Towards a behavior analysis of
remote-sensed vessels

Marco Reggiannini, Emanuele Salerno, Massimo Martinelli, Marco Righi, Marco Tampucci and Luigi Bedini
Institute of Information Science and Technologies
National Research Council of Italy
Pisa, Italy
Email: {marco.reggiannini, emanuele.salerno, massimo.martinelli, marco.righi, marco.tampucci, luigi.bedini} @isti.cnr.it

Abstract—This paper analyzes the potentialities to classify
vessels detected through optical and synthetic-aperture radar
(SAR) satellite-borne platforms and estimate their motion. For
classification, the discriminative power of a set of geometric
features extracted from segmented remote-sensed images is eval-
uated by clustering data derived from a set of accurate footprints
belonging to either tanker or cargo ships. The same procedure is
repeated on a few dozens of real, remote-sensed optical images.
Concerning velocity estimation, which in this context is based
on the detection and analysis of the wake pattern generated
by the ship motion, a discussion concerning the accuracy of
the wake detection task is presented. In particular, since wake
patterns are usually hard to detect, a method is proposed to
enhance the wake signal-to-noise ratio, based on a dedicated
pre-filtering stage. Results returned by the proposed method are
compared with those obtained adopting a standard literature
approach, eventually observing that the introduction of the pre-
filtering stage improves the wake detection accuracy. A maritime
surveillance system based on a pipeline of the modules described
here represents a useful tool to support the authorities in charge
of monitoring maritime traffic with safety, security and law
enforcement purposes.

Index Terms—maritime awareness system, sea surveillance,
SAR sensing, optical sensing, image segmentation, image clas-
sification, wake detection and analysis

I. INTRODUCTION

Maritime surveillance is of vital importance in safety and
security applications, including safety of life at sea, marine
traffic control, and monitoring of smuggling and other illegal
activities [1], [2]. High-resolution, satellite-borne SAR, is one
of the technologies of choice in this field, as it provides wide-
area images independent of weather and daylight. Optical
images from satellite platforms, when available, are also useful
for their higher resolution and their capability of revealing
otherwise unobservable details and behaviors. Thus, an inte-
grated use of satellite data, along with additional information
from collaborative vessels, enable the designated authorities
to monitor a large number of targets at once. To discover
anomalous behaviors among possibly hundreds of vessels and
take the appropriate countermeasures in due time, however,
such authorities cannot rely on human operators alone: a
partially or fully automatic analysis system that is able to
detect all the ships in the imaged area is essential. This is
why, for years, the focus of SAR image analysis for maritime
surveillance has been maintained on fast and automatic ship
detection, leading to the de facto standard method of constant

false-alarm ratio (CFAR, see [3], [4]) and some other methods,
such as [5]-[7].

This paper describes accuracy issues concerning two spe-
cific software procedures dedicated to sea surveillance, namely
the classification of seagoing vessels and the estimation of
their kinematics. These tasks can be considered as part of
a sequential chain of procedures, each addressing a specific
aim oriented to the extraction of meaningful information. The
classification task takes as input the output of a ship detection
stage, i.e. submaps extracted from the input images, each
cropped so to only contain a single target. Each submap
is fed to a ship segmentation module in charge of refining
the identification of the target footprint. Further processing
provides additional information concerning the target, such
as its length overall, beam overall and heading (possibly
up to a 180° ambiguity), as well as other geometric and
scatterometric features. These features can then be fed to a ship
classification module. Different feature sets extracted from
the same data clearly affect the discriminative capability of
a classifier. This represents a relevant issue in maritime mon-
itoring, due to the large variability of the target appearances
in the imagery employed. In the last few years, a promising
answer to these issues seems to be provided by Convolutional
Neural Networks (CNN) [8], which improve the capability to
identify and classify multimedia data in general. A number
of works have been published to evaluate the use of CNN in
vessel identification and classification [9]. The main issue with
this strategy is always to collect a large, properly annotated
image data set. This is not a common possibility in maritime
monitoring, especially when SAR images are needed. This is
why, for the time being, we are limiting our investigation to the
performances that can be obtained from predefined features,
leaving apart deep learning approaches.

Along with the estimated class, the estimated kinematics
of a ship can be exploited to predict her behavior, which
increases the amount of knowledge useful for subsequent, finer
processing stages, such as possibly non-collaborative vessel
identification. In her motion through the water, a ship generates
a wake, whose peculiar visual features depend directly on the
vessel velocity. By detecting the linear envelopes of the main
wake components and performing a frequency analysis of their
observable oscillations, it is possible to estimate univocally the
heading and the velocity module of the ship.



The rest of the paper is arranged as follows: Section II
presents a brief overview of the state of the art concerning ship
classification and ship motion estimation, Section III describes
the procedure of ship footprint segmentation followed by the
extraction of the geometrical features, Section IV presents
an analysis about the discriminative power of the extracted
features, Section V concerns the ship kinematics estimation
issue and provides an analysis of the wake detector accuracy
by comparing the proposed method with a standard literature
approach. Some future prospects are finally discussed in
Section VI.

II. RELATED WORK

In the last decade, several classification approaches have
been attempted, based on different sets of geometrical, scat-
terometric (see [10]-[15]) or polarimetric (see [16]-[21]) fea-
tures, and exploiting theoretical scattering models or machine
learning on labeled training data to relate the feature vectors
to the ship classes. Of course, the availability and reliability of
discriminative features depends on the type and the quality of
the images analyzed. Previous literature assessed that the only
features relevant to both medium-to-high resolution, single-
polarization SAR and optical images are either geometrical,
derived from length/area measurements, or spatial statistics
such as textures, etc. As far as the scatterometric features are
concerned, SAR allows us to compute radar-cross-section his-
tograms over either the whole ship footprint or selected parts
thereof. A classifier specific for high-resolution optical images
can also be based on morphological features extracted from
possibly recognizable parts of the ship structure. Actually, for a
surveillance system that uses heterogeneous data from several
sensors and services, it would be desirable to avoid specific
strategies for different types of data.

For this reason, although we are extracting scatterometric
features from the SAR images at our disposal, we are still
trying to implement an effective classifier that only accepts
size and shape features. This would allow us to treat optical
and SAR images in the same way and to distinguish between a
few major ship classes, provided that an accurate detection and
segmentation system is available [22]. In [23], we proposed a
segmentation method for both optical and SAR ship images
that starts from a detection output supposed to contain a single
ship and finds a refined estimate of the ship footprint along
with an enclosing rectangle providing gross length and width
estimates.

Several methods have been proposed to deal with the
issue of estimating the ship motion from SAR imagery. An
accurate description of the physics underlying the wake pattern
produced by ships moving through the water is long available
[24]. Such a pattern is directly related to the velocity of the
vessel over the sea surface, and is mapped in SAR images
by features related, in turn, to the velocity vectors (over
ground) of both the vessel and the sensor platform. Since the
wake morphological features are directly related to the ship
motion [25], [26], a popular approach to kinematics estimation
consists in detecting and later analysing the wake pattern

generated by the ship. Wake patterns appear mainly as V-
shaped forms, therefore many have proposed wake detectors
based on the preliminary recognition of the linear envelopes
observed in the wake shape. Zilman et al. [27] proposed a
method based on the fast discrete Radon transform to detect
the linear segments that start from the wake tip and develop
along the wake shape. A similar approach has been adopted
by Eldhuset [3], who introduced an approximated Radon
transform based on the Chebyshev polynomials. In this way,
the detector performance improves in reliability and robustness
against false alarms. Once the linear envelopes of the main
wake components have been detected, the backscattered signal
can be analysed to extract relevant information. In particular
it is possible to estimate, according e.g. to [28]—-[30], heading
and velocity by a proper analysis of the signal variations
observed within the detected linear regions.

ITII. SHIP SEGMENTATION AND FEATURE EXTRACTION

In [23], we proposed a method to obtain a ship footprint
and an enclosing rectangle from an SAR or optical image
containing a single vessel detected by a CFAR module. Com-
pared to the CFAR output, the estimated footprint provides a
refined estimate of the shape, the barycentre and the bearing
(possibly up to 180°) of the target vessel. These estimates are
passed to the velocity estimation module for its purposes. The
vessel footprint is also used to extract the geometric features
for classification. From the SAR profile within the footprint,
a set of scatterometric features is also extracted. Since we are
trying a unified processing for both optical and SAR images,
for the time being, we do not address the discriminative power
of the scatterometric features extracted.

Let us now introduce the features we use for our evalu-
ation. Of course, the shape parameters alone are not much
discriminative with respect to the possible vessel classes: some
absolute metric evaluation is essential, as being large or small
can well exclude the membership of a vessel to some specified
class. This means that we assume that the pixel size in the
input image is known, and uniform all over each image to be
treated. In accordance with [31], the basic geometric features
we consider are the length and the width overall L and W,
the perimeter P and the area A, which can be computed in
pixels and then transformed in metric quantities through the
known pixel size. L and W can be evaluated from either
the enclosing rectangle or the footprint, P from the footprint
boundary, and A through the number of pixels in the footprint.
These and four additional, derived features are summarized in
Tab. I along with their strict and naive definitions. All the
naive-defined features only derive from L and W, which, in
this case, are the only basic features. In principle, then, the
strictly-defined features are more informative than the naive-
defined ones, but the problem of establishing whether the
former are really more discriminative than the latter is still
open, for a twofold motivation: first, the four strictly-defined
basic quantities are not mutually independent and, second,
depending on the resolution and quality of the input image,
the estimation accuracy of the features is not guaranteed, so



TABLE I
GEOMETRIC FEATURES CONSIDERED, AFTER [31].

Feature Symbol | Strictly-def. Naive-def.
Length L L L
Width w w w
Perimeter P P 2(L+ W)
Area A A Lw
Elongatedness | Elong A/W? L/wW
Aspect ratio AspRat W/L W/L
Circularity Circ ArA/P? | ALW/(L + W)?2
Compactness | Comp P/(2nL) (L+W)/L
4
Cargo ——

I I I I T I
300 250 200 150 100 50 m

Tanker

Fig. 1. Samples from the two classes considered in this study (to scale). Top:
four footprints of cargo ships (including bulk and container carriers). Bottom:
four footprints of tankers (including oil and gas carriers).

the actual discriminative power of the two groups of features
could well be equivalent. We assess below this problem by
both accurate footprints of real cargo or tanker ships and from
satellite-borne optical images.

IV. CLASSIFICATION

We start our analysis of the spaces generated by the features
in Tab. I by manually extracting the accurate footprints from
56 high-resolution nadiral ship images, 28 belonging to the
class Cargo (either bulk or container ships) and 28 belonging
to the class Tanker (either oil or gas carriers), of different sizes.
Fig. 1 shows some samples from these sets. To analyze the
strictly-defined features, we first show the pairwise scatterplots
in Fig. 2.

Apparently, the four basic quantities are strictly correlated;
they are less correlated with the derived quantities. Among
the latter, Elongation, Aspect Ratio and Circularity are clearly
mutually correlated, whereas Compactness seems to be less
correlated with all the remaining features. Visually, these plots
do not show the presence of any relevant cluster. This means
that no single pair of these features is able to discriminate
effectively between the two ship classes considered. The next
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Fig. 2. Pairwise scatterplots of the 8 strictly-defined geometric features in
Table I (original coordinates).

step is to assess the information content of the selected
features. We do this through a principal component analysis
(PCA) of the normalized feature values: each feature set is
first normalized to have unit variance and then fed to the PCA
routine. The result is shown in Tab. II. As can be seen, the first
five principal components have standard deviations within one
order of magnitude; the standard deviations 6, 7 and 8 are one
order of magnitude smaller. The first principal component is
affected almost equally by L, W, P, A and Comp; the weights
of the remaining features are at least one order of magnitude
below. The second component is mainly affected by Elong,
AspRat and Circ; the third component is almost totally covered
by Comp; the fourth component is mainly affected by Circ and
Elong, and the fifth component is again dominated by the four
basic features L, W, P and A.

The same analysis can be performed on the naive-defined
features in Tab. I. The pairwise scatterplots are shown in
Fig. 3. In this case, there are only two basic features, and
it is to be noted that Elong, AspRat, Circ and Comp are
perfectly correlated to each other, as each of them is just a
function of any of the others. The standard deviations and the
eigenvectors resulting from the PCA are detailed in Tab. III.
The last two columns of the PC matrix are not shown since
the related eigenvalues have orders of magnitude 10~!5 and
10716, respectively. Adopting the same criterion as before, the
dominant principal components are now 4. Note that all the
features affect about equally the first two components, whereas
the first four features have almost no influence in the sixth
component. From a comparison between the results in Tabs. II
and II1, it is confirmed that the strictly-defined features contain



TABLE II
STRICTLY-DEFINED FEATURES: STANDARD DEVIATIONS AND PRINCIPAL COMPONENT MATRIX.

[Sdev | 2016 | 1.694 | 0921 | 0421 | 0.37 | 0.09 | 0.081 | 0015 |
PCI PC2 PC3 PC4 PC5 PC6 PC7 PCB
L -0.4886 | 0.0849 | -0.0819 | -0.0006 | -0.2849 | 0.3788 | -0.0579 | 0.7205
w -0.4777 | -0.1242 | -0.1547 | -0.0032 | -0.2458 | -0.8195 | -0.0157 | 0.0054
P -0.4847 | 0.0881 | -0.1492 | -0.0018 | -0.3251 | 03905 | -0.0048 | -0.6904
A -0.4908 | -0.0006 | -0.0820 | -0.0742 | 0.8611 | 0.0424 | 0.0556 | -0.0194
Elong | 0.0291 | 05661 | 0.0240 | -0.6419 | -0.0633 | -0.0953 | 0.5023 | 0.0206
AspRat | 0.0118 | -0.5815 | -0.1626 | 0.0829 | -0.0573 | 0.1140 | 0.7814 | 0.0384
Circ -0.0079 | -0.5557 | 0.117 | -0.7496 | -0.0421 | 0.0884 | -0.3246 | -0.0166
Comp | 0.2366 | 0.0443 | -0.9484 | -0.1160 | 0.0444 | 0.0248 | -0.1579 | 0.0390
TABLE IIT

NATVE-DEFINED FEATURES: FIRST 6 STANDARD DEVIATIONS AND PRINCIPAL DIRECTIONS.

[Sdev [ 2025 | 1963 [ 0.145 | 0.122 | 0.88 | 0.03 |
PC1 PC2 PC3 PC4 PC5 PC6
L -0.2683 | 0.4263 | -0.3205 | 0.0369 0.4620 | -0.0017
w -0.1035 | 0.4963 | -0.1718 | 0.2503 | -0.8003 | 0.0010
P -0.2484 | 0.4394 | -0.3032 | 0.0659 0.2960 | -0.0014
A -0.1903 | 0.4657 0.8030 | -0.3165 | 0.0420 0.0029
Elong -0.4566 | -0.1863 | -0.2864 | -0.7547 | -0.2307 | 0.2276
AspRat | 0.4502 0.2076 | -0.1535 | -0.3588 | -0.0091 | -0.3190
Circ 0.4531 0.2021 -0.0416 | -0.0653 | 0.0563 0.8629
Comp 0.4502 0.2076 | -0.1535 | -0.3588 | -0.0091 | -0.3190
images.
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Fig. 3. Pairwise scatterplots of the naive-defined geometric features in Table I
(original coordinates).

more independent information than the naive-defined features.
However, we computed the features from accurate footprints
of the type in Fig. 1. Thus, this observation can be considered
conclusive with high-resolution, low-clutter SAR and optical

a 99.45% of the variability. This means that only using those
two components in classification should be nearly equivalent
to using the whole feature set. Again, the slightly superior
performance of the SGFs over the NGFs using this clustering
method does not justify a choice in favor of one of these sets,
independently of the actual classification strategy adopted with

'Equivalently, the two classes could be named “Tanker” and “non-Tanker”,
thus justifying, respectively, what we considered the “Positive” and “Negative”
outputs to build Tab. IV following the standard definitions of the performance
indices (see [33], or https://en.wikipedia.org/wiki/Precision_and_recall, last
checked 28 October 2019).



TABLE IV

CLASSIFICATION PERFORMANCE INDICES FROM THE TWO FEATURE SETS.

Index \ Feature set SGF | NGF
Sensitivity 0.536 | 0.571
Specificity 0.893 | 0.750
Precision 0.833 | 0.696
Negative Predictive Value | 0.658 | 0.636
Accuracy 0.714 | 0.661
F1-Score 0.652 | 0.627

TABLE V

CLASSIFICATION PERFORMANCE INDICES FOR THE EROS-B TEST SET.

Index \ Feature set SGF | NGF
Sensitivity 0.594 | 0.594
Specificity 1. 0.692
Precision 1. 0.704
Negative Predictive Value | 0.667 | 0.581
Accuracy 0.776 | 0.638
F1-Score 0.745 | 0.644
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Fig. 4. clara cluster plots projected onto the first two components, from
strictly-defined features.
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Fig. 5. clara cluster plots projected onto the first two components, from
naive-defined features.

the real data.

Typical pixel sizes of our 56 accurate footprints are in the
range 10 + 20 cm. For both the feature types considered, the
medoids of the two clusters provided by clara have been
used as references for the features evaluated on a real dataset

extracted from EROS-B? images. We selected 58 footprints (32
tankers and 26 cargo ships with typical pixel sizes of about
1 m) and measured the euclidean distances of the individual
features from the above-mentioned medoids. Out of the 32
tankers, 19 were classified correctly and 13 were misclassified.
All the 26 cargo ships were classified correctly. The related
performance indices are shown in Tab. V for both the feature
sets. Again, and more apparently than before, the performance
obtained through the strictly-defined features is better than the
one obtained through the naive-defined features. Note that the
accuracy from the SGFs is more than a 77% and the accuracy
from the NGFs is less than a 64%.

It is also to note that the features extracted from the EROS-
B optical images are almost as accurate as the ones extracted
from the high-definition images used in Section IV, despite the
significant differences in pixel sizes. Nevertheless, as argued
in [31], lower-resolution images, or artifacts or systematic
errors, could well diminish the advantages of the SGFs over
the NGFs. This could be the case with SAR data.

In Fig. 6 the footprints of the 13 false negatives from
the test data set (misclassified tankers), using the SGFs, are
shown. Except for the three medium-sized vessels, these are
all small oil products tankers with lengths of 100 m or less.
Since, in average, the cargo ships in this dataset are smaller
than the tankers, this could suggest that the most important
feature is actually the length overall. This is not true since the
two length ranges significantly overlap, and there are many
correctly classified cargo ships comparable in length to the
tankers (up to 225 m).

V. KINEMATICS ESTIMATION
Satellite imagery provides single instantaneous information
about the traffic circumstance within a given area of interest.

Zhttps://directory.eoportal.org/web/eoportal/satellite- missions/e/eros-b, last
checked 28 October 2019
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Fig. 6. Misclassified tanker footprints from the set used for Tab. V (to scale).

In case the corresponding velocity information is known, route
and future behavior of the detected vessels can be predicted
through proper machine learning algorithms. For this reason
the capability to extract information about the ship kinematics
from remote sensing imagery is of paramount relevance to
maritime monitoring. Here, we refer to a kinematics estimation
module based on image processing. The proposed module
applies a wake detector to the input image and exploits the
detected pattern to estimate the vessel’s velocity.

The wake pattern is a combination of multiple oscillatory
components, whose summation exhibits a V-shaped envelope
centered on the ship route axis. Its angular aperture is approxi-
mately 39°. Exploiting these observable phenomena, the route
direction can be estimated by first detecting the V pattern
(Fig. 7) through a Radon-transform-based linear detector [34],
and then identifying the wake center axis. Once the wake
pattern has been recognized, its internal components can be
analyzed to extract features that enable to estimate the ship
kinematics. To this purpose, relevant features related to the
motion of the ship are (i) the displacement between the vessel
target and the wake tip, called Azimuth shift (only observed
in SAR), and (ii) the spatial wavelength of the plane wave
oscillation located at the edge sector of the wake envelope
(Kelvin wake).

Fig. 7. Wake pattern detection.’

Unfortunately, ship wakes are not always visible or too
faint to be detected. Typically, due to very low Signal-to-
Noise Ratios, wake detection is a task with a very small

probability of success. Different approaches have been pro-
posed (see e.g. [35], [36]) to improve the poor results obtained
through classical methods, e.g., based on the straightforward
application of the Radon/Hough transform on intensity images.
Taking inspiration from [3], [37], a novel method has been
proposed for detecting and analysing wake patterns through
SAR map processing [38]. First, the gradient of the input
image is computed by means of a dedicated procedure, follow-
ing an approach specifically suited for speckle-affected data,
such as SAR images. Assuming that the linear envelopes of
the central/peripheral wake sectors are the main observable
wake features in SAR maps, the estimated gradient feeds
an algorithm based on the Radon transform, whose goal is
to detect those segments. Eventually, the algorithm returns
a decision statement about the presence of a wake pattern.
This final decision is put forward according to the specific
arrangement of the detected linear segments. In case of a
positive detection, the corresponding wake pattern is identified
and its relevant features are employed to estimate route and
speed parameters of the ship. Further details about the gradient
based wake detector can be found in [39].

Fig. 8.

Dataset employed to test the turbulent wake detector (contains
modified Copernicus Sentinel data, 2018).

The described wake detector has been applied to the
dataset of Sentinel-I imagery samples illustrated in Fig. 8.



An evaluation of the proposed method has been performed
by comparing the obtained results with those returned by
the method proposed in [3]. The corresponding error plots
are shown in Figs. 9 and 10, where the estimated Azimuth
displacement and turbulent wake orientation have been plotted
versus the corresponding true values. Fig. 9 gives the compari-
son between true and estimated data when the latter have been
obtained directly from the intensity maps, while Fig. 10 refers
to our strategy of preprocessing the intensity map as in Section
V. The improved performance of our strategy is apparent by
comparing the two figures.

Error Using Intensity
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VI. CONCLUSIONS

This document addresses different accuracy issues concern-
ing two crucial processing stages integrated inside a typical

maritime surveillance system. First of all, the authors discuss
the discriminative power of a given set of geometric features in
view of a classification of tanker and cargo ships. The analysis
performed demonstrates how deriving the features from their
strict definitions potentially provides a discriminative power
that is better than that obtained by using the corresponding
naive definitions. A more conclusive result about the practical
usefulness of the features considered would need an analysis of
a larger data set, with a broader range of geometric estimation
errors, such as the ones often found in SAR imagery.

Then, concerning a processing stage dedicated to the estima-
tion of the kinematics of a detected vessel, the authors develop
a comparative analysis based on the estimation of meaningful
motion quantities. The computation has been carried out
following a standard literature approach and also adopting a
novel method, based on the introduction of a proper gradient
filtering in the preliminary stages of the module. Promising
results obtained by processing the dataset in Fig. 8 suggest that
employing the proposed gradient-based approach may enhance
the accuracy concerning the estimation of the ship motion’s
related features (see charts in Figs. 9 and 10).

Concerning future prospects, the authors envisage the de-
velopment of novel procedures for wake detection, taking
inspiration from cutting edge literature of machine learning.
To this purpose, particular interest will be devoted to deep
convolutional networks, employed as powerful tools for the
extraction of discriminating features from large amounts of
open access data (e.g., the ESA Copernicus Open Access
Hub). Wake patterns are hardly detectable in SAR maps, hence
future developments will also be devoted to the refinement
of the wake recognition process, based on the exploitation
of additional information, such as the fine estimate of the
vessel position as well as the constraints of this peculiar
hydrodynamics problem, e.g. the theoretically expected wake
angular aperture. For what concerns velocity estimation, novel
methods are currently being investigated to evaluate their
potential in terms of kinematics information extraction. In
particular, along-track-interferometry techniques represent in-
teresting tools for the purpose of estimating the line-of-sight
velocity value through the analysis of single-look-complex
SAR data. Moreover, the Doppler centroid of the SAR signal
varies according to the kinematics of the scatterer. Estimating
the variation between the Doppler centroid of a moving
object w.r.t. a stationary one provides an additional velocity
estimation method, which sounds worth being further studied.
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