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1 MOTIVATION

Quantification (also known as “supervised prevalence estimation”
[2], or “class prior estimation” [7]) is the task of estimating, given a
set o of unlabelled items and a set of classes C = {c1, ..., c|c|}, the
relative frequency (or “prevalence”) p(c;) of each class ¢; € C, i.e.,
the fraction of items in o that belong to c;. When each item belongs
to exactly one class, since 0 < p(¢c;) < 1and ¥, ecplci) = 1, p
is a distribution of the items in o across the classes in C (the true
distribution), and quantification thus amounts to estimating p (i.e.,
to computing a predicted distribution p).

Quantification is important in many disciplines (such as e.g.,
market research, political science, the social sciences, and epidemi-
ology) which usually deal with aggregate (as opposed to individual)
data. In these contexts, classifying individual unlabelled instances
is usually not a primary goal, while estimating the prevalence of
the classes of interest in the data is. For instance, when classifying
the tweets about a certain entity (e.g., a political candidate) as dis-
playing either a Positive or a Negative stance towards the entity,
we are usually not much interested in the class of a specific tweet:
instead, we usually want to know the fraction of these tweets that
belong to the class [14].

Quantification may in principle be solved via classification, i.e.,
by classifying each item in o and counting, for all ¢; € C, how many
such items have been labelled with c;. However, it has been shown
in a multitude of works (see e.g., [1, 4, 12-14, 17]) that this “classify
and count” (CC) method yields suboptimal quantification accuracy.
Simply put, the reason of this suboptimality is that most classifiers
are optimized for classification accuracy, and not for quantification
accuracy. These two notions do not coincide, since the former is,
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by and large, inversely proportional to the sum (FP; + FNj;) of the
false positives and the false negatives for ¢; in the contingency
table, while the latter is, by and large, inversely proportional to the
absolute difference |FP; — FNj| of the two.

One reason why it seems sensible to pursue quantification di-
rectly, instead of tackling it via classification, is that classification is
a more general task than quantification: after all, a perfect classifier
is also a perfect quantifier, while the opposite is not true. A training
set might thus contain information sufficient to generate a good
quantifier but not a good classifier, which means that performing
quantification via “classify and count” might be a suboptimal way
of performing quantification. In other words, performing quantifi-
cation via “classify and count” looks like a violation of “Vapnik’s
principle” [33], which asserts that

If you possess a restricted amount of information for
solving some problem, try to solve the problem di-
rectly and never solve a more general problem as
an intermediate step. It is possible that the available
information is sufficient for a direct solution but is
insufficient for solving a more general intermediate
problem.

As a result, quantification has come to be no longer considered a
mere byproduct of classification, and has evolved as a task of its
own, devoted to designing methods and algorithms (see [15] for a
survey) that deliver better prevalence estimates than CC.

There are further reasons why quantification is now considered
as a task of its own. One such reason is that, since the goal of
quantification is different from that of classification, quantifica-
tion requires evaluation measures different from those used for
classification. A second reason is the growing awareness that quan-
tification is going to be more and more important; with the advent
of big data, more and more application contexts are going to spring
up in which we will simply be happy with analyzing data at the
aggregate level and we will not be able to afford analyzing them at
the individual level.

2 OBJECTIVES, AND RELEVANCE TO IR

The goal of this course is to introduce the audience to the problem
of quantification and to its importance, to the main supervised
learning techniques that have been proposed for solving it, to the
metrics used to evaluate them, and to what appear to be the most
promising directions for further research.

The topic of quantification is relevant to the SIGIR community,
because when IR researchers apply classification techniques these
researchers are often only interested in results at the aggregate level,
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which means that they should have used quantification techniques
instead. One typical example is sentiment classification in Twitter:
almost nobody who engages in this task is interested in individual
tweets per se. Researchers and practitioners who use classification
when they should instead use quantification typically do so because
they ignore that there is a difference between the two; one of the
main goals of this tutorial is to raise awareness of this difference.

3 FORMAT AND DETAILED SCHEDULE

The structure of the lectures is as follows (each section also indicates
the main bibliographic material discussed within the section):

(1) Introduction / Motivation
(a) Solving quantification via “Classify and Count”
(b) Concept drift and distribution drift [24, 31]
(c) Vapnik’s principle
(d) The “paradox of quantification”
(2) Applications of quantification in machine learning, data min-
ing, text mining, and NLP [14]
(a) Sentiment quantification [11]
(b) Quantification in the social sciences [5]
(c) Quantification in political science [17]
(d) Quantification in epidemiology [19]
(e) Quantification in market research [11]
(f) Quantification in ecological modelling [3]
(3) Evaluation of quantification algorithms
(a) Desirable properties for quantification evaluation mea-
sures [30]
(b) Evaluation measures for quantification [30]
(c) Experimental protocols for evaluating quantification [10]
(4) Supervised learning methods for binary and multiclass quan-
tification
(a) Aggregative methods based on general-purpose learners
[2, 4, 13, 20, 22, 27, 28]
(b) Aggregative methods based on special-purpose learners
[1, 12]
(c) Non-aggregative methods [16, 17]
(5) Advanced topics
(a) Ordinal quantification [6, 8]
(b) Quantification for networked data [23, 32]
(c) Quantification for data streams [18, 21, 29]
(d) Cross-lingual quantification [9]
(6) Shared tasks [25, 26]
(7) Conclusions
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