
Copyright c© 201X Inderscience Enterprises Ltd.



A Data Model-Independent Approach to Big
Research Data Integration

Abstract: The paper discusses the data integration problem in the context of the
scientific domain. The main characteristics of the big research data, that make the
traditional approach of data integration unfeasible are presented. Two new emerging
practices, i.e., an exploratory approach to data seeking and an empiricist epistemological
approach to knowledge creation, that also contribute to making this approach not suited
for this domain are discussed. Based on these considerations a new paradigm of data
integration is proposed and discussed. An application ontology, i.e., the BDI ontology that
supports this new paradigm is presented. The ontology is based on five types of events,
concerning the creation of new databases or views, the update of the schema of a database
or of the query defining a view, or the update of the data content of a database. Every
event is extensionally modeled as an input/output operation on the involved data entity.
The strong point of the ontology and of the whole approach to data integration, is that no
assumption is made on the data models in which the databases or the views are expressed.
This provides a level of generality that successfully deals with the heterogeneity of the
domain, making our approach applicable in principle to every data integration context.
Different approaches for implementing data integration based on the proposed ontology
are also discussed, and an approach guaranteeing consistency while preserving efficiency
is proposed. Some implementation issues are discussed and, as a proof of feasibility, the
main algorithms for realizing the approach are also given in the Appendix.

Keywords: Data integration; Big Research Data; Ontology; Semantic Web

1 Introduction

Data Integration has the goal of enriching and
completing the information available to the users by
adding complementary information residing at diverse
information sources. It aims at providing a more
comprehensive information basis in order to better
satisfy user information needs. This is achieved by
combining data residing at diverse data sets and creating
a unified view of these datasets. This view provides a
single access point to these distributed, heterogeneous
and autonomous data sets. Therefore, it frees the user
from the necessity of interacting separately with each of
these data sets.

We distinguish two types of data integration.
The first type of data integration, structural data
integration, refers to the ability to accommodate in
a common data representation model distributed data
sets represented in different data representation models
and formats. In essence, in this type of integration
the goal is to augment the dimensionality of an
entity/object represented in different distributed data
sets by collecting together all the attributes/features
associated with this entity/object. The second type of
data integration, semantic data integration, refers to the
ability to combine distributed data sets on the basis of
existing semantic relationships between them. In essence,
in this type of integration the goal is to augment the
relationality of an entity/object represented in a data
set by linking it to entities/objects semantically closely
related to it and represented in other distributed data
sets.

Data integration very much depends on the
characteristics of the data to be integrated as well as
on the characteristics of the application context within
which data integration is performed. In this paper, we
study the process of integrating research data produced
by researchers during their research activities, where
data integration is instrumental in exploratory studies
carried out by research teams.

It is argued that in such a context, the traditional
approach to data integration is not only unfeasible from
a technical point of view, but also not well suited
to support the discovery process carried out by the
researchers. A new approach to data integration will
then be proposed, that takes into consideration the
characteristics of the research data as well as some new
emerging practices in the scientific domain in the era of
big data.

The paper is organized as follows: In Section 2, an
overview of the characteristics of the Scientific domain
as well as those of the Big Research Data that heavily
influence the data integration process is presented. In
Section 2.1, a new paradigm of integrating Big Research
Data is illustrated. In Section 3, a generic scientific
application scenario for the purpose of better illustrating
the new data integration paradigm is presented; some
concepts underlying such scenario, that are relevant
for the new paradigm, are introduced. In Section 4,
an application ontology is developed to support the
new paradigm in a data-model independent approach;
some implementation considerations are also proposed.
Section 5 offers some concluding remarks that summarize

Copyright c© 201X Inderscience Enterprises Ltd.



A Data Model-Independent Approach to Big Research Data Integration 3

the new paradigm. Finally, in the Appendix some
fundamental algorithms are presented.

2 Characteristics of the Scientific Domain

Data integration in the scientific domain Council et al.
(2010) is heavily influenced by the characteristics of
this domain as well as by the characteristics of the big
research data. These characteristics include:

• The large number of data sets to be integrated

• The huge volumes of data contained in these data
sets

• The widely differing data qualities of the data
contained in these data sets

• The extreme heterogeneity of the local data
schemata, manifested by:

– The different ways of conceptualizing the
same scientific problem by different schools of
thought

– The different formats adopted by different
research communities for the same type of
data

– The different ways of accounting for the
uncertainty in the data followed by different
research communities.

• The dynamic creation of local data schemata

• The lack of a priori knowledge of the local
schemata

• The evolution of local data schemata over time;
in fact, these schemata evolve as new insights are
gained in a scientific domain; for example, certain
concepts can be invalidated in the light of new
discoveries

• The different concepts of what to include in the
metadata.

Characteristics of the Big Research Data that
influence the data integration process include:

• an ever-increasing production of new data types
that augments the complexity of data sets;

• a worldwide distribution of research data sets;

• data sets with high dynamism, uncertainty,
exhaustivity, and relationality.

In such an application environment, the traditional
approach to data integration, based on the design
of a unified view (global schema) is technically and
economically unfeasible Ziegler and Dittrich (2004),
Levy (1998). First, due to the extreme heterogeneity of
the data sets to be integrated the design of a global

schema is a very complex task. Second, given the fact
that the local schemata are created dynamically and
evolve over time the global schema and the mappings
from the global to the local schemata should undergo
continuous restructuring.

2.1 Big Research Data Integration: A New
Paradigm

In the previous Section we have listed a number of data
characteristics that make the traditional approach to
data integration unfeasible in the scientific domain. In
this Section we describe two emerging practices that
make the concept of data integration not suited for this
domain.

First, in many disciplines the amount of data
contained in data repositories outgrows the capabilities
of query processing technology. In this case, a new
paradigm of data seeking has been proposed: “data
exploration” Idreos (2013). Exploration-based systems
guide users towards the path that their queries and
the result lead to, in an incremental and adaptable
way. Data exploration, therefore, is a new approach in
data seeking that allows discovering connections and
correlations between data.

Second, a new empiricist epistemological method for
creating new knowledge is emerging Kitchin (2014). In
the traditional scientific method, i.e., hypothesis driven
research, the data are analyzed with a specific question
in mind, that is, a hypothesis. In essence, this scientific
method adopts a deductive reasoning for discovering new
insights from the data. In the empiricist method, i.e.,
data driven research, the data are analyzed with no
specific question in mind. In essence, huge volumes of
data together with powerful analytic tools enable data
to speak for themselves. Mining big data can reveal
relationships and correlations that researchers did not
even know to look for. In this method an inductive
or abductive reasoning is adopted for discovering new
insights from the data.

In order to support data exploration and data driven
research a new paradigm of data integration is needed.
The exploratory approach to data seeking suggests the
possibility for researchers to start browsing in one data
set and then navigating along links into related data sets,
or to support data search engines to crawl a linked data
space Bizer (2013) by following links between data sets.

The empiricist method entails the logic that must
guide the creation of these links. In fact, in the
hypothesis driven method a link between two data
sets is established only when the current hypothesis
dictates a semantic relationship between variables within
these data sets. In contrast, in the data driven method
a link between two data sets is established only
when a significant relationship between variables within
these data sets is found. The logic underlying this
method enables researchers to discover new insights
by analyzing data linked together on the basis of a
inductive/abductive reasoning.



4

These two practices pave the way for the creation
of linked data spaces. Such linked data spaces can
be implemented by exploiting linking technologies that
allow to connect/link semantically related data sets. For
example, data sets produced worldwide and related to
the same phenomenon could be linked together creating,
thus, linked data spaces in the form of thematic graphs.
Researchers, interested in discovering correlations and
semantic relationships between data sets contained in
linked data spaces, should go through these thematic
graphs. In essence, now the researchers have to explore
a linked research data space by navigating through
it. Based on all the above considerations the data
integration problem can be re-formulated as follows:

Given a number of distributed heterogeneous and time
varying data sets, link them on the basis of existing
semantic and temporal relationships among them.

In essence, the idea of the traditional concept
of data integration, that is, to combine distributed
heterogeneous data sets by defining on top of them
a common view (global schema) that accommodates
structural and semantic heterogeneities among them
is replaced by the concept of connecting distributed
heterogeneous data sets on the basis of existing semantic
and temporal relationships among them.

Consequently, even the role of a data integration
system is changing . In the traditional approach, a
data integration system has to map a user query issued
against the global schema into a number of queries
issued against the local schemata. The role of a data
integration system, in the new paradigm, is to make
explicit hidden semantic relationships or correlations
between data sets. Making explicit hidden semantic
relationships/correlations implies the creation of links
between data sets.

3 Concepts underlying a generic Scientific
Data Integration Scenario

This section presents a conceptualization of a generic
scientific application scenario that emerges from the
new paradigm described in the previous Section. The
conceptualization views data integration in a data-
model independent way, and, most importantly, reduces
schema-level operations to data-level operations on the
underlying concepts. The conceptualization is formally
specified in the BDI ontology, introduced in the next
Section, along with the operations that reflect the
evolution of the scientific data domain at hand.

Databases. In our hypothetical application
environment, there are n databases distributed
worldwide containing heterogeneous data represented
in different formats and managed by different data
management systems. These data are produced by
different research teams, each following its own practices
and protocols. In spite of this heterogeneity, these
databases have a common trait that allows treating

them in a uniform way for our purposes. In particular,
each database has an intension and an extension:

• The intension of a database describes the structure
of the database and is expressed as a schema
of the particular data model that the database
conforms to. For instance, the intension of a
database conforming to the relational data model
is a relational schema that defines the tables of
the database and the structure of each table in
terms of columns (attributes) and their domains;
possibly, the schema also gives constraints such
as keys, referential constraints and functional
dependencies.

• The extension of a database is a set of data that
are structured according to the database intension.
For instance, the extension of a relational database
is a set of relational tables, each conforming to the
definition and constraints given in the schema of
the database.

The scientific application environment is a changing
environment due to the dynamic nature of the research
activity and of the research data. Therefore, both the
intension and the extension of a database are time-
dependent. In particular,

• The intension of a database is defined at the
database creation time, and may later be revised
any number of times to reflect changes in the
structure of real-world objects or in the user
requirements, for instance as new insights are
gained in the scientific domain.

• Changes in the extension of a database are
the result of database operations such as the
acquisition of more research data (through an
INSERT command), or modification of existing
data (through an UPDATE command) or the
elimination of some data (through a DELETE
command).

These changes entail a support for DB schema and
DB extension versioning. According to Jensen et al.
(1998) a database system supports schema versioning
if it allows the accessing of the schema extension, both
retrospectively and prospectively, through user definable
version interfaces. Support for versioning requires that a
history of changes be maintained to enable the retention
of past DB intensions and extensions.

In order to support versioning, we consider events in
our scenario. Events are generally defined as “changes
of states in cultural, social or physical systems,
regardless of scale, brought about by a series or group
of coherent physical, cultural, technological or legal
phenomena” Doerr (2003). For the present purposes, we
consider three kinds of events related to databases:

• DB Creation: produces a database with an
associated schema and an empty extension



A Data Model-Independent Approach to Big Research Data Integration 5

• Schema Change: produces a new DB schema from
an existing one

• Data Change: produces a new DB extension from
an existing one.

We further assume that these events occur instantly.
That is, when the schema of a database changes it is
instantly replaced by the changed one, so that at each
instant of the database lifetime exactly one schema is
associated to the database. Likewise, we assume that
any operation altering the extension of a database occurs
instantly as a replacement of the current database
extension by a new extension reflecting the effects of
the operation. Technically, this assumption is enforced
by any database management system, for instance by
locking the database during any of the above operations,
so that no other operation interferes with the current
one. The net effect of this behavior is precisely the
assumption that we have made.

Database Views. As already said, research databases
contain huge amounts of data. Usually, researchers are
interested only in some parts of a database. These parts
of a database (called sub datasets) can be formally
defined as database views. Database views can be
considered as epistemological data abstractions Floridi
and Sanders (2004). The epistemological approach to
abstraction is concerned with the different levels of
observation or interpretation at which a database can
be studied. For example, a database can be observed
and analyzed at different levels of abstraction, consisting
of data related by time, place, instrument, or object
of observation. Examples of epistemological levels of
abstraction are spatial and temporal data abstractions.
A database view can also be defined as a function
Buneman et al. (2016) that when applied to a database
produces a data subset of that database. We think that
each large database should be endowed with a number
of (possibly overlapping) views.

In our scenario there are also several database
views, hereafter simply views, each defined on top of a
database1. The heterogeneity of databases implies that
of views. But also views have a common trait that allows
treating them uniformly. In particular, each view has an
intension and an extension:

• The intension of a View describes the semantics
of the view and is expressed by a query in the
query language of the database on which the view
is defined. For example, the intension of a view
defined over an RDF database will typically be a
SPARQL SELECT/CONSTRUCT query. We note
that the intension of a view embodies the schema
of the view, by giving the structure of the query
result.

• The extension of a view is the data subset defined
by the intension of the view, that is, the result of
running the view query against the (extension of
the) database on which the view is defined.

Typically, a view has a set of metadata that describe the
view from an application- or a system-specific point of
view. These metadata are not further considered in our
scenario because they are out of the present scope.

As a consequence of the fact that both the intension
and the extension of a database evolve over time, also the
intension and the extension of a view evolve over time.
In particular,

• a change in the intension (i.e., schema) of a
database may cause a change in the intension of
any view defined on that database, this intension
being a query expressed against the database
schema. For instance, the renaming of an attribute
in a relational table requires that any reference
to that attribute on a views intension (query) be
renamed as well. Similarly for the suppression or
the addition of attributes.

• a change in the extension of a database may induce
a change in the extension of any view defined over
that database, this extension being the result of
a query evaluated against the database extension.
For instance, the insertion of a row to a relational
table will cause the addition of that row to the
extension of any view whose query is satisfied by
the inserted row.

In order to support versioning of views, we will follow
a similar approach to that followed for databases, by
introducing two more kinds of events in our scenario:

• View Creation: produces a view and associated
intension and extension.

• View Intension Change: produces a new
view intension from an existing one, and a
corresponding new view extension from an existing
one.

Note that we do not introduce a new type of event for the
evolution of view extensions, because that evolution can
only be implicitly caused either by data change events or
by view intension change events¡ thus, no specific action
is required by the user. As a consequence, it is expected
that the evolution of view extensions be treated in a
completely automatic way, transparently to the user. We
only revise the definition of a Data Change event to
include view extension evolution, as follows:

• Data Change: produces a new DB extension from
an existing one, and a new view extension from an
existing one.

4 The BDI Ontology

In order to formally represent the notions of the
conceptualization introduced in the previous Section,
we now present the BDI ontology. The BDI ontology
has to be regarded as an application ontology Guarino



6

(1998), in the sense that its vocabulary offers terms that
are related to a particular application (research data
integration) and that are to be seen as specializations
of more general terms drawn from a top-level ontology,
for clarity and interoperability. In particular, we will
indicate the terms from the CIDOC CRM Doerr
(2003) top ontology. The BDI terms can be seen as
specializations of the terms of CIDOC CRM. We choose
the CIDOC CRM as reference top ontology because it is
an ISO standard largely employed in Cultural Heritage.

The BDI ontology is presented as an UML class
diagram, split into several diagrams for readability. Each
diagram gives classes (boxes) and associations (arrows
and their labels), and documents the domain and range
of each association. Additional knowledge on the classes
and the associations of the ontology are specified in a
terse natural language that is close to formalization.
Classes are named using the corresponding English
words, while with a few exceptions associations are
identified by numbers to simplify reading.

4.0.1 Database and view modeling

The diagram on Figure 1 presents the modeling of the
basic entities, that is databases and their views.

Database

DB Schema Data

2

15

DB View

View 
Intension

10

DB 
Extension

View 
Extension

3

16

11

22
19

8

Figure 1 Basic data entities of BDI

The classes Database, DB Schema and DB Extension
have as instances databases, database schemata and
database extensions, respectively. The schema of a
database is connected to its database by association 2
and to its expression via association 3; such expressions
is a data object, instance of class Data, giving the
actual schema in some machine-readable notation. The
ontology does not give any detail about the class
Data, which is depicted with a special symbol to
signify that its instances are totally implementation-
dependent. Possible examples of Data instances are:
locally accessible XML documents; IRIs that lead to the
data via de-referentiation; code (such as a web service
call or a database query) that leads to the data via
execution.

To capture the dependency of database extensions
from schemata, the ontology directly associates the
former to the latter via association 15. Database
extensions include the empty database extension , which
is used as extension of a newly created database. Each

DB extension is linked to the actual content of the
database (also instances of Data) via association 16. The
empty database extension is linked by association 16
to a special instance of class Data corresponding to the
empty data object.

The modeling of database views is very similar to that
of databases. A view over a database is an instance of the
class DB View. A view is associated to its database via
association 8 and has one or more intensions, instances
of class View Intension, each linked to its view via
association 10. Each view intension is also associated
(via association 11) with a data object, instance of class
Data, giving the actual expression of the intension, i.e., a
query in some query language appropriate to the schema
of the database. A view intension has one or more
extensions, instances of class View Extension, connected
to it via association 22. View extensions include the
special object that represents the empty view extension.
Each view extension is linked via association 19 to its
content, which is a Data object obtained by applying the
intensions query to the current DB Extension.

The following constraints apply to the associations
introduced thus far:

• Associations 2 and 10 are total and functional,
that is, every schema is the schema of exactly a
database,

• Associations 3, 11, 16 and 19 are total and
functional; that is, every DB schema, DB
extension, view intension and view extension are
associated to exactly one data object giving the
relative data content.

• Association 8 is total and functional, that is, every
view is defined over exactly one database.

• The inverse of associations 15 and 22 are total
and functional; that is, every DB extension is
associated to exactly one DB schema and every
view extension is associated to exactly one view
intension.

4.0.2 Event modeling

Events are represented in the BDI ontology by the
classes shown in the UML class diagram in Figure 2,
double-framed for perspicuity:

The most general such class is Event (specialization
of the CRM class E5 Event), which has five sub-classes,
each corresponding to a different kind of event illustrated
in the previous Section. In the diagram, empty-headed
arrows stand for sub-class associations.

The sub-classes of Event are pairwise disjoint, and
their disjunction equals the class Event, i.e., every event
is an instance of exactly one of the sub-classes of Event.

The class Time (specialization of the CRM class E50
Date) has as instances time units, usually referred to as
timestamps, at which changes occur. The association ET
relates an event to a timestamp, and is inherited by each



A Data Model-Independent Approach to Big Research Data Integration 7

DB Creation

DB Schema 
Change

Data 
Change

View 
Creation

View Intens. 
Change

Event

Time

ET

Figure 2 Event classes of BDI

sub-class of Event, so that any event of any kind has an
associated timestamp.

• Association ET is total and functional, that is,
every view is defined over exactly one database.
Moreover, it is injective as no two events occur at
the same time.

From the discussion presented in the previous
Section, all events in our scenario produce some data
entity, either anew or by transforming some existing
data entity. As such, they can be modeled following
one of two alternative approaches, the intensional or the
extensional approach. In the intensional approach, each
event is characterized structurally by the parameters of
the operation that it performs. Such parameters depend
on the model of the data entity that the operation
produces. For instance, a DB Schema Change event on a
relational schema has parameters describing which table
definitions are changed, and how; the same event on
an RDF Schema would be characterized by parameters
describing which class and properties definitions are
changed, and how. In sum, the intensional modeling of
events would tie the BDI ontology to one or more data
models. For the sake of simplicity and generality, the
BDI ontology chooses to characterize events following
the alternative approach, the extensional approach. In
this approach, each event is characterized solely in term
of the input (if any) and the output of the corresponding
operation. For instance, a data change event transforms
the extension of a database, and in the extensional
approach it is characterized by the transformed database
extension before the transformation (the input) and
the database extension after the transformation (the
output). The same applies for the other kinds of events.

We now illustrate how every kind of event in our
scenario is structured in the BDI ontology.

DB CreationDatabase DB Schema
1 4

Figure 3 DB Creation Event

Creation events. According to the standard practice in
data engineering, a database is created with a well-
defined schema and an empty extension. Successively to
its creation, the database is populated through a series
of Data Change events: the first of such events replaces
the empty extension with a non-empty extension, while
the successive ones insert more data into the database
extension. The same protocol is to be used to populate a
DB extension after a DB schema change: upon creating
the new schema, the schema is associated with the
empty extension; to populate the modified schema with
the data, one or more data change events have to be
used. This practice is assumed by the ontology, which
defines the DB Creation event class and endows it with
two associations (see Figure 3): association 1 connecting
a DB Creation event with the created database, and
association 4 connecting a DB Creation event with the
schema of the created database.

Similarly, a View creation event (see Figure 4) is
connected to the created view (association 9) and to the
intension of the created view via association 12.

9 View 
CreationDB View View 

Intension
12

Figure 4 View Creation Event

The following constraints apply to the associations
introduced thus far:

• Associations 1 and 9 are total, functional, injective
and surjective, that is, a DB (respectively, view
Creation) event creates exactly one DB (view), no
two events create the same DB (view), and every
DB (view) is the result of a creation event.

• Associations 4 and 12 are total, functional and
injective like associations 1 and 9 but not
surjective, as a DB schema or a view intension may
result from a change event.

Change events. A DB Schema change event (see
Figure 5) is modeled as a transformation from one DB
Schema to a newly generated DB Schema. Associations
5 and 6 connect a Schema Change event to the input and
the output DB schemata, respectively.

5
DB Schema Schema 

Change
6

Figure 5 Database Schema Change Event

Notice that a DB Schema change may require
changing the intension (i.e., the query) of some (possibly
all) of the views defined over the involved database, to
make the corresponding queries conforming to the new



8

schema. However, this change requires the intervention of
the user, who has to provide the new query(ies) through
the apposite view intension change events. Therefore the
ontology does not introduce any association reflecting
the view intension change that may follow a DB schema
change.

Similarly, a View Intension change event (see
Figure 6) transforms one View Intension to a newly
generated one. Associations 13 and 14 connect a View
Intension Change event to the input and the newly
generated View Intensions, respectively.

View Intens. 
Change

View 
Intension

13

14

View 
Extension

23

24

Figure 6 View Intension Change Event

Any View Intension change, in turn, causes a
corresponding transformation of the extension of the
same view, which can be handled in a completely
automatic way because all is needed is the modified
query provided by the user in the context of the view
intension change.

Associations 23 and 24 connect a View Intension
Change event to the extension of the input intension and
to a newly generated View Extension, respectively.

Data 
Change

DB 
Extension

View 
Extension

17

18 21

20

Figure 7 Data Change Event

Finally, a Data Change event (see Figure 7) causes
a DB extension to be replaced by a newly created DB
extension, linked to the event by associations 17 and
18 respectively. Any Data change, in turn, causes a
corresponding transformation of the current Extension
of any view defined over the involved database into a new
View Extension. The affected current view extensions
are all connected to the event via associations 20, while
those that replace them are connected to the same event
via association 21.

The following constraints apply to the associations
introduced thus far:

• All associations modeling changes, namely
associations 5, 6, 13, 14, 23, 24, 17, 18, 20 and
21, are total, functional and injective, whether
they model the entity before the change or the
entity after the change. Totality and functionality
ensure that every change has exactly one input
and one output entity. Injectivity ensures that
no two changes have the same input or the same
output.

4.0.3 Semantic Linking

In our definition of data integration the logic that
guides the discovery of semantic relationships between
database views plays a key role (see Section 2.1).
Several types of semantic relationships can exist between
concepts defined in different database view schemata.
Examples of semantic relationships include: the inclusion
relationship that is the standard sub-type/super-type
relationship; is-a and part-of relationships; member-
collection relationship (association relationship);
feature-event relationship; phase-activity relationship;
place-area relationship; component-object relationship;
antonyms/synonyms relationships, etc. Other types of
semantic relationships can exist that are domain-specific.

Several kinds of logic can be adopted in order
to discover relationships between database views. The
adopted logic to discover a semantic relationship
between two database views, as said in Section 2.1,
depends on the scientific method followed (hypothesis
driven/data driven method). In addition, we think that
the choice of a suitable logic depends also on the
scientific context within which the integration process is
carried out. Different kinds of logic (conventional logic,
modal logic, causal logic, temporal logic, etc.) can be
explored. An additional important issue to be taken
into consideration when designing discovery algorithms
is their computational complexity.

A relationship between two views/extensions is
materialized by a link that connects these two
views/extensions. Instrumental in implementing an
efficient linking process is the creation of a catalogue
where all the different database views are published. By
database view publication we mean a process that allows
the research community to discover, understand and
make assertions about the fitness of a view for integration
purposes. This means that each view schema should be
endowed with an ID, metadata and a timestamp.

In our ontology, the SemLink association connects
semantically related view Extensions. As argued above,
this connection is purely based on the semantics of the
application, and it may involve any arbitrary pair of
extensions. So no constraint is set on it.

4.0.4 Other constraints

This Section presents the constraints of the
BDI ontology not stated so far, categorizing them in
homogeneous groups.

Disjointness constraints.

• All classes in the BDI ontology are pairwise
disjoint, except Event and its sub-classes.

• All associations in the BDI ontology are pairwise
disjoint.

Inheritance constraints. These constraints concern
inheritance of associations 2 and 10 via DB Schema or
View Intension change events, respectively.



A Data Model-Independent Approach to Big Research Data Integration 9

• A DB schema s′ resulting from a DB schema s
via a DB Schema Change event, is associated (via
association 2) to the same Database as s.

• A View Intension v′ resulting from a View
Intension v via a View Intension Change event, is
associated (via association 10) to the same View
as v.

Closure constraints. These constraints express
conditions on the extension of the classes whose instances
results from events.

• Every database is the result of a DB creation event
(via association 1)

• Every DB View is the result of a View creation
event (via association 9)

• Every DB schema is either the result of a DB
creation event (via association 4) or of a DB
schema change event (via association 6), but not
both.

• Every View Intension is either the result of a view
creation event (via association 12) or of a View
Intension change event (via association 14), but
not both.

• Every View Extension is either the result of a Data
Change event (via association 21) or of a View
Intension change event (via association 24), but
not both.

Pairing constraints. These constraints concern the
change events. All such events have an input and an
output object. Therefore each of them must be connected
via the appropriate associations to one (or more than
one) pairs of entities. We notice that pairing constraints
involve solely total, functional and injective associations.

• Every schema change event is connected to exactly
two DB schemata, one via associations 5 and the
other via association 6.

• Every view intension change event is connected to
exactly two view intensions, one via associations
13 and the other via association 14.

• Every view intension change event is connected to
exactly two view extensions, one via associations
23 and the other via association 24.

• Every data change event is connected to exactly
two DB extensions, one via associations 17 and the
other via association 18.

• Every data change event is connected to exactly
2k view extensions, k via associations 20 and the
other k via association 21.

Conformance constraints. These constraints involve
conformance relations between intensions (schemata or
queries) or between intensions and extensions. As such,
they cannot be stated by simply posing existential
or cardinality conditions on the extensions of the
BDI classes and associations. Moreover they depend
from external factors; in particular, the first two kinds of
constraints depend on the input of the user, while the last
kind depend on the query evaluation. For these reasons
these constraints do not play any role on the correctness
of the solution discussed below, they are just presented
for the sake of completeness.

• Conformance between DB schemata and DB
extensions: the data of a DB extension conform to
the DB schema of the extension.

• Conformance between DB schemata and View
intensions: At any time, the query of the intension
of a view is a valid query against the schema of the
database on which the view is defined at that time.

• Conformance between View intensions and View
extensions: At any time, the extension of a view is
the result of the query of the view intension against
the extension of the schema of the database over
which the view is defined at that time.

4.1 The Research Data Integration Problem

Based on the considerations about the characteristics
of the scientific application scenario described in this
section and the subsequent formalization of this scenario,
we give two definitions of the research data integration
problem. The first definition is an informal one; the
second one is stated in terms of the concepts described
in this section.

(Informal) Definition of Research Data Integration:
Given a set of distributed, heterogeneous and time-
dependent database views, by data integration we mean
the ability of a researcher/software engine to link their
extensions on the basis of existing semantic and/or
temporal relationships among the intensions of the
database views these extensions belong to.

(Formal) Definition of Research Data Integration: An
instance of the problem is given by an instance of the
ontology BDI , that is an information system S composed
of

• a finite set of objects OS;

• for each class C in BDI , a subset CS of OS, called
the extension of C in S;

• for each association A in BDI , a subset of (OS x
OS), called the extension of A in S.

An instance is consistent if it satisfies all constraints.
Notice that an instance would include also an

extension of the SemLink association, connecting
extensions of database views between each other, on



10

the basis of semantic relationships among their database
views.

The Data Integration Problem can be formulated as
the development of an information system that, given
a stream of events of the kinds considered in this
study, is able to maintain a consistent instance of the
BDI ontology including those events and the data and
views that they involve, making databases, views, their
extensions or intensions citable and versioned.

4.2 Implementation Considerations

The complete characterization of the BDI ontology
provided in a previous part of this Section naturally
suggests an ontology-based implementation strategy for
the Research Data Integration Problem. Such strategy
would be based on two pillars:

1. the ability to express the constraints of the
BDI ontology and the instance of the Research
Data Integration Problem at hand as axioms of an
ontology of the most recent and powerful language
of the Semantic Web family, namely the OWL 2
DL language Motik et al. (2012); and

2. the ability to implement the operations for
creating, evolving and querying the instance by
using a suitable OWL engine (such as OpenLink
Virtuoso2) as basic technology, relying on the
consistency checking functionality of the engine to
maintain consistency.

Albeit appealing for its declarative approach, this
strategy presents three main drawbacks from a system
engineering point of view:

• Not all constraints can be expressed as OWL 2
axioms; aside from conformance constraints, which
require checking domain specific relations, pairing
constraints (which demand the existence of an
individual in correspondence of the existence of
a different individual) cannot be expressed in
a description logic, due to the fact that such
logic operates under the Open World Assumption;
therefore, the lack of an individual is never
interpreted as an inconsistency. Another problem
arises from the fact that some constraints can
be captured as complex role inclusion axioms;
for instance the first one of the two inheritance
constraints can be expressed (using the logical
notation of Description Logics) as (6− ◦ 5 ◦ 2)
v 2. As a result, association 2 is composite and
cannot be declared to be functional, because doing
so would violate a global restriction on the axioms
of the ontology.

• Once consistency is broken, there is little support
or no support at all to help the user understanding
what went wrong and how the instance can be
repaired.

• Efficiency may be an issue, as the KB consistency
checking problem for the Description Logic SROIQ
Horrocks et al. (2006), on which OWL 2 DL
is based, is intractable. Furthermore, the size of
any realistic instance of the problem may easily
feature thousands of views, each with hundreds
of versions, if not more; under the circumstances,
even a polynomial algorithm where the polynomial
has rank at least 2, is going to be inadequate to
any expectation of the users concerning efficiency.
As it will be shown, such expectations are perfectly
legitimate in the present case.

We consider therefore the ontology-based
implementation strategy appropriate only for a fast
prototyping of the system, at best, because in those
circumstances it is not vital to capture all constraints,
while efficiency is not an issue since the prototype is
likely to be tested on toy examples.

An implementation strategy that guarantees
consistency while attaining efficiency, can be devised
based on the idea of keeping the system under control
by implementing the operations that create and modify
an instance of the problem in a consistency-preserving
way. That is, instead of giving the user the freedom
to enter any item of information into the system and
checking consistency afterwards, this approach prevents
the insurgence of inconsistencies by strictly controlling
the way the instance is created and modified by the
user. This approach clearly limits the freedom of
the users, by allowing them to perform only certain
operations; however, the permitted operations can be
chosen carefully enough to avoid any impact on the
usability of the system. In particular, the permitted
operation should strictly mirror the events by which the
reality that the system models evolves, so as to be able
to reflect any change of the reality into the system.

To prove the feasibility of this last implementation
strategy, in the Appendix we present the fundamental
algorithms for inserting knowledge into a system
implementing in a straightforward way an instance of
the problem. The implementation is straightforward in
the sense that it reflect the definition of instance of
the problem; thus, each class is implemented as a set
of objects, and each associations is implemented as a
set of object pairs. This storage strategy is sufficient
for expressing the algorithms and showing that the
consistency of the system can be efficiently implemented;
clearly, it has to be replaced by a database oriented
solution in any realistic setting.

5 Concluding Remarks

In this paper we have addressed the challenging problem
of data integration in the context of an evolving
research data scenario. Such scenario embodies the main
characteristics of big data as well as those of a dynamic
scientific environment. In particular, we have considered,



A Data Model-Independent Approach to Big Research Data Integration 11

in addressing this problem, not only the high dimension
of the data sets to be integrated but also the variability
of their structure. To address the high volume of the
data sets we have used the concept of database view that
identifies data subsets of interest to be integrated instead
of consider the whole (voluminous) data sets. The time
dependence of both volume and structure of data sets
and, therefore, the need to integrate them not only on the
basis of semantic relationships but also temporal ones
make the data integration problem very complex. To our
best knowledge such a complex problem has not been
addressed in the literature. In addressing this problem
we have adopted a theoretical approach. In essence, we
have, based on the BDI ontology, modeled all the events
that modify structure and volume of the data sets as well
as the associations among them. Such formalization, in
conjunction with an appropriate integration logic that
is domain-specific, enables to nicely address and solve a
complex problem.

In addition, in Appendix, we describe a set of
algorithms that implement the integration scenario
described in this paper.

References

Bizer, C. (2013), ‘Interlinking scientific data on a global
scale’, Data Science Journal, Vol. 12, pp.GRDI6–
GRDI12.

Buneman, P., Davidson, S. and Frew, J. (2016),
‘Why data citation is a computational problem’,
Communications of the ACM, Vol. 59, No. 9, pp.50–
57.

Council, N. R. et al. (2010), Steps toward large-scale data
integration in the sciences: Summary of a workshop,
National Academies Press.

Doerr, M. (2003), ‘The cidoc conceptual reference
module: An ontological approach to semantic
interoperability of metadata’, AI Mag., Vol. 24, No. 3,
pp.75–92.

Floridi, L. and Sanders, J. (2004), ‘Levellism and the
method of abstraction, information ethics group’.

Guarino, N. (1998), ‘Formal ontology in information
systems’, Proceedings of FOIS 98, IOS Press,
Amsterdam, pp.3–15. Amended version.

Horrocks, I., Kutz, O. and Sattler, U. (2006),
‘The even more irresistible sroiq’, Procȯf the 10th
IntĊonfȯn Principles of Knowledge Representation
and Reasoning (KR 2006), AAAI Press, pp.57–67.

Idreos, S. (2013), ‘Big data exploration’, Big Data
Computing.

Jensen, C. S., Dyreson, C. E., Böhlen, M., Clifford,
J., Elmasri, R., Gadia, S. K., Grandi, F., Hayes, P.,
Jajodia, S., Käfer, W. et al. (1998), ‘The consensus

glossary of temporal database conceptsfebruary 1998
version’, Temporal Databases: Research and Practice,
Springer, pp.367–405.

Kitchin, R. (2014), ‘Big data, new epistemologies and
paradigm shifts’, Big Data & Society, Vol. 1, No. 1,
pp.2053951714528481.

Levy, A. (1998), ‘The information manifold approach to
data integration’, IEEE Intelligent Systems, Vol. 13,
No. 5, pp.12–16.

Motik, B., Patel-Schneider, P. F. and Parsia, B.
(2012), ‘OWL 2 Web Ontology Language structural
specification and functional-style syntax (second
edition)’, W3C recommendation, W3C. http://

www.w3.org/TR/2012/REC-owl2-syntax-20121211/.

Ziegler, P. and Dittrich, K. R. (2004), ‘Three decades
of data intecrationall problems solved?’, Building the
Information Society, Springer, pp.3–12.

http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/
http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/


12

A A solution to the Data Integration
Problem

In this appendix, we describe a solution to the
Data Integration Problem, in the form of a set of
algorithms that, given a consistent instance of the
BDI ontology, implement: (1) the basic operations in the
data integration domain so as to produce the minimal,
consistent instance of the BDI ontology that reflects
each operation, and (2) the retrieval of versions of
view extensions. We also briefly discuss soundness and
completeness of these algorithms.

A.1 Creating and evolving an instance of the
BDI ontology

As pointed out in Section BDI , the ontology BDI offers
five kinds of events to model the evolution of an
application scenario:

• DB Creation: produces a database with an
associated schema and an empty extension.

• Schema Change: produces a new DB schema from
an existing one.

• Data Change: produces a new DB extension from
an existing one, and a new view extension from an
existing one.

• View Creation: produces a view and associated
intension and extension.

• View Intension Change: produces a new
view intension from an existing one, and a
corresponding new view extension from an existing
one.

Any implementation of the scenario must therefore
provide an operation for each one of the five events,
establishing the actions to be performed on the instance
of the ontology in order to correctly reflect the
corresponding event.

Below we provide an algorithm for each operation.
They all take as input a consistent, possibly empty,
information system S that is an instance of the ontology
BDI and return S modified according to the semantics
of the operation. For readability, these input and output
will be tacitly understood.

A.1.1 Database Creation

Let us now see the algorithm for the creation of a
database. The algorithm takes as input a data file
with the schema of the database to be created. To
simplify the description of the algorithm, in this and in
all the following operations we assume that this input
parameters are correct, thus avoiding checking them to
detect anomalies.

The database creation algorithm first creates a DB
creation event with the current time (step 1), then it

creates a new database associated with the event (step
2), finally it creates a DB schema and associates it to
the event, the database, the provided file and the empty
extension (step 3). Technically:

1. an instance ev of DB Creation event is created and
associated with the current time via association ET

2. an instance db of Database is created and
associated with ev via association 1

3. an instance sch of DB schema is created and
associated with:

(a) ev via association 4

(b) db via association 2

(c) the data file that holds the schema of D via
association 3

(d) the empty DB extension via association 15.

Notice that the identifiers of the objects created by
the algorithms (ev, db and sch) are assumed to be
generated in an automatic way, so as to simplify the
operation and avoid any danger of collision with existing
identifiers. If desired, these identifiers can be provided
by the user as input parameters.

A.1.2 View Creation

The algorithm for the creation of a view takes as inputs:

• the identifier D of an existing database over which
the view to be created is defined, and

• a data file with the query giving the actual
intension of the view to be created.

The algorithm first creates a View creation event with
the current time (step 1), then it creates a new view
associated with the event and the database D (step 2),
finally it creates a View Intension and associates it to
the event, the view, the provided file and the empty view
extension (step 3). Technically:

1. an instance ev of the View Creation event is
created and associated with the current time via
association ET

2. an instance vw of DB View is created and
associated with:

(a) ev via association 9

(b) the database D via association 8

3. an instance vin of View Intension is created and
associated with:

(a) ev via association 12

(b) vw via association 10

(c) the actual intension via association 11

(d) the empty view extension via association 22.



A Data Model-Independent Approach to Big Research Data Integration 13

A.1.3 DB Schema Change

The algorithm for the change to a DB schema takes as
inputs:

• the identifier Sch of the existing DB schema that
must be changed, and

• a data file with the new schema.

The algorithm first creates a DB Schema Change
event associated with the current time and with the
schema to be changed (step 1), then it creates a new DB
Schema associated with the event, the same database as
the the schema to be modified, the provided file with the
schema expression and the empty DB extension (step 2).
Technically:

1. an instance ev of the DB Schema Change event is
created and associated with:

(a) the current time via association ET

(b) Sch via association 5

2. an instance sch of DB Schema is created and
associated with:

(a) ev via (the inverse of) association 6

(b) the same database as Sch via association 2

(c) the data file with the new schema via
association 3

(d) the empty DB extension via association 15

Notice that in this way, at any time every DB schema
has exactly one database, at least one DB extension and
exactly one content connected to it. To populate the
extension of the new schema, a data change operation
must be performed, exactly in the same way the schema
of a newly created database is populated.

A.1.4 View Intension Change

The algorithm for the change to a View Intension takes
as inputs:

• the identifier VI of the existing View Intension that
must be changed, and

• a data file with the query of the new intension.

The algorithm takes into account the fact that a view
intension change event produces not only a new view
intension, but also a corresponding new view extension,
which replaces the current extension of the intension
to be changed. The content of that view extension are
computed by applying the query of the new intension
to the current extension of the involved database. For
this reason, the algorithm is a bit more complex than
the algorithm for DB Schema change, which is similar in
scope.

The algorithm first creates a View Intension Change
event associated with the current time, with the

intension to be changed and with the current (i.e., latest)
extension of this intension (step 1). Then it creates a new
View Intension associated with the event, the same view
as the intension to be modified and the provided data file
with the query of the new intension (step 2). Finally, it
creates a new view extension associated with the event,
the new intension and the actual content computed as
described above (step 3). Technically:

1. an instance ev of the View Intension Change event
is created and associated with:

(a) the current time via association ET

(b) VI via association 13

(c) the current extension of VI, via association 23

2. an instance vi of View Intension is created and
associated with:

(a) ev via (the inverse of) association 14

(b) the same view as VI, via association 10

(c) the data file with the query of the new
intension via association 11

3. an instance vext of View Extension is created and
associated with:

(a) ev via (the inverse of) association 24

(b) vi via association 22

(c) the actual view extension content via
association 19. Such content is computed
by evaluating the query provided as input
against the current extension of the database
over which VI is defined.

A.1.5 Data Change

The algorithm for the change to a DB Extension takes
as inputs:

• the identifier D of the existing database whose
extension must be changed, and

• a data file with the new extension.

Similarly to the View Intension change algorithm,
this algorithm takes into account the fact that a database
extension change event produces not only a new database
extension, but also a corresponding set of new view
extensions, one for each view defined over that database.
Each such new view extension replaces the current
extension of the current intension of the view. The
content of the replacing view extension are computed by
applying the query of the corresponding intension to the
new extension of the involved database.

The algorithm first retrieves the current schema of
the database to be changed, the current extension of that
schema, and the set of the current extensions of each view
defined over D (step 1). It then creates a Data Change
event associated with the current time and with the DB



14

extension to be changed (step 2). Then it creates a new
DB Extension associated with the event, with the current
schema of D and with the provided data file (step 3).
Finally, for each extension of a view defined over D, it
associates the extension with the event and it creates a
new view extension also associated with the event; the
newly created extension has the same intension as the
old one and a new content computed as described above
(step 4). Technically:

1. let:

(a) Sch be the current DB schema of D, retrieved
via association 2

(b) DExt be the current extension of Sch,
retrieved via association 15

(c) VExt1, VExt2, . . . , VExtn be the current
extensions of the views defined over D,
retrieved via association 8, 10 and 22

2. an instance ev of the Data Change event is created
and associated with:

(a) the current time via association ET

(b) DExt via association 17

3. An instance Dext of DB Extension is created and
associated with

(a) ev via association 18

(b) Sch via association 15

(c) the input data file with the new extension via
association 16

4. for each view extension VExtk in VExt1, VExt2,
. . . , VExtn

(a) VExtk is associated with ev via association 20

(b) an instance VEk of View Extension is created
associated with

i. ev via association 21

ii. the same view Intension as VExtk via
association 22

iii. the actual view extension content via
association 19. Such content is computed
by evaluating the query of the Intension
of VExtk against the new extension of
database D, resulting from the data
change.

A.1.6 Correctness of the algorithms

We have claimed at the beginning of the Section that
the algorithms introduced thus far are a solution to the
Data Integration Problem. In this Section we provide a
proof of the claim, by showing the following Proposition.

Proposition 1 Given a consistent instance S0 of the
ontology BDI and a stream of events E1, E2, . . . , En,
. . . each of one of the five kinds introduced thus far, the
above operations produce a sequence S1, S2, . . . , Sn,
. . . of instances of the ontology BDI such that:

1. each instance is consistent;

2. each instance Si is the minimal instance of
BDI that reflects the event Ei.

Proof. By induction. We first establish the base case by
proving that S1 resulting from the processing of event E1

on S0, satisfies both properties 1 and 2 for each of the
five kinds of the events that E0 may belong to. We then
assume that the Proposition holds for the k-th event Ek

and prove it for Ek+1 for each of the five kinds of the
events that Ek+1 may belong to.

A.2 Information extraction: Versioning

As already said, temporal relationships between
extensions of database views are important in the
scientific context. A temporal relationship denotes an
ordering in time of events or states. Examples of
temporal relationships include: antecedent-forerunner
relationship; synchronicity relationship; asynchrony
relationship; sequential relationship; etc. Again, other
temporal relationships can exist that are domain-
specific. Spatial relationships can also be of interest
when integrating research data. Examples of spatial
relationships include topological relationships; distance
relationships; directional relationships; etc.

As a consequence of the extensional approach
followed in event modeling, the BDI ontology allows
keeping track of one set of temporal relationships,
namely the versioning of the extensions and the
intensions of view and databases. Overall, these are
four associations, and they can all be derived from the
associations of the BDI ontology introduced so far. To
illustrate how, we now give an algorithm to derive the
most complex of these four associations, the versioning
of view extensions. The algorithms for deriving the other
three associations are, mutatis mutandis, simplified
versions of the algorithm presented below.

We further assume that S is consistent, that is it
satisfies all the constraints given in BDI .

The algorithm takes as input S and the identifier
V of a view in S. In return, the algorithm gives the
chronologically ordered sequence V1 V2, . . . , Vk of the
extensions of V in S.

In order to obtain this result, the algorithm needs
to consider the temporal ordering of the events that
generate the extensions. There are two kinds of events
that may produce extensions of a view V: view intension
changes over V and data change events over the database
D on which V is defined. In fact, every view intension
change determines a new intension of V, which in time
may have any number of extensions each produced by
a change in the data of the extension of the database



A Data Model-Independent Approach to Big Research Data Integration 15

D. The algorithm needs to retrieve these events from S,
merge them, and sort the result chronologically based
on the timestamp of each event, retrieved via the ET
association. Once the ordered sequence of events is
computed, it suffices to replace each event by the input
and the output view extension to obtain the desired
result.

It can be proved that this algorithm is sound and
complete on any consistent instance S of the ontology
BDI . It can also be quickly verified that the algorithm
runs in a number of steps that is polynomial in the size
of S.

The algorithm can be substantially simplified and
improved from the performance point of view by
associating each data entity in BDI whose versioning
is desired, with the timestamp at which the entity is
created. This can be done by propagating the timestamp
from the events that create or modify each data entity
to the data entity itself. With this information available,
it suffices to retrieve all the entities of the desired kind
or with the desired property and sort them based on the
associated timestamp.

Conceptually, the modification can be introduced
in the ontology by adding a new class Entity which
generalizes all time-dependent classes, and by making
this class the domain of the ET association (see
Figure 8).

Database

DB Schema

DB View

View 
Intension

DB 
Extension

View 
Extension

Entity

Time

ET

Event

Figure 8 Class Taxonomy of a Refined Ontology

Any instance of a sub-class of Entity inherits the ET
property and can therefore have an associated timestamp
giving its creation time. Computing the ordered sequence
of the extensions of a view V in any instance of this
ontology can then be done as follows:

1. obtain the intensions I1, I2, . . . , In of V by walking
backward association 10 from V

2. obtain the extensions of any such intension Ik by
walking association 22 forward from Ik

3. sort these extensions based on the value of the ET
association, i.e., extension E precedes extension E′

if the timestamp of E precedes that of E′.

The correctness of this algorithm is established by the
following Proposition:

Proposition 2 Proposition. Given a consistent
instance S0 of the ontology BDI and an instance V of
class View Extension, the above algorithm returns the
sequence of all and only versions of V, in chronological
order of creation.
Proof. Soundness: we prove that the sequence contains
versions of V in the correct chronological order.
Completeness: we prove that any version of V shows up
in the sequence.


	Introduction
	Characteristics of the Scientific Domain
	Big Research Data Integration: A New Paradigm

	Concepts underlying a generic Scientific Data Integration Scenario
	The BDI Ontology
	Database and view modeling
	Event modeling
	Semantic Linking
	Other constraints

	The Research Data Integration Problem
	Implementation Considerations

	Concluding Remarks
	A solution to the Data Integration Problem
	Creating and evolving an instance of the BDI ontology
	Database Creation
	View Creation
	DB Schema Change
	View Intension Change
	Data Change
	Correctness of the algorithms

	Information extraction: Versioning


