

We now continue our running example with an additional
PriviledgedClient, depicted in Fig. 4. This priviledged client
optionally asks for a discount room via a permitted request,
but after 8 t.u. have passed (in the model’s initial state) she
urgently requests a normal room. All state invariants of the
model are true. Consider the following composition

(Hotel⊗DiscountClient)⊗PriviledgedClient

In orchestration f ∗ of this composition, the discount request
of the DiscountClient could be matched before one of the
requests of PriviledgedClient.

However, this interaction is prevented in f ∗. To see this,
let a = (discount,discount,•)2`, let b = (•,•,room)2u, let

t1 = ((qH0,qD0,qP0),y≥ 50,a,y← 0,(qH1,qD1,qP0))

and let

t2 = ((qH1,qD1,qP0),x≥ 8,b,∅,(qH1,qD1,qP1))

Note that t1 is not enabled by f ∗, since otherwise we could
reach a configuration c2 in uncontrollable disagreement via

c0
δ = 50−−−→c1

a−→c2
δ = 0−−−→c2

b−→

12 Davide Basile et al.

qP0 qP1 qP2 qP3

discount

x≥ 8
room2u

card
x← 0

x≤ 7
receipt3

Fig. 4: TSCA model PriviledgedClient

qU0 qU1 qU2 qU3

xU ≤ 5
room2u

card
xU ← 0

xU ≤ 7
receipt3

cash

Fig. 5: TSCA model BusinessClientU

qL0 qL1 qL2 qL3

xL ≤ 8
room2`

card
xL← 0

xL ≤ 7
receipt3

cash

Fig. 6: TSCA model BusinessClientL

qH0 qH1 qH2

room
y← 0

y≥ 5
card3
y← 0

y≥ 5
receipt
y← 0

y≥ 7
cash3
y← 0

Fig. 7: TSCA model Hotel2

In c2, the uncontrollable transition t2 is enabled, but urgent
request b is not matched, thus violating agreement. In f ∗,
the first enabled transition is

((qH0,qD0,qP0),x≥ 8,c,y← 0,(qH1,qD0,qP1))

where c = (room,•,room)2u, i.e. the offer (room,•) from
state (qH0,qC0) is synchronised with the request room2u.

Hence, PriviledgedClient interacts with Hotel prior to
DiscountClient, who is served successively. This is only pos-
sible as both the lazy request (•,discount)2` and the lazy
match (discount,discount)2` of Hotel⊗DiscountClient are
semi-controllable and are delayed in the orchestration of
(Hotel⊗DiscountClient)⊗PriviledgedClient.

Consequently we consider the TSCA models depicted in
Figs. 5–7, which are variants of the previous contracts (cf.
also Figs. 1 and 2 in Section 2). In particular, the Business-
ClientU requests urgently a room within 5 t.u., the Business-
ClientL requests lazily a room within 8 t.u, and the variant
Hotel2 offers only a normal room (i.e. no discount room)
and the invariant y≤ 5 has been removed from its state qH1.
In fact, all state invariants of the models in Figs. 5–7 are true.

First, we have a look at the following composition

(Hotel2⊗BusinessClientL)⊗BusinessClientU

whose orchestration is empty (i.e. there is no agreement). In
the initial state of Hotel2⊗BusinessClientL, the room of-
fer is available only after 8 t.u., otherwise it is matched by
BusinessClientL’s lazy room request. As BusinessClientU’s
urgent room request must be matched within 5 t.u., it cannot
be matched prior to BusinessClientL’s lazy room request.
This is a violation, so the initial configuration is in uncon-
trollable disagreement.

Next, we have a look at the following composition

(Hotel2⊗BusinessClientU)⊗BusinessClientL

and consider its orchestration f ∗. A part of the behaviour
allowed by f ∗ is depicted in Fig. 8 in the fragment marked
with X. In this figure, a transition is executed as soon as it is
enabled.

In this case, the BusinessClientU performs the transac-
tion with the hotel first. For card payments, the minimum
time required to reach state q = (qH0,qU3,qL0) is 5+5 = 10
t.u., with clocks valuation v = (y = 0,xU = 5,xL = 10). In
(q,v) (the top leftmost configuration in Fig. 8), the (lazy)
necessary room request of the BusinessClientL can no longer
be satisfied as it should have been matched within 8 t.u., thus
violating agreement (since every necessary request should
be matched). Hence f ∗ forbids card payments made by the
BusinessClientU. Moreover, note that also the two previous
configurations (contained in the fragment marked with � in
Fig. 8) are forbidden in orchestration f ∗, because they are in
uncontrollable disagreement.

If, however, the BusinessClientU performs a cash pay-
ment, then the minimum time required to reach state q is
7 t.u., with clocks valuation v′ = (y = 0,xU = 7,xL = 7).
Indeed, in configuration (q,v′) (the central rightmost con-
figuration in the fragment marked with X in Fig. 8) the lazy
room request of the BusinessClientL can be matched by the
room offer of Hotel2, and successively the orchestration en-
ables this client to pay either by cash or by card. Therefore,
to satisfy the BusinessClientL’s lazy room request, in the
resulting safe orchestration the BusinessClientU is only al-
lowed to perform cash payments.

5 Discussion of Innovations

In this section, the innovations proposed in this paper are il-
lustrated by means of a comparison of the TSCA formalism
with Timed I/O Automata (TIOA) [22], which is a widely
used formalism with tool support for the specifications of
real-time systems and which comprehends several exten-
sions (e.g. stochastic, hybrid). However, the comparisons re-
main valid with respect to similar formalisms, such as Inter-
face Automata [1]. The innovations concern compositional-
ity, games, and controllability. We will discuss these three
innovations separately, since they are independent from one

Timed Service Contract Automata 13

�

X

qH0 y = 0
qU0 xU = 0
qL0 xL = 0

qH1 y = 0
qU1 xU = 0
qL0 xL = 0

qH1 y = 5
qU1 xU = 5
qL0 xL = 5

qH1 y = 7
qU1 xU = 7
qL0 xL = 7

qH2 y = 0
qU2 xU = 0
qL0 xL = 5

qH2 y = 5
qU2 xU = 5
qL0 xL = 10

qH0 y = 0
qU3 xU = 5
qL0 xL = 10

qH2 y = 0
qU3 xU = 12
qL2 xL = 0

qH1 y = 5
qU3 xU = 12
qL1 xL = 12

qH1 y = 0
qU3 xU = 7
qL1 xL = 7

qH1 y = 7
qU3 xU = 14
qL1 xL = 14

qH0 y = 0
qU3 xU = 7
qL0 xL = 7

qH2 y = 5
qU3 xU = 17
qL2 xL = 5

qH0 y = 0
qU3 xU = 17
qL3 xL = 5

qH0 y = 0
qU3 xU = 14
qL3 xL = 14

(room,room,•)2u δ = 5 δ = 2

(card,card,•)3

δ = 5(receipt,receipt,•)3

(cash,cash,•)3

δ = 5(cash,•,cash)3

(room,•,room)2`(card,•,card)3

δ = 5

δ = 2

(receipt,•,receipt)3

Fig. 8: Excerpt of TS(Hotel2⊗BusinessClientU)⊗BusinessClientL, whose fragment marked with X is allowed in the safe orchestration
whereas the one marked with � is not

another, but they have been seamlessly integrated into the
framework of TSCA. The first innovation is inherited from
the basic contract automata of [7], while the remaining two
are specific to the TSCA introduced in this paper.

Compositionality First, we discuss composition. In TIOA,
there are two levels of specification. One concerns the single
components (e.g. A, B, C) and the other their composition
(e.g. A⊗ B⊗ C). Indeed, the composition operator of TIOA
is associative, i.e. the order in which the components are
composed is irrelevant, as the result will always be the same
(i.e. (A⊗B)⊗C= A⊗ (B⊗C) = (A⊗C)⊗B= A⊗B⊗C).

TSCA, on the contrary, allow to model complex compo-
sition patterns based on the order in which service contracts
are composed. This is due to their non-associative compo-
sition operator, according to which pre-existing matches of
service offers and requests are not rearranged when new ser-
vice contracts join the composition. We have seen an exam-
ple of this in the example of Section 4, where the compo-
sitions (Hotel2⊗BusinessClientL)⊗BusinessClientU and
(Hotel2⊗BusinessClientU)⊗BusinessClientL exhibit fun-
damentally different behaviour: in the former case the or-
chestration is empty, whereas in the latter case it is not (and
part of the behaviour allowed by its safe orchestration f ∗ is
depicted in Fig. 8).

The view on compositionality adopted by TSCA allows
to primitively model scope restriction in the style of the π-
calculus [30]. If, e.g., A and B are privately interacting on an
action a, in the composition (A⊗B)⊗C the principal C is not
allowed to interfere with A and B on such action.

q0 q1

q′1q′0

(•,b)3

(a,a)2
`

(a,a)2
`

Fig. 9: Automaton A

Games Second, we discuss the introduction of a new kind
of timed game, for which we have formalised the synthesis
of the most permissive strategy. Indeed, the TSCA strategy
game combines the traditional reachability and safety games
(cf., e.g., [3, 21] and the game-based specification theory for
TIOA [22]) into one single setting, with the difference that
only finite traces of execution are considered.

The approach of this paper is useful in any real-time
most permissive controller synthesis problem, for which both
forbidden and successful configurations are specified. We
have proved that the TSCA strategy game can effectively
be solved by using the existing operators on zones used for
timed games, which can be efficiently computed thanks to
existing algorithms available from the literature [23, 28].

We believe that it would not be extremely difficult to add
this kind of timed games to the UPPAAL toolset [16, 17]
(http://www.uppaal.org/) but, as far as we know, this
has not been done yet. Since the UPPAAL code is not open
source, we plan to investigate the issue in collaboration with
the UPPAAL developers.

http://www.uppaal.org/

14 Davide Basile et al.

Controllability Third, we discuss the identification of a new
type of modality, namely semi-controllability. We believe
this to be our most important innovation and we illustrate
it in detail with the help of a simple example.

The automaton A depicted in Figure 9 depicts (in an in-
formal way) a composition A⊗B in which A and B can either
synchronise on a semi-controllable action a in their initial
state or after B has performed an internal action (say, b).
We underline that such a composition can easily be obtained
in other automata-based formalisms (such as, e.g., TIOA).
Moreover, we have willingly left unspecified whether a bad
or a successful configuration is reached after one of the two
synchronisations depicted in Figure 9 has occurred. Indeed,
as stated above, the notion of semi-controllability is inde-
pendent from both the specific formalism being used and
the requirement (e.g. agreement in case of TSCA) to be en-
forced.

To the best of our knowledge, there exists no synthe-
sis algorithm in the literature capable of producing a con-
troller (or strategy) which guarantees that at least one of
these two synchronisation actually occurs. Indeed, in case
action a were declared controllable, then the synthesis al-
gorithm could possibly prune both synchronisations in A .
On the other hand, in case a were declared uncontrollable,
then the synthesis algorithm cannot possibly prune any of
the two synchronisations. This apparently stems from the
fact that traditionally uncontrollable actions are typically re-
lated to an unpredictable environment. However, the inter-
pretation of such actions as necessary service requests to
be fulfilled in a service contract, as is the case in the set-
ting of TSCA, implies that it suffices that in the synthesised
controller at least one such synchronisations actually occurs.
This is precisely what is modelled with what we have called
semi-controllable actions in this paper.

In the remainder of this section, we evaluate the expres-
siveness of the TSCA formalism by means of an example.
We show that the encoding of an automaton A with semi-
controllable actions into an automaton A ′ without, such that

the same synthesised controllers are obtained, results in an
exponential blow-up of the state space. More precisely, the
encoding is intended to preserve safety: the most permissive
controllers of A and A ′ are equals.

The automaton A ′ in Figure 10 sketches the encoding
mentioned above. Automaton A ′ was obtained by turning
all semi-controllable transitions of A into uncontrollable
transitions in A ′. We now provide some intuition for this
result. Intuitively, if the synchronisation on a specific semi-
controllable action a occurs in n different transitions in A
(two in our example), then the encoding creates an automa-
ton that is the union of 2n − 1 automata (three in our ex-
ample), which are obtained by all possible combinations of
pruning a subset of the n semi-controllable transitions of A ,
minus the one in which all n semi-controllable transitions
are pruned. In fact, without knowing a priori the set of for-
bidden and successful configurations, it is impossible to pro-
vide a more efficient encoding. This can be seen as follows.

Assume, by contradiction, that there exists an encod-
ing that results in a ‘smaller’ automaton A ′′, in which one
of the 2n − 1 combinations of pruned transitions (say, P)
is discarded. It then suffices to specify as counterexample
a property in A such that all source states of transitions
in P are forbidden and all target states of the remaining
semi-controllable transitions are successful. The synthesis
of A against such a property would prune exactly the semi-
controllable transitions in P. Thus, in the synthesis of A ′′

such a most permissive controller would not be present.

6 Conclusions and Future Work

We have presented TSCA, a new formalism for specifying
service contracts with real-time constraints, and a means
to synthesise safe orchestrations in the presence of service
requests with decreasing levels of criticality (viz. urgent,
greedy, and lazy).

In compositions of TSCA, a match between a service of-
fer and a service request has to satisfy the time constraints of

i0

q0 q1

q′1q′0

p1p0

p′1

r0 r1

r′0

(•,b)3 (•,b)3 (•,b)3

(a,a)2
u

(a,a)2
u

(a
,a)2

u

(a
,a)2

u

Fig. 10: Automaton A ′

Timed Service Contract Automata 15

both actions involved, otherwise the actions are interleaved.
An agreement among service contracts is reached when-
ever all requests are matched by corresponding offers. To
reach agreement, permitted service requests may be omitted
if they are not satisfiable, while necessary service requests
must be matched based on their level of criticality.

The synthesis of a safe TSCA orchestration is based on
that of the most permissive controller from SCT and the con-
cept of zones from timed games. The resulting synthesis can
thus be considered both a safety and a reachability game,
limited to finite executions. To properly deal with greedy
and lazy requests, a novel type of semi-controllable action
has been introduced in the orchestration synthesis. Such an
action is basically a controllable action that may become un-
controllable in case specific non-local criteria are not met
(i.e. the absence of agreement between requests and offers).

We plan to implement the presented theory in a prototyp-
ical tool by extending existing tools for (modal) service con-
tract automata [8, 10, 12] and by reusing libraries from timed
games that provide operations on zones [23, 28], to which
our orchestration synthesis has been successfully reduced
(cf. Theorem 2). Moreover, we would like to explore other
types of requests than those currently available in TSCA.
For instance, a service contract could declare a request to
be necessary only if someone is willing to match it with a
corresponding offer, otherwise it could renounce to such a
request. This would be a service action that is either permit-
ted or necessary in case it is a request or a match, respec-
tively. Finally, we would also like to equip the formalism
with weighted actions to be able to specify, e.g., the prices
of hotel rooms or how much clients are willing to pay for
their room. This would require to revisit the formalisation
of service contracts and the synthesis of safe orchestrations,
as well as the notion of agreement.

Acknowledgements We would like to thank Louis-Marie Traonouez
for his contribution to this paper’s conference publication. We would
also like to thank the audience at VECoS 2019 for interesting questions
and comments, which have led to the introduction of state invariants
in our formalism, as presented in this paper. Finally, we would like
to thank the anonymous reviewers for comments and suggestions that
have improved the paper.

References

1. de Alfaro L, Henzinger TA (2001) Interface Automata.
In: Proceedings 8th European Software Engineering
Conference held jointly with 9th ACM SIGSOFT Inter-
national Symposium on Foundations of Software En-
gineering (ESEC/FSE’01), ACM, pp 109–120, DOI
10.1145/503209.503226

2. Alur R, Dill DL (1994) A Theory of Timed Automata.
Theoret Comput Sci 126(2):183–235, DOI 10.1016/
0304-3975(94)90010-8

3. Asarin E, Maler O, Pnueli A, Sifakis J (1998) Controller
Synthesis for Timed Automata. IFAC Proceedings Vol-
umes 31(18):447–452, DOI 10.1016/S1474-6670(17)
42032-5

4. Azzopardi S, Pace GJ, Schapachnik F, Schneider G
(2016) Contract automata: An operational view of
contracts between interactive parties. Artif Intell Law
24(3):203–243, DOI 10.1007/s10506-016-9185-2

5. Bartoletti M, Cimoli T, Zunino R (2015) Compli-
ance in Behavioural Contracts: A Brief Survey. In:
Bodei C, Ferrari GL, Priami C (eds) Programming
Languages with Applications to Biology and Security,
Springer, LNCS, vol 9465, pp 103–121, DOI 10.1007/
978-3-319-25527-9_9

6. Basile D, Degano P, Ferrari GL (2014) A formal frame-
work for secure and complying services. J Supercomput
69(1):43–52, DOI 10.1007/s11227-014-1211-0

7. Basile D, Degano P, Ferrari GL (2016) Automata
for Specifying and Orchestrating Service Contracts.
Log Meth Comput Sci 12(4:6):1–51, DOI 10.2168/
LMCS-12(4:6)2016

8. Basile D, Degano P, Ferrari GL, Tuosto E (2016) Play-
ing with Our CAT and Communication-Centric Appli-
cations. In: Albert E, Lanese I (eds) Proceedings 36th
IFIP WG 6.1 International Conference on Formal Tech-
niques for Distributed Objects, Components, and Sys-
tems (FORTE’16), Springer, LNCS, vol 9688, pp 62–
73, DOI 10.1007/978-3-319-39570-8_5

9. Basile D, ter Beek MH, Di Giandomenico F, Gnesi S
(2017) Orchestration of Dynamic Service Product Lines
with Featured Modal Contract Automata. In: Proceed-
ings 21st International Systems and Software Product
Line Conference (SPLC’17), ACM, vol 2, pp 117–122,
DOI 10.1145/3109729.3109741

10. Basile D, Di Giandomenico F, Gnesi S (2017) FMCAT:
Supporting Dynamic Service-based Product Lines. In:
Proceedings 21st International Systems and Software
Product Line Conference (SPLC’17), ACM, vol 2, pp
3–8, DOI 10.1145/3109729.3109760

11. Basile D, Di Giandomenico F, Gnesi S, Degano P, Fer-
rari GL (2017) Specifying Variability in Service Con-
tracts. In: Proceedings 11th International Workshop on
Variability Modelling of Software-intensive Systems
(VaMoS’17), ACM, pp 20–27, DOI 10.1145/3023956.
3023965

12. Basile D, ter Beek MH, Gnesi S (2018) Modelling and
Analysis with Featured Modal Contract Automata. In:
Proceedings 22nd International Systems and Software
Product Line Conference (SPLC’18), ACM, vol 2, pp
11–16, DOI 10.1145/3236405.3236408

13. Basile D, ter Beek MH, Legay A, Traonouez LM (2018)
Orchestration Synthesis for Real-Time Service Con-
tracts. In: Atig MF, Bensalem S, Bliudze S, Monsuez

16 Davide Basile et al.

B (eds) Proceedings 12th International Conference on
Verification and Evaluation of Computer and Commu-
nication Systems (VECoS’18), Springer, LNCS, vol
11181, pp 31–47, DOI 10.1007/978-3-030-00359-3_3

14. ter Beek MH, Bucchiarone A, Gnesi S (2007) Web Ser-
vice Composition Approaches: From Industrial Stan-
dards to Formal Methods. In: Proceedings 2nd Interna-
tional Conference on Internet and Web Applications and
Services (ICIW’07), IEEE, DOI 10.1109/ICIW.2007.71

15. ter Beek MH, Fantechi A, Gnesi S, Mazzanti F (2016)
Modelling and analysing variability in product fami-
lies: Model checking of modal transition systems with
variability constraints. J Log Algebr Meth Program
85(2):287–315, DOI 10.1016/j.jlamp.2015.11.006

16. Behrmann G, David A, Larsen KG, Håkansson J, Pet-
tersson P, Yi W, Hendriks M (2006) UPPAAL 4.0. In:
Proceedings 3rd International Conference on the Quan-
titative Evaluation of SysTems (QEST’06), IEEE, pp
125–126, DOI 10.1109/QEST.2006.59

17. Behrmann G, Cougnard A, David A, Fleury E, Larsen
KG, Lime D (2007) UPPAAL-Tiga: Time for Playing
Games! In: Damm W, Hermanns H (eds) Proceedings
19th International Conference on Computer Aided Ver-
ification (CAV’07), Springer, LNCS, vol 4590, pp 121–
125, DOI 10.1007/978-3-540-73368-3_14

18. Bouguettaya A, Singh M, Huhns M, Sheng QZ, Dong
H, Yu Q, Neiat AG, Mistry S, Benatallah B, Medjahed
B, Ouzzani M, Casati F, Liu X, Wang H, Georgakopou-
los D, Chen L, Nepal S, Malik Z, Erradi A, Wang Y,
Blake B, Dustdar S, Leymann F, Papazoglou M (2017)
A Service Computing Manifesto: The Next 10 Years.
Commun ACM 60(4):64–72, DOI 10.1145/2983528

19. Bouyer P, Markey N, Sankur O (2012) Robust Reacha-
bility in Timed Automata: A Game-Based Approach.
In: Czumaj A, Mehlhorn K, Pitts AM, Wattenhofer
R (eds) Proceedings 39th International Colloquium on
Automata, Languages, and Programming (ICALP’12),
Springer, LNCS, vol 7392, pp 128–140, DOI 10.1007/
978-3-642-31585-5

20. Cassandras CG, Lafortune S (2006) Introduction to Dis-
crete Event Systems. Springer, New York, NY, USA,
DOI 10.1007/978-0-387-68612-7

21. Cassez F, David A, Fleury E, Larsen KG, Lime D
(2005) Efficient On-the-Fly Algorithms for the Analysis
of Timed Games. In: Abadi M, de Alfaro L (eds) Pro-
ceedings 16th International Conference on Concurrency
Theory (CONCUR’05), Springer, LNCS, vol 3653, pp
66–80, DOI 10.1007/11539452_9

22. David A, Larsen KG, Legay A, Nyman U, Wąsowski A
(2010) Timed I/O Automata: A Complete Specification
Theory for Real-time Systems. In: Proceedings 13th In-
ternational Conference on Hybrid Systems: Computa-
tion and Control (HSCC’10), ACM, pp 91–100, DOI

10.1145/1755952.1755967
23. David A et al (2017) UPPAAL DBM Library. URL

http://people.cs.aau.dk/~adavid/UDBM/
24. Georgakopoulos D, Papazoglou MP (eds) (2008)

Service-oriented Computing. MIT Press, Cambridge,
MA, USA, URL https://mitpress.mit.edu/
books/service-oriented-computing

25. Hüttel H, Lanese I, Vasconcelos VT, Caires L, Car-
bone M, Deniélou PM, Mostrous D, Padovani L, Ravara
A, Tuosto E, Torres Vieira H, Zavattaro G (2016)
Foundations of Session Types and Behavioural Con-
tracts. ACM Comput Surv 49(1):3:1–3:36, DOI 10.
1145/2873052

26. Křetínský J (2017) 30 Years of Modal Transition Sys-
tems: Survey of Extensions and Analysis. In: Aceto
L, Bacci G, Bacci G, Ingólfsdóttir A, Legay A, Mar-
dare R (eds) Models, Algorithms, Logics and Tools,
LNCS, vol 10460, Springer, pp 36–74, DOI 10.1007/
978-3-319-63121-9_3

27. Larsen KG, Nyman U, Wąsowski A (2007) Modal I/O
Automata for Interface and Product Line Theories. In:
De Nicola R (ed) Proceedings 16th European Sympo-
sium on Programming (ESOP’07), Springer, LNCS, vol
4421, pp 64–79, DOI 10.1007/978-3-540-71316-6_6

28. Legay A, Traonouez LM (2013) PyEcdar: Towards
Open Source Implementation for Timed Systems. In:
Hung DV, Ogawa M (eds) Proceedings 11th Interna-
tional Symposium on Automated Technology for Ver-
ification and Analysis (ATVA’13), Springer, LNCS, vol
8172, pp 460–463, DOI 10.1007/978-3-319-02444-8_
35, URL https://project.inria.fr/pyecdar/

29. Lynch NA, Tuttle MR (1989) An Introduction to
Input/Output Automata. CWI Quarterly 2(3):219–
246, URL https://ir.cwi.nl/pub/18164/
18164A.pdf, also available as MIT Technical Memo
MIT/LCS/TM-373

30. Milner R (1999) Communicating and mobile systems:
the π-calculus. Cambridge University Press, New York,
NY, USA

31. Ramadge PJ, Wonham WM (1987) Supervisory control
of a class of discrete event processes. SIAM J Control
Optim 25(1):206–230, DOI 10.1137/0325013

32. Yi Q, Liu X, Bouguettaya A, Medjahed B (2008) De-
ploying and managing Web services: issues, solutions,
and directions. VLDB J 17(3):735–572, DOI 10.1007/
s00778-006-0020-3

http://people.cs.aau.dk/~adavid/UDBM/
https://mitpress.mit.edu/books/service-oriented-computing
https://mitpress.mit.edu/books/service-oriented-computing
https://project.inria.fr/pyecdar/
https://ir.cwi.nl/pub/18164/18164A.pdf
https://ir.cwi.nl/pub/18164/18164A.pdf

	Introduction
	Modelling Real-time Service Contracts
	Orchestration Synthesis
	Running Example Revisted
	Discussion of Innovations
	Conclusions and Future Work

