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Abstract. The paper presents a vision about a new paradigm of data
integration in the context of the scientific world, where data integration
is instrumental in exploratory studies carried out by research teams. It
briefly overviews the technological challenges to be faced in order to suc-
cessfully carry out the traditional approach to data integration. Then,
three important application scenarios are described in terms of their
main characteristics that heavily influence the data integration process.
The first application scenario is characterized by the need of large en-
terprises to combine information from a variety of heterogeneous data
sets developed autonomously, managed and maintained independently
from the others in the enterprises. The second application scenario is
characterized by the need of many organizations to combine informa-
tion from a large number of data sets dynamically created, distributed
worldwide and available on the Web. The third application scenario is
characterized by the need of scientists and researchers to connect each
others research data as new insight is revealed by connections between
diverse research data sets. The paper highlights the fact that the char-
acteristics of the second and third application scenarios make unfeasible
the traditional approach to data integration, i.e., the design of a global
schema and mappings between the local schemata and the global schema.
The focus of the paper is on the data integration problem in the context
of the third application scenario. A new paradigm of data integration is
proposed based on the emerging new empiricist scientific method, i.e.,
data driven research and the new data seeking paradigm, i.e., data ex-
ploration. Finally, a generic scientific application scenario is presented
for the purpose of better illustrating the new data integration paradigm,
and a concise list of actions that must be performed in order to suc-
cessfully carry out the new paradigm of big research data integration is
described.
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1 Introduction

Data Integration has the goal of enriching and completing the information avail-
able to the users by adding complementary information residing at diverse infor-
mation sources [24,12]. It aims at providing a more comprehensive information



basis in order to better satisfy user information needs. This is achieved by com-
bining data residing at diverse data sets and creating a unified view of these
datasets. This view provides a single access point to these distributed, heteroge-
neous and autonomous data sets. Therefore, it frees the user from the necessity
of interacting separately with each of these data sets. We distinguish two types
of data integration [3]. The first type of data integration, structural data inte-
gration, refers to the ability to accommodate in a common data representation
model distributed data sets represented in different data representation models
and formats. In essence, in this type of integration the goal is to augment the di-
mensionality of an entity/object represented in different distributed data sets by
collecting together all the attributes/features associated with this entity/object.
The second type of data integration, semantic data integration [8], refers to the
ability to combine distributed data sets on the basis of existing semantic re-
lationships between them. In essence, in this type of integration the goal is to
augment the relationality of an entity /object represented in a data set by linking
it to entities/objects semantically closely related to it and represented in other
distributed data sets.

The type of data integration very much depends on the characteristics of the
data to be integrated. In the scientific domain, data can be referred to as raw
or derivative. Raw data consist of original observations, such as those collected
by satellite and beamed back to earth or generated by an instrument or sensor
or collected by conducting an experiment. Derivative data are generated by
processing activities. The raw data are frequently subject to subsequent stages
of curation and analysis, depending on the research objectives. While the raw
data may be the most complete form, derivative data may be more readily usable
by others as processing usually makes data more usable, thus increasing their
intelligibility. Structural data integration is, mainly, performed between data
sets containing raw data, while semantic data integration is more appropriate
for data sets containing derivative data; in this case, the semantic relationship
between data sets is, usually, a correlation between them.

We have identified three main application scenarios where data integration
is of paramount importance [1]. These three application scenarios well illustrate
the evolution of the data integration concept both from the application and
technological point of view. The first application scenario is characterized by the
need of large enterprises to combine information from a variety of heterogeneous
data sets developed autonomously, managed and maintained independently from
the others in the enterprises. The second application scenario is characterized
by the need of many organizations to combine information from a large number
of data sets dynamically created, distributed worldwide and available on the
Web. The third application scenario is characterized by the need of scientists
and researchers to connect each other’s research data as new insight is revealed
by connections between diverse research data sets. In essence, we can say that
data integration, in the first application scenario, is instrumental in effectively
and efficiently managing large enterprises and in supporting the enterprise’ plan-
ning activities. In the second application scenario, data integration is, mainly,



instrumental in activities like data mining, forecasting, statistical analysis, de-
cision making, implementing strategy, etc., conducted by organizations whose
business is based on the analysis and comparison of data stored in a large num-
ber of data collections distributed worldwide. In the third application scenario,
data integration is, mainly, instrumental in exploratory studies carried out by
research teams. For each one of the above three application scenarios, different
technological challenges must be faced in order to develop integration systems
that efficiently and effectively carry out the data integration process.

The paper is organized as follows: in Section 2, it overviews the technologi-
cal challenges to be faced in order to successfully carry out the traditional data
integration process. These challenges have been extensively discussed in the lit-
erature. In Section 3, the features of the three application scenarios that heavily
influence the data integration process are described. In Section 4 a new paradigm
of big research data integration is described. This is the main contribution of
the paper. In 4 Subsections the enabling technologies are identified and briefly
described. In Section 5 a generic scientific application scenario is presented for
the purpose of better illustrating the new data integration paradigm. Finally, in
Section 6, a concise list of actions that must be performed in order to successfully
carry out the new paradigm of big research data integration is described.

2 Data Integration Technological Challenges

The traditional approach to data integration is a three-step process: data trans-
formation, duplicate detection, and data fusion [19]. Data transformation is con-
cerned with the transformation of the local data representations (local schemata)
into a common representation, the global schema or mediated schema, which
hides the structural aspects of the different local data collections. Two basic
approaches have been proposed for this purpose [17]. The first approach, called
Global-as-View (GAV), requires the global schema be expressed in terms of the
local data schemata. In essence, this approach regards the local data schemata
and generates a global schema that is complete and correct with respect to
the local data schemata, and is also minimal and understandable. The second
approach, called Local-as-View (LAV), requires the global schema be specified
independently from the local data schemata, and the relationships between the
global schema and the local data schemata are established by defining every local
data schema as a view over the global schema.

The global schema can be materialized or virtual. In the first case, it is mate-
rialized in a persistent store, for example, in a data warehouse that consolidates
data from multiple data sets. Extract-Transform-Load (ETL) tools [22] are used
to extract, to transform, and load data from several data sets into a data ware-
house. In the second case, the global schema is not materialized; it is virtual,
that is, it just gives the illusion that the data sets have been integrated. The
users pose queries against this virtual global schema; a mediator, i.e., a software
module, translates these queries into queries against the single data sets and
integrates the result of them. The second step, i.e., duplicate detection, is con-



cerned with the identification of multiple, possibly, inconsistent representations
of the same real-world entities. The third step, i.e., data fusion [19], is concerned
with the fusion of the duplicate representations into a single representation and
the resolution of the inconsistencies in the data.

Several technological challenges must be faced in order to efficiently and
effectively carry out the data integration process. The first challenge to be faced
regards the structural heterogeneity of the different data sets to be integrated.
Integrating different data models and formats, i.e., structural data integration,
requires the resolution of several types of conflicts. At the schema level, different
data schemas may use (i) different data representations; (ii) different scales and
measurement units; and (iii) different modelling choices, for example, an entity
in one schema is represented as an attribute in another schema. At the data level,
some contradictions may occur when different values exist for an attribute of the
same entity. In addition, uncertainty may occur when a value of an attribute is
missing in one data collection and is present in another data collection.

The second and more demanding challenge to be faced regards the semantic
heterogeneity of the different data schemas to be integrated, i.e., semantic data
integration. In general, the schemas of the different data sets do not provide ex-
plicit and precise semantics of the data to be integrated. The lack of precise data
semantics can cause semantic ambiguities. For example, it may occur that two
relations in two different data sets (assuming that both collections are modeled
according to the relational data model) have the same name but heterogeneous
semantics. This can induce in making erroneous design choices when the me-
diated schema is designed. In addition, the meanings of names and values may
change over time. To mitigate the problem of semantic heterogeneity data must
be endowed with appropriate metadata.

The third challenge to be faced regards the implementation of a mediating
environment that provides a core set of intermediary services between the global
schema and the local schemata. Such core set of services should include services
that [23]:

— quickly and accurately find data that support specific user needs;

— map data structures, properties, and relationships from one data represen-
tation

— scheme to another one, equivalent from the semantic point of view;

— verify whether two strings/patterns match or whether semantically hetero-
geneous data match;

— optimize access strategies to provide small response time or low cost;

— resolve domain terminology and ontology differences; and

— prune data ranked low in quality or relevance.

In essence, the intermediary services must translate languages, data struc-
tures, logical representations, and concepts between global and local schemata.
The effectiveness, efficiency, and computational complexity of the intermediary
functions very much depend on the characteristics of the information models
(expressiveness, semantic completeness, adequate modelling of data descriptive



information (metadata), reasoning mechanisms, etc.) and languages adopted by
the user. Ideally, they must provide a framework for semantics and reasoning. An
important component of the mediating environment is ontologies [10]. Several
domain-specific ontologies are being developed (gene ontology, sequence ontol-
ogy, cell type ontology, biomedical ontology, CIDOC, etc.). Ontologies have been
extensively used to support all the intermediary functions because they provide
an explicit and machine-understandable conceptualization of a domain.

3 The Main Characteristics of the Three Application
Scenarios

The first application scenario is characterized by:

— a relatively small number of data sets to be integrated;
— relatively static local schemas;

— fixed local schemas; and

— local schemas known in advance.

In such scenario, the design of the global schema as well as the mappings
between the local schemas and the global schema are relatively easy tasks. Sev-
eral data integration systems have been implemented which operate efficiently
in this scenario [24,5].

The second application scenario is characterized by:

— large number of data sets to be integrated;

data sets containing huge volumes of data;

data sets of widely differing data qualities;
extremely heterogeneous local schemas;
dynamically created local schemas (not fixed); and
local schemas not known in advance.

In such an application environment, performing the data integration process is
a very difficult task [9]. In fact:

— the large number of data sets to be integrated makes the alignment of their
schemas very difficult;

— the extreme heterogeneity of data representation models adopted by the data
sets to be integrated makes the design of a global schema very difficult;

— the dynamicity of the local schemas requires that the global schema under-
goes continuous changes/extensions;

— the dynamicity of the local schemas makes difficult understanding the evo-
lution of semantics and infeasible the capture of data changes timely;

— the widely differing qualities of the data to be integrated makes the alignment
of the local schemas really hard; and

— the large volumes of the data to be integrated makes their warehousing very
expensive.



In order to overcome the difficult problem of designing and maintaining a global
schema in such a complex and dynamic context, it has been proposed to adopt
an ontology-based approach to data management [7]. In this approach, the global
schema is replaced by the conceptual model of the application domain. Such a
model is formulated as an ontology expressed in a logic-based language. With this
approach the integrated view is a semantically rich description of the relevant
concepts in the domain of interest, as well as the relationships between such
concepts. The users of an ontology-based data management system are enabled
to query the data using the elements in the ontology as predicates. The ontology-
based approach permits to overcome nicely the need for continuously reshaping of
the global schema as an ontology can be easily extended. In fact, this approach
supports an incremental process in representing the application domain. The
domain ontology can be enriched with new concepts and relationships between
them as new data sources or new elements in these sources are added. In essence,
this approach supports the evolution of the ontology and the mappings between
the ontology concepts and the data contained in the data sources supporting,
thus, a “pay-as-you-go” data integration.

A conceptual difference between the above two data integration application
scenarios regards the global perspective to be taken into account when design-
ing global schemata. In the first application scenario, the designer of the global
schema, by adopting the LAV approach, is enabled to take into due consideration
a global perspective concerning the enterprise’s activities. In the second appli-
cation scenario, such an opportunity (i.e., the LAV approach) is not possible as
the design of a global schema is practically unfeasible.

The third application scenario is situated within the scientific world. Indeed,
we focused on the characteristics that are specific to data produced by research
activities in the context of a new scientific framework characterized by; (i) the
production of big data; and (ii) a science increasingly data intensive, multidis-
ciplinary and e-science. In this world, some disciplines, for example, astronomy
and high-energy physics, rely on a limited number of data repositories contain-
ing huge amounts of data. In that situation, researchers know where to find
data of interest for their research activities. The problem is that the amount of
data contained in these repositories outgrows the capabilities of query process-
ing technology. In the case of overwhelming amounts of data, a new paradigm of
query processing has been proposed: “data exploration” [14]. This new paradigm
enables us to re-formulate the data integration problem as, mainly, a data inter-
connection problem. Exploration-based systems, instead of considering a huge
data set in one go, incrementally and adaptively guide users towards the path
that their queries and the result lead. These systems do not offer a correct and
complete answer but rather a hint of how the data looks like and how to proceed
further, i.e., what the next query should be. Data exploration, therefore, is a
new approach in discovering connections and correlations between data in the
big data era. Some other disciplines rely on large number of voluminous data sets
with varying representation models, formats and semantics produced by many
Labs and research groups distributed worldwide. Often, data of the same phe-



nomenon come from many data sets. In such an application environment, discov-
ering connections and correlations between data from autonomous distributed
data sets is driving the need for data integration [6]. Integrating multiple data
sets will enable science to advance more rapidly and in areas heretofore outside
the realm of possibility. The third application scenario we consider addresses
exactly the need for data integration of these scientific disciplines. Such an ap-
plication scenario shares all the main characteristics of the second application
scenario; in addition, it has some peculiar characteristics:

— the local schemata continuously evolve as new insights are gained in a sci-
entific domain; for example, certain concepts can be invalidated in the light
of new discoveries.

— data heterogeneity that is also created by the fact that researchers can con-
ceptualize the same scientific problem in different ways due to the fact that,
for example, belong to different “schools of thought”.

— data heterogeneity that is intrinsic to some scientific disciplines. In fact, as
reported in [16]: “in the environment of high-energy physics experiments
(say, a particle detector), detector parts will be necessarily conceptualized
differently depending on the kind of information system in which they are
represented. For instance, in a CAD system that is used for designing the
particle detector, parts will be spatial structures; in a construction manage-
ment system, they will have to be represented as tree-like structures modeling
compositions of parts and their sub-parts, and in simulation and experimen-
tal data taking, parts have to be aggregated by associated sensors (readout
channels), with respect to which an experiment becomes a topological struc-
ture largely distinct from the one of the design drawing. We believe that such
differences also lead to different views on the knowledge level, and certainly
lead to different database schemata”.

— data uncertainty is reported in different ways by different research commu-
nities.

— different data formats are adopted by different research communities.

— silos in modeling data sets; and

— different concepts of what to include in the metadata.

Therefore, the traditional approach to data integration based on the design of a
global schema is unfeasible, also, in the third application scenario. In the next
section we will outline a new paradigm of research data integration that is well
suited to the way researchers are seeking scientific information.

4 Big Research Data Integration: A New Paradigm

TIn Section 3 we have sketched some characteristics of the Research Application
Scenario that heavily influence the data integration process. In this Section,
we extend the description of this Scenario with some other characteristics that
are equally relevant for the data integration process. These characteristics are
instrumental in the re-formulation of the data integration problem. The Big
Research Data era is characterized by:



huge volumes of data available in many fields of science;

— an increasingly production of new data types that augments the complexity
of data sets;

a worldwide distribution of data sets;

— data sets with high dynamism, uncertainty, exhaustivity, and relationality.

All these characteristics of big data have contributed to the emergence of new
paradigms of seeking data and creating knowledge. We have, already, described
in the previous Section the new paradigm of data seeking, that is, the data explo-
ration. A new empiricist epistemological method [15] for creating new knowledge
is also emerging. In the traditional scientific method, i.e., hypothesis driven re-
search, the data are analyzed with a specific question in mind, that is, a hypothe-
sis. In essence, this scientific method adopts a deductive reasoning for discovering
new insights from the data. In the new empiricist method, i.e., data driven re-
search, the data are analysed with no specific question in mind. In essence, huge
volumes of data together with powerful analytic tools enable data to speak for
themselves. Mining big data can reveal relationships and correlations that re-
searchers did not even know to look for. In this method an inductive or abductive
reasoning is adopted for discovering new insights from the data. These two new
paradigms, i.e., data exploration and data driven research, heavily influence the
data integration process too. The exploratory approach to data seeking suggests
the possibility for researchers to start browsing in one data set and then nav-
igating along links into related data sets, or to support data search engines to
crawl the data space by following links between data sets The empiricist method
entails the integration logic that must guide the creation of these links. In fact,
in the hypothesis driven method a link between two data sets is established only
when a semantic relationship between variables within these data sets, dictated
by the hypothesis, holds. In the empiricist method a link between two data
sets is established only when a correlation between variables within these data
sets, is found. In essence, in the traditional approach the integration logic allows
researchers to test a theory by analysing relevant data linked together on the
basis of a deductive reasoning. In the empiricist approach, the integration logic
enables researchers to

discover new insights by analyzing data linked together on the basis of a in-
ductive/abductive reasoning. Different kinds of logic (conventional logic, modal
logic, causal logic, temporal logic, etc.) can be explored. An additional consider-
ation that has an impact on the relationality /connectivity of a data set regards
the properties of the data set relationships. They can be direct or indirect. A
direct relationship between variables of two data sets can be recognized if these
variables represent closely related concepts on the basis of the adopted logic
reasoning. An indirect relationship between variables of two data sets can be
established if they are directly related to a third mediating data set. Indirect re-
lationships are based on direct relationships that enjoy the transitivity property,
for example, the “causality” relationship is transitive. The indirect relationships
increase the relationality /connectivity of the data sets and can enhance the data
integration process and consequently the knowledge creation process.



The above two new paradigms make feasible the realization of significant
advances in many scientific disciplines in the big data era as such advances can
be driven by patterns in a data space. In fact, insights are arising from connec-
tions and correlations found between diverse types of data sets acquired from
various modalities. Discovering semantic relationships between data sets enables
new knowledge creation. The role of a data integration system is to make ex-
plicit hidden semantic relationships between data sets. Several types of seman-
tic relationships can exist between object descriptions represented in database
views. Examples of semantic relationships include: the inclusion relationship that
is the standard subtype/supertype relationship; is-a and part-of relationships;
member-collection relationship (association relationship); feature-event relation-
ship; phase-activity relationship; place-area relationship; component-object re-
lationship; antonyms/synonyms relationships, etc. Other types of semantic re-
lationships can exist that are domain-specific. Making explicit hidden semantic
relationships implies the creation of links between data sets. This process entails
the creation of linked data spaces. Such linked data spaces can be implemented
by exploiting linking technologies that allow to connect/link semantically related
data sets. For example, data sets produced worldwide and related to the same
phenomenon could be linked together creating, thus, linked data spaces in the
form of thematic graphs. Researchers, interested in discovering correlations and
semantic relationships between data sets contained in linked data spaces, should
go through these thematic graphs. In essence, now the researchers have to explore
a linked research data space by navigating through it. Based on all the above
considerations the data integration paradigm problem can be re-formulated as
follows:

Given a number of distributed heterogeneous and time varying data sets, link
them on the basis of existing semantic and temporal relationships among them.

5 Enabling technologies

IIn this section we briefly describe the main technologies that enable the im-
plementation of the new paradigm of big research data integration as reformu-
lated above. These technologies (Linked Open Data, Semantic Web technolo-
gies, vocabularies etc.) are tools which may be adequate to the realization of the
paradigm or in some case may need to be extended the paradigm.

5.1 Data Abstraction/ Database View

As, already, said research databases contain huge amounts of data. Usually,
researchers are interested only in some parts of a database. These parts of a
database (called sub datasets) are known as database views. A database view
can be defined as a function [4] that, when applied to an instance (database) of a
given database schema, produces a database in some other schema. In addition,
the input and output schemata of this function could be represented in differ-
ent data models. We think that each large database should be endowed with a



number of (possibly overlapping) views. Therefore, linking database views, dis-
tributed worldwide, on the basis of semantic relationships existing between them
will be instrumental in knowledge creation.

5.2 Data Citation

Citation systems [21] are of paramount importance for the discovery of knowl-
edge in science as well as for the reproducibility of research outcomes. Indeed,
being able to cite a research data set enables potential users to discover, access,
understand and reproduce it. A citation is a collection of “snippets” of informa-
tion (such as authorship, title, ownership, and date) that are specified by the
administrator of the data set and that may be prescribed by some standards.
In essence, a “snippet” of information constitutes the metadata that must be
associated with each cited data set. A data citation capability should guarantee
the uniquely identification of a data set. The unique identification is achieved by
using persistent identifiers (PID) such as the Life Science Identifiers (LSID), the
Digital Object Identifier (DOI), the Uniform Resource Name(URN), etc. A data
citation capability should also guarantee that a data citation remains consistent
over time, i.e., it has to show way to the original cited data set. Guaranteeing
the persistence of a data citation is demanding when the data set to be cited
evolves over time [20].

5.3 Semantic Web Technologies

Linked Open Data. The term Linked Open Data refers to a set of best prac-
tices for publishing structured data on the Web [13]. In particular, Linked Data
provides (i) a unifying data model. Linked Data relies on Resource Description
Framework RDF as a single, unifying model; (ii) a standardized data access
mechanism. Linked Data commits itself to a specific pattern of using the HTTP
protocol; (iii) hyperlink-based data discovery. By using URIs as global identifiers
for entities, Linked Data allow hyperlinks to be set between entities in different
data sources; and (iv) self-descriptive data. A grassroots effort, the Linked Open
Data, is aiming to publish and interlink open license data sets from different
data sources as Linked Data on the Web.

Resource Description Framework. Resource Description Framework (RDF)
[18] is a language for representing information about resources that can be iden-
tified on the Web. It represents information as node-and-arc-labeled directed
graphs. The data model is designed for the integrated representation of informa-
tion that originates from multiple sources, is heterogeneously structured, and is
represented using different schemata. RDF aims at being employed as a lingua
franca, capable of moderating between other data models that are used on the
Web. In RDF, a description of a resource is represented as a number of triples.
The three parts of each triple are called its subject, predicate, and object.



Time in RDF. As most of the data in the Web are time varying, there is a need
for representing temporal information in RDF. This will enable users to navigate
in RDF graphs across time. Therefore, it will support queries that ask for past
states of the data represented by the RDF graphs. Two main mechanisms for
adding temporal information in RDF graphs have been proposed in the literature
[11]. The first mechanism consists in time-stamping the RDF triples that are
destined to change, i.e., adding a temporal element t that labels an RDF triple.
The second mechanism consists in creating a new version of the RDF graph each
time an RDF triple is changed.

Named RDF Graphs. The Named Graphs data model has been introduced
in order to allow a more efficient representation of metadata information about
RDF data and a globally unique identification of RDF data. It is a simple vari-
ation of the RDF data model. The main idea of the model is the introduction
of a naming mechanism that allows RDF triples to talk about RDF graphs. A
named graph is an entity that consists of an RDF graph and a name in the form
of an URI reference.

6 A Generic Scientific Application Scenario

In this section a generic scientific application scenario is described and the data
integration problem is refined. In this hypothetical application environment,
there are n databases distributed worldwide containing heterogeneous data rep-
resented in different formats and managed by different data management sys-
tems. These data are produced by different research teams, each following its
own practices and protocols:

DB1 DB2, .., DBn

Let’s, also, suppose that several database views are defined on top of each
database.

We further suppose that, by using special SW, a virtual layer consisting of
RDF graphs is produced on top of these views. For example, we can produce an
RDF view of a relational database schema [2]. A database view has an intention
and an extension. The intention describes the semantics of the view, i.e., a data
query embodying the schema of the database that is created when the query is
applied to a database. The extension is the data subset defined by the schema
of the view, that is, the data subset selected by the query each time the query
is applied. For each view, there can be any number of extensions, each pro-
duced by applying the query at a different time. Each extension has the schema
defined by the intension of the view. Views should be endowed with an identi-
fier and domain-specific metadata. We suppose that the extensional definition
of the database views varies over time while the intentional definition remains
unchanged. Suppose that on top of each database a number of views Views (i)
are defined. The notation Viewl1(ti) indicates that the view named Viewl was



created at time ti. Therefore, the views
Viewl(ti), Viewl(ti+x), Viewl(ti+x+1), ..., View1(ti+x-+n)

have all the same schema. The dynamic nature of the extensions of database
views requires mechanisms that allow the tracing of all changes that occurred
during the data subset life cycle. Such mechanisms should allow, when a database
operation (insert/update/delete) modifies a database subset at a given time,
the time stamping of this operation and the creation of a new version of the
affected extension. In essence, these mechanisms should allow the creation of
findable versions of a data subset. In order to implement such mechanisms,
all these time marked database operations should be kept in a persistent store
in order to maintain their history with the original data subset values and an
appropriate approach to data versioning should be adopted. Several approaches
have been proposed in literature for the implementation of these mechanisms.
In summary, upon issuing a database operation, at time ti, that modifies a
database subset the following actions should be carried out: (i) the database
operation is time stamped with ti; (ii) this operation is inserted and maintained
in a persistent store; (iii) a new version of the affected data subset is created,
i.e., a new extension of each view defined on the updated data set; (iv) each
newly generated extension is also time-stamped with ti. Therefore, a view is
associated with different data operations that have affected its extensions. Both
view and operations are endowed with time stamps that indicate the time of
the execution of the data operation, i.e., the time of the modification of the
view extension. The natural ordering of the time stamps associated with the
operations that affect the extension of a view induces a natural ordering of the
extensions produced by these operations, so that an extension can be seen as a
version of the extension that precedes it in that ordering. Therefore, the time
stamped views constitute a directed acyclic graph (DAG) whose nodes are the
views at different points of time [View1(ti), View1(ti+x),.....,View1(ti+x+n)] and
the links represent temporal relationships between these nodes. A DAG has a
topological ordering, a sequence of the nodes such that every arc is directed from
earlier to later in the sequence. In essence, a DAG represents the evolution of
a data subset over time. Finding a particular extension of a database view, i.e.,
the version of its extension at time ti implies (i) to identify the view through its
ID; (ii) to cross the acyclic graph of this view until reaching the view View1(ti);
and (iii) to execute the database operation associated with the View1(ti). The
data integration problem can be slightly refined with respect to the formulation
given in Section 4 as follows:

Given a number of distributed heterogeneous and time varying database views,
represented by directed acyclic graphs, link them on the basis of existing semantic
and temporal relationships among them.

To implement this new paradigm of data integration, we propose to proceed
according to the following two steps: The first step consists in creating on top
of each database view schema a level of virtual description. This virtualization



describes the intentional part of a data subset (its schema) in terms of the
RDF data model. Therefore, all database view schemata are represented in the
RDF model while their extensions, i.e., the data subsets defined by them remain
expressed in the data models supported by the local data management systems.
This level of virtualization permits the uniform representation of the different
schemata of the database views. Therefore, it allows researchers to query the
database views and access their extensions (data subsets) by using a unique query
language like SPARQL. This frees the researchers from the need to know the
different query languages supported by the local database management systems
in order to query the single database views.

The second step consists in inserting the virtualized database views together
with their IDs and metadata in domain-specific registries.

The third step consists in linking the several virtualized database view schemata,
described in these registries, on the basis of existing semantic and temporal re-
lationships between them. The linking operation is guided by the adopted inte-
gration logic and produces a linked database view space where thematic graphs
can be designed. These graphs constitute patterns of data that transform data
in knowledge.

Finally, researchers by using appropriate query languages, as for example
SPARQL, can explore the linked space by following appropriate links.

7 Conclusions

This paper presents a vision and outlines a direction to be followed in order to
solve the data integration problem in the new emerging scientific data context.
We identified the challenges that must be faced in order to successfully implement
the new big research data integration paradigm that can be formulated as follows:
“Given a number of distributed heterogeneous and time varying data sets, link
them on the basis of existing semantic and temporal relationships among them.”
The main challenges we identified are:

— making the schema of a database view citable;

— endowing the schema of a database view with an identifier, a time stamp
and appropriate metadata;

— creating mechanisms that support the versioning of the data subsets defined
by the schemata of database views;

— developing mappings that allow an RDF application to access data subsets
of non-RDF database views without having the need of transforming the
data subsets into RDF triples;

— introducing temporal information into RDF graphs in order to be able to
query this type of information;

— adopting an appropriate integration logic that has to guide a search en-
gine in the identification of semantic and/or temporal relationships between
distributed worldwide database view schemata and creating f links among
them;



— developing or using existing domain-specific vocabularies/ontologies to sup-
port the process of semantically and temporarily linkage of database views;

— developing or using existing Catalogues/Registries where database view schemata
are published;

— developing of query languages or extension of existing ones that allow to
traverse linked RDF graphs.
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