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Abstract—Nowadays, the possibilities offered by state-of-the-
art deep neural networks allow the creation of systems capable of
recognizing and indexing visual content with very high accuracy.
Performance of these systems relies on the availability of high
quality training sets, containing a large number of examples (e.g.
million), in addition to the the machine learning tools themselves.

For several applications, very good training sets can be
obtained, for example, crawling (noisily) annotated images from
the internet, or by analyzing user interaction (e.g.: on social
networks). However, there are several applications for which
high quality training sets are not easy to be obtained/created.
Consider, as an example, a security scenario where one wants to
automatically detect rarely occurring threatening events.

In this respect, recently, researchers investigated the possibility
of using a visual virtual environment, capable of artificially
generating controllable and photo-realistic contents, to create
training sets for applications with little available training images.

We explored this idea to generate synthetic photo-realistic
training sets to train classifiers to recognize the proper use
of individual safety equipment (e.g.: worker protection helmets,
high-visibility vests, ear protection devices) during risky human
activities. Then, we performed domain adaptation to real images
by using a very small image data set of real-world photographs.

We show that training with the generated synthetic training
set and using the domain adaptation step is an effective solution
to address applications for which no training sets exist.

Index Terms—Deep Learning, Virtual Dataset, Transfer Learn-
ing, Domain Adaptation, Safety Equipment Detection

I. INTRODUCTION

In the new spring of artificial intelligence, and in particular
in its sub-field known as machine learning, a significant
series of important results have shifted focus of industrial and
research communities toward the generation of valuable data
from which learning algorithms can be trained. For several
applications, in the era of big data, the availability of real
input examples, to train machine learning algorithms, is not
considered an issue. However, for several other applications
there is not such an abundance of training data. Sometimes,
even if data is available it must be manually revised to make
it usable as training data (e.g., by adding annotations, class
labels, or visual masks), with a considerable cost.

In fact, although a series of annotated datasets are available
and successfully used to produce important academic results
and commercially fruitful products, there is still a huge amount
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of scenarios where laborious human intervention is needed to
produce high quality training sets.

For example, such cases include, but are not limited to,
safety equipment detection, weapon wielding detection, and
autonomous driven cars.

To overcome these limitations and to provide useful ex-
amples in a variety of scenarios, the research community has
recently started to leverage on the use of programmable virtual
scenarios to generate visual datasets and the neede associated
annotations. For example, in an image-based machine learning
technique, using a modern rendering engine (i.e., capable of
producing photo-realistic imagery) has been proven a valid
companion to automatically generate adequate datasets (see
Section II).

In this work we demonstrate the effectiveness of a virtual
rendering engine to address the problem of detection and
recognition in scenarios where little-to-no real images exist,
and apply it in the context of safety equipment visual detection
(see Figure 1), for which, to the best of our knowledge, no
public dataset exists. In particular, we show how the transfer
learning approach on a known deep neural network can reach
state-of-the-art results in automatic visual media indexing,
after being trained with virtually generated images containing
people equipped with safety items, like high-visibility jackets
and helmets, and domain adaptation using a few real image
training examples. More in detail, we contribute in this field
with the following results:

• creation of a virtual training set for personal safety
equipment recognition, with different scene conditions,

• creation of an annotated real-world image test set, and
• creation of state-of-the-art classifiers for such scenario.

We will see that, in case of very few real available examples,
the accuracy boost given by virtual images dramatically in-
creases the system performance. The dataset that we created
is made publicly available to the research community [1].

This work is organized as follows: Section II gives an
overview of existing methods based on virtual environments;
Section III describes how we used an existing rendering engine
and the policy to create the dataset and the test set; Section
IV discusses our detection method; Section V shows our
experimental results; finally Section VI concludes.

II. RELATED WORK

With the advent of deep learning, object detection technolo-
gies have achieved accuracies that were unimaginable only a
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Fig. 1. Examples of safety equipment: a) real photograph of worker wearing a welding mask; b) and c) virtual renderings with people with helmets,
high-visibility vests, and welding masks.

few years ago. YOLO architectures [2], [3] and Faster-RCNN
[4] are today de facto-standard architectures for the object
detection task. They are trained on huge generic annotated
datasets, such as ImageNet [5], MS COCO [6], Pascal [7]
or OpenImages v4 [8]. These datasets collect an enormous
amount of pictures usually taken from the web and they are
manually annotated.

With the need for huge amounts of labeled data, virtually
generated datasets have recently gained great interest. The
possibility of learning features from virtual data and validating
them on real scenarios was explored in [9]. Unlike our work,
however, they did not explore deep learning approaches. In
[10], computer-generated imagery were used to study trained
CNNs to qualitatively and quantitatively analyze deep features
by varying the network stimuli according to factors of interest,
such as to object style, viewpoint and color. The works [11],
[12] exploit the popular Unreal Engine 4 (UE4) to build virtual
worlds and use them to train and test deep learning algorithms.

The problem of transferring deep neural network models
trained in simulated virtual worlds to the real world for
vision-based robotic control was explored in [13]. In a similar
scenario, [14] developed an end-to-end active tracker trained
in virtual environment that can adapt to real world robot
settings. To handle the variability in real-world data, [15]
relied upon the technique of domain randomization, in which
the parameters of the simulatorsuch as lighting, pose, object
textures were randomized in non-realistic ways to force the
neural network to learn the essential features of the object of
interest. A deep learning model was trained in [16] to drive in
a simulated environment and adapted it for the visual variation
experienced in the real world.

[17], [18] focused their attention on the possibility to
perform domain adaptation in order to map virtual features
onto real ones. Richter et al. [19] explored the use of the video
game Grand Theft Auto V (GTA-V) [20] for creating large-
scale pixel-accurate ground truth data for training semantic
segmentation systems. In [21], they used GTA-V for training
a self-driving car and generated around 480,000 images for
training. This work evidenced how GTA-V can indeed be used
to automatically generate a large dataset. The use of GTA-V to
train a self-driving car was explored also in [22], where images
from the game were used to train a classifier for recognizing
the presence of stop signs in an image and estimate their

distance. In [23] a different game was used for training a self-
driving car: TORCS, an open source racing simulator with a
graphics engine less focused on realism than GTA-V.

Authors in [24] created a dataset taking images from GTA-
V and demonstrated that it is possible to reach excellent results
on tasks such as real people tracking and pose estimation.

[25] also used GTA-V as the virtual world but, unlike
our method, they used Faster-RCNN and they concentrated on
vehicle detection validating their results on the KITTI dataset.
Instead, [26] used a synthetically generated virtual dataset
to train a simple convolutional network to detect objects
belonging to various classes in a video.

III. TRAINING SET FROM VIRTUAL WORLDS

In this paper we show that a low cost and off-the-shelf
virtual rendering environment represents a viable solution for
generating a high quality training set for scenarios lacking
enough real training data. This methods allows generating a
very large amount of annotated images, with the possibility
of scenery changes like location, contents, and even weather
conditions, with very little human intervention.

In this work, we used the generated training set to train a
You Only Look Once (YOLO) neural system [2], [3] for its
efficiency and high detection accuracy. However, the applied
methodology can be used to other machine learning tools.

We used the Rockstar Advanced Game Engine (RAGE) from
the GTA-V computer game, and its scripting ability to deploy
a series of pedestrians with and without safety equipment in
different locations of the game map. The RAGE Plugin Hook
[27] allowed us to create and inject our C# scripts into the
game.

Our scripts uses the plugin API to add pedestrians with
chosen equipment in various locations of the game map, place
cameras in places where we want to take pictures, check that
objects are in the field of view and not occluded, recover 3D
meshes bounding boxes from the rendering engine, and save
game screenshots (i.e., our dataset images) and their associated
annotations (bounding boxes and classes).

Personal safety equipment that we consider are, for exam-
ple, high-visibility vests, helmets, welding masks, and others.
In addition to persons wearing these equipement, we also
generate pedestrians without protections, where we annotate,
person, bare head, bare chest (see Figure 2 as example).



Fig. 2. Detected objects in a working scenario.

The generation of the virtual dataset required first to con-
figure the RAGE engine to create various types of scenarios
(Section III-A). Then, the RAGE engine was used to cap-
ture images along with annotations. For every image, the
annotations (coordinates of the bounding boxes and identities
of relevant elements) were retrieved from the RAGE engine
through our script (Section III-B). We used this approach both
for creating the virtual world training set and the virtual world
validation set. The dataset was eventually completed by adding
a real world test set, composed of real world images, to test the
accuracy of the trained neural network on real scenes (Section
III-C).

A. Scenario Creation
To generate the training scenario we used the plugin API

to customize the following game features:
• Camera: used to set up the viewpoints from which the

scenario must be recorded.
• Pedestrians: used to set up the number of people in the

scene and their behavior, chosen from the set offered
by the game engine, such as wandering around an area,
chatting between themselves, fighting, and so on.

• Place: used to set up the place where the pedestrians will
be generated; there is a series of game map preset places,
plus user-defined locations identified by map coordinates.

• Time: used to set up the time of day during which the
scene takes place.

• Weather: used to set up the weather conditions during
the animation.

We used 9 different game map locations with 3 different
weather conditions each to create the virtual training set. from
these we acquired a total of 126900 images with an average of
12 persons per shot. The virtual validation set spans 1 location
with 3 weather conditions, and consists of 350 images with an
average of 12 persons each. Therefore, in the end, we have 30
different scenarios where virtual world images were extracted
from.

B. Dataset Annotation
Dataset annotation is the process which creates the anno-

tated images for the dataset. In our case, we annotate the

Fig. 3. Examples of safety equipment objects detected by our system.

Fig. 4. Bounding box estimation: oversized approximation with respect to
on-screen projections. With the available API, the hooked virtual engine is
able to provide the bounding boxes of individual 3D meshes, overestimated
due to collision proxy expansion for animations. Not being able to access the
original 3D geometry and the current animation frame, our best strategy is
to project on-screen the eight corners of the 3D bounding box, and then take
their containing minimum rectangle as our best annotation.

following elements (see Figure 3):

• Helmet: a head wearing an helmet
• Welding Mask: a head wearing a welding mask
• Ear Protection: a head wearing hearing protection
• High-Visibility Vest (HVV): person chest wearing a high

visibility vest
• Person: a full-body person
• Chest: the bare chest (without HVV)
• Head: the bare head (without helmet or ear protection)

For each viewpoint setup in the scenario, we process every
object to extract its position on the 2D image. This is done by
first calculating the geometry of its transformed 3D bounding
box, then approximately testing the box visibility, and finally
extracting the image 2D bounding box by contouring the 3D
box vertices. The visibility is checked by testing the occlusion
of line-of-sight rays from the camera to a certain fixed amount
of point in the box volume, and the object is considered visible
if at least one ray is not occluded.
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Fig. 5. Real-World Validation Set: composed of 180 copyright-free images, our validation set is available at the project website.

C. Real world Test Set

The motivation of this work is to prove that it is possible to
train a system with a virtual world even when it supposed to be
used in the real world. To test the performance of the trained
neural network in the real world, we created a real world test
set using copyright-free photographs of people wearing safety
equipments. The set is composed of 180 images (see Figure 5)
showing persons with and without the items listed in Section
III-B, each associated with manually created annotations of
bounding boxes and element identities.

IV. METHOD

The backbone of our detection algorithm is the You Only
Look Once (YOLO) system [2], an efficient neural network
able to detect, in a single image, the objects which it has been
trained for. The detection ends with a list of 2D bounding
boxes, each associated with a class label referring to the
recognized object. In our implementation, we used the YOLO
v3 [3] (hereafter abbreviated with YOLO) network with the
Darknet-53 in its its core. We trained it to recognize personal
safety equipment components, as shown in the following.

A. Transfer Learning

We already said that we use the generated virtual world
training set to train YOLO to detect and recognize our ele-
ments of interests in images. In particular, we adapt YOLO
to our scenario using transfer learning. Our hypothesis is that
a pre-trained network already embeds enough knowledge that
allow us to specialize it for a new scenario, leveraging on the
transfer learning capability of deep neural networks and on
training sets generated from a virtual world.

The purpose of transfer learning is to exploit the first already
trained layers (i.e., the ones identifying low-level features) and
to extend the detection capability to the new set of objects by
updating the last layers of the network.

With a trained deep convolutional neural network, its first
layers have learned to identify features that are more and more
complex according to layer depth; for example, the first layer
will be able to detect straight borders, the second layer smooth
contours, the third some kind of color gradients, and so on
while arriving to last layers capable of identify entire objects.

In our case, we used a YOLO netowrk pre-trained on
the COCO dataset. We retrained it by blocking the learning
parameters update of the first part of the network, and allowing

updates only in the last sections. Specifically, we kept the first
81 (i.e., the feature extractors) of the total 106 layers, and
froze the weights of the first 74. The network was trained
for 24000 iterations, that is 11 epochs with the following
parameters: batch size 64, decay 0.0005, learning rate 0.001,
momentum 0.9, IoU threshold: 0.5, Confidence threshold:
0.25. As explained in III, our virtual dataset is composed of
30 scenarios, 27 of which were used as the training set and 3
were left for validation. The 3 scenarios of the validation set
contain 13500 images. From these, 350 images were randomly
selected to form the virtual validation dataset.

In this way, a new set of objects are recognized by the
network.

B. Evaluation Metrics

To evaluate the performance of our implementation, we
applied the standard measures used in the object detection
literature, i.e., Intersection over Union (IoU ) based on the
area of the detected (D) and real (V ) bounding boxes, and
Precision (Pr) and Recall (Rc) based on true (T ) / false (F )
positive (P ) / negative (N ) detections:

• IoU = (D ∩ V )/(D ∪ V )
• Pr = TP/(TP + FP )
• Rc = TP/(TP + FN)

Detected bounding boxes are associated with a confidence
score, ranging from 0 to 1, and are considered in the output if
and only if their confidence score is greater than a configurable
threshold. Given the above definitions, we calculate the mean
Average Precision (mAP ) as the average of the maximum
precision at different recall values.

V. EXPERIMENTS AND RESULTS

A. Experimental Setups

We trained and evaluated three variations of the network
on both virtual and real images: YCV, which is YOLO base
trained on COCO and retrained with Virtual data; YCVR,
which is YCV fine-tuned with Real data; YCR, which is
YOLO base trained on COCO and retrained with Real data.

To obtain YCVR, we split the real world dataset in two parts
with 100 images each: a training part and a testing part. We
used the training part to apply domain adaptation from virtual
to real on the YCV network. To choose the set of weights from
which to start, we validated each of them on the training part,



TABLE I
mAP OF YCV TESTED ON OUR VIRTUAL WORLD DATASET.

Iter. Epochs Head Helmet Weld. Mask Ear Prot. Chest HVV Person mAP

18k 8 89.56% 86.76% 73.23% 87.97% 90.36% 90.04% 89.32% 86.75%
19k 9 89.42% 81.65% 73.39% 88.68% 89.72% 90.43% 89.87% 86.17%
20k 9 87.02% 81.76% 72.61% 88.87% 89.45% 90.33% 89.54% 85.66%

21k 10 89.75% 86.74% 75.53% 89.05% 89.75% 90.09% 89.79% 87.24%

22k 10 89.83% 87.49% 74.17% 88.27% 89.41% 89.95% 89.83% 86.99%
23k 10 89.75% 86.02% 73.39% 88.47% 89.89% 90.03% 89.76% 86.76%
24k 11 89.03% 88.46% 73.44% 89.05% 90.08% 90.04% 89.95% 87,15%

TABLE II
mAP OF YCV TESTED ON COPYRIGHT-FREE REAL WORLD IMAGES.

Iter. Epochs Head Helmet Weld. Mask Ear Prot. Chest HVV Person mAP

18k 8 29.99% 69.72% 22.68% 48.10% 49.98% 67.01% 77.51% 51.00%
19k 9 25.57% 61.07% 19.65% 34.58% 36.89% 66.60% 72.13% 45.21%

20k 9 36.25% 74.13% 27.31% 55.60% 45.66% 69.89% 76.91% 55.11%

21k 10 35.84% 69.18% 26.92% 47.41% 37.90% 66.70% 76.85% 51.54%
22k 10 26.31% 64.48% 22.65% 48.23% 43.54% 63.62% 74.93% 49.11%
23k 10 35.02% 68.48% 11.76% 56.57% 42.41% 65.02% 74.25% 50.51%
24k 11 33.71% 65.55% 27.11% 43.17% 37.78% 62.65% 73.31% 49.04%

choosing the one with highest mAP. We chose the weights
after 20,000 iterations, with 59.05 mAP. The fine-tuning was
done for 1000 iterations.

To better evaluate the benefit contributed by the virtual
world training set, we also fine-tuned YOLO base, pre-trained
on COCO, with the same 100 real images used for obtaining
YVCR. As we said before we call YCR this network.

B. Results

YCV obtains 87.24 mAP on when tested on virtual images
(see Table I). When testd on real world images it obtains 55.11
mAP (see Table III). Most of the AP loss is caused by the
classes Head, Welding Mask, Ear Protection, and Chest. We
believe that this is due to the fact that in real life there are
many more variations of these object classes than those the
game can render.

We want to note that on virtual world testing, YCV obtains
its best mAP after 21000 iterations. On real world testing, best
performance is reached after 20000 iterations. This implies that
the best performing set of weights for the virtual world test is
not the best also for real world validation.

YCVR obtains a significant boost and reaches 76.1 mAP.
This means that fine-tuning with only 100 real images is very
effective on a network which was previously fine-tuned with
several similar virtual images. We also note that testing YCVR
on the virtual world yields a lower mAP with respect to YCV.
The main drop of AP in this case is seen on Head and Welding

Mask, which are the classes with most differences between real
and virtual.

YCR obtain 57.3 mAP when tested on the real world test
set. This result is just slightly better than that obtained by YCV,
and by far worse than YCVR. This means that the contribution
given by the virtual world training set, to train the network for
the new scenario is very relevant, and just a fine-tuning with
a few images is enough to adapt the network back to the real
world domain.

VI. CONCLUSIONS

Training deep neural networks in virtual environments has
been recently proven to be of help when the number of
available training examples for the specific task is low. In
this work, we considered the task of learning to detect proper
equipment in risky human activity scenarios.

We created and made available two datasets: the first one
has been generated using a virtual reality engine (RAGE from
GTA-V); the second one is composed of real photos.

In our experiments, we trained YOLO on the virtual dataset
and tested on the real images as well as using just a small
number of real photos to fine-tune the deep neural network
we trained in the virtual environment. The experiments we
conducted demonstrated that training on virtual world images,
and executing a step of domain adaptation with a limited
number of real images, is very effective. Obtained performance
when training with virtual world images and adapting to the



TABLE III
mAP COMPARISON OF OUR NETWORKS ON VIRTUAL VALIDATION OR REAL TESTING

Network Test Head Helmet Weld. Mask Ear Prot. Chest HVV Person mAP

YCV V 89.7% 86.7% 75.5% 89.0% 89.7% 90.0% 89.7% 87.2%

YCV R 36.3% 74.1% 27.3% 55.6% 45.7% 69.9% 76.9% 55.1%
YCR R 44.1% 52.2% 42.3% 62.0% 59.1% 60.7% 80.6% 57.3%
YCVR R 78.8% 73.3% 66.3% 74.0% 74.7% 78.6% 87.1% 76.1%

domain with a few real images is much higher than just fine
tuning an existing network with a few real images for the
scenario at hand. We plan to use the same virtual environment
to train to detect people using weapons (see Figure 4).
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