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(57) ABSTRACT

Embodiments may provide a cache for query results that can
adapt the cache-space utilization to the popularity of the
various topics represented in the query stream. For example,
a method for query processing may perform receiving a
plurality of queries for data, determining at least one topic
associated with each query, and requesting data responsive
to each query from a data cache comprising a plurality of
partitions, including at least a static cache partition, a
dynamic cache partition, and a temporal cache partition, the
temporal cache partition may store data based on a topic
associated with the data, and may be further partitioned into
a plurality of topic portions, each portion may store data
relating to an associated topic, wherein the associated topic
may be selected from among determined topics of queries
received by the computer system, and the data cache may
retrieve data for the queries from the computer system.
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Fig. 2
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Fig. 3

Algorithm 1: The STD cache management process.
Input : A querygq and its topic t
Output: Hit or miss and updated STD cache
301 if ¢ in S then
302 “ return hit
303 if rin {71,..., 7%} then
304 | ifgin T .7 then
305 . update T .7 and return hit
else
306 . update T .7 and return miss
307 if ¢ in D then
308 - update D and return hit
else
300 . update D and return miss
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Fig. 5

Algorithm 2: The LDA generative process.
501 for each document d do

502 Draw 8¢ ~ Dir(a)

503 for each word position n do
504 Draw a topic zd, n ~ Multinomial(6¢ )

505 Draw a word wd, n ~ Multinomial(8 zd, n)
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Fig. 6
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CACHE OPTIMIZATION VIA TOPICS IN
WEB SEARCH ENGINES

BACKGROUND

The present invention relates to techniques for providing
a cache for query results that may adapt the cache-space
utilization to the popularity of the various topics represented
in the query stream.

Caching of search results is often employed in informa-
tion retrieval systems and Web search engines to expedite
query processing and reduce back-end server workload.
Caching is a fundamental architectural optimization strat-
egy, and query-result caching is important for Web search
efficiency. Result caching, as its name implies, stores the
results of some selected user queries in a fast-access
memory (cache) for future reuse. When a query is requested,
the cached results are directly returned to the user without
reprocessing the request. Result caching improves the main
efficiency-performance metrics of search engines, namely,
latency and throughput. Indeed, serving a query with pre-
viously cached results decreases the latency perceived by the
user as well as avoids the usage of computational resources
with a consequent improvement of the search engine
throughput.

Another advantage of caching query results is the reduc-
tion of energy consumption as cached queries do not need to
be reprocessed by the back-end servers. Although other
energy-efficiency optimization schemes exist, these
approaches are complementary to result caching and not a
contradictory alternative. Given desired and imposed
“Green Policy” restrictions and the significant economic
benefits due to the energy conservation, the interest of the
search industry in energy saving is high. Energy wise, the
cost of a cached query is typically assumed to be close to
nothing, while a search of a query costs proportionally to its
processing time in combination with the electricity price at
the time of processing.

The main challenge in result caching is the identification
of those queries whose results should be cached. However,
via query log mining, high temporal locality may be
observed in the query stream, enabling effective search-
engine side caching of popular query results, such as, results
of queries frequently requested in the past by different users.
The result cache can be static or dynamic. A static cache is
periodically populated in an offline manner, with the results
of past, most-popular queries. Query popularity is estimated
observing previously submitted queries in Web or other
related search logs; a simplifying, but not always correct,
core assumption is that queries popular in the past remain
popular in the future. A dynamic cache, as the name sug-
gests, is dynamically updated; when the cache is full and a
new element is to be stored, an eviction/replacement policy
is applied to decide which cache element must be removed
to make space for the new one. The most common replace-
ment policy for dynamic caches is the Least Recently Used
(LRU) strategy: every time a query is submitted, the cache
is updated, keeping track of what query was used and when;
if necessary, the cache entry used least recently is evicted to
vacate space for the new entry. The LRU strategy is effective
without global knowledge and captures the “bursty” behav-
ior of the queries by keeping recent queries in the cache and
replacing those queries that are not requested for a long
period of time.

Static and dynamic caches can be combined together. For
example, in a Static-Dynamic Cache (SDC), the cache space
is divided into two portions. The static portion stores results

10

15

20

25

30

35

40

45

55

60

2

of the most popular queries. The dynamic portion maintains
currency by applying LRU or other replacement strategies,
for example, but not limited to, First In First Out (FIFO).
This hybrid approach has proved successtul in improving
the performance of result caching with respect to both static
and dynamic caching solutions in isolation. Despite its good
performance, SDC suffers from some issues. Static caching
captures highly frequent queries, while dynamic caching
captures bursts of recently submitted queries. That is, static
caching captures past queries that are popular over a rela-
tively large time span (such as days or weeks) while
dynamic caching might fail to capture such long-term tem-
poral locality, but does capture short-term popularity. How-
ever, a query might not be sufficiently globally popular to be
cached in the static cache and not be requested so frequently
within a burst mode to be kept in the dynamic cache, but it
might become relatively popular over a specific time inter-
val, say a few hours in the early morning or several weekday
evening hours. For example, a query on a specific topic, such
as weather forecast, is typically submitted in the early
morning hours or at the end of a work day, but relatively
seldom in the remaining hours of a day.

Accordingly, a need arises for techniques that provide
caching of queries that are not sufficiently globally popular
to be cached in a static cache and are not requested fre-
quently enough within a short time interval, namely are not
sufficiently “bursty”, to be kept in a dynamic cache.

SUMMARY

Embodiments of the present systems and methods may
provide techniques that provide caching of queries that are
not sufficiently globally popular to be cached in a static
cache and are not requested frequently enough within a short
time interval to be kept in a dynamic cache. Embodiments
of the present systems and methods may provide a cache for
query results that can adapt the cache-space utilization to the
popularity of the various topics represented in the query
stream. Queries may be grouped based on broad topics (such
as the queries “forecast” and “storm” belong to the topic
weather, while queries “faculty” and “graduate” to the topic
education), and queries belonging to different topics might
have different temporal-locality patterns. The topic popular-
ity may be represented by the number of distinct queries
belonging to the topic; to capture the specific locality
patterns of each topic, the cache entries may be split among
the different topics proportionally to their popularity. This
may provide queries belonging to frequently requested top-
ics greater retention probability in the dynamic cache.

For example, in an embodiment, a method for query
processing may be implemented in a computer system
comprising a processor, a memory adapted to store program
instructions and data, and program instructions executable
by the processor to perform: receiving a plurality of queries
for data, determining at least one topic associated with each
query, and requesting data responsive to each query from a
data cache comprising a plurality of partitions, wherein there
are at least a static cache partition, a dynamic cache parti-
tion, and a temporal cache partition, wherein the temporal
cache partition is adapted to store data based on a topic
associated with the data, wherein the temporal cache parti-
tion is further partitioned into a plurality of topic portions,
each portion adapted to store data relating to an associated
topic, wherein the associated topic is selected from among
determined topics of queries received by the computer
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system, and wherein the data cache is adapted to retrieve
data responsive to at least some queries from the computer
system.

In embodiments, each topic portion may be further par-
titioned into a static portion adapted to store data entries
indefinitely and into a dynamic portion adapted to store data
entries until each least recently used data entry is replaced by
a newer data entry. More so, the topic portion may further be
partitioned, recursively as disclosed, with further refine-
ments of the given topic into corresponding sub-topics. The
at least one topic associated with each query may be
determined using a Latent Dirichlet Allocation. The tempo-
ral cache partition may be adapted to be trained using a
plurality of training queries associated with a plurality of
topics.

In an embodiment, a system for query processing may
comprise a computer system comprising a processor, a
memory adapted to store program instructions and data, and
program instructions executable by the processor to receive
a plurality of queries for data, to determine at least one topic
associated with each query, and to request data responsive to
each query from a data cache, the data cache may comprise
a plurality of partitions, wherein there are at least a static
cache partition, a dynamic cache partition, and a temporal
cache partition, wherein the temporal cache partition is
adapted to store data based on a topic associated with the
data, wherein the temporal cache partition is further parti-
tioned into a plurality of topic portions, each portion adapted
to store data relating to an associated topic, wherein the
associated topic is selected from among determined topics of
queries received by the computer system, and wherein the
data cache is adapted to retrieve data responsive to at least
some queries from the computer system.

In an embodiment, a computer program product for query
processing, the computer program product may comprise a
non-transitory computer readable storage having program
instructions embodied therewith, the program instructions
executable by a computer, to cause the computer to perform
a method comprising: receiving a plurality of queries for
data, determining at least one topic associated with each
query, and requesting data responsive to each query from a
data cache comprising a plurality of partitions, wherein there
are at least a static cache partition, a dynamic cache parti-
tion, and a temporal cache partition, wherein the temporal
cache partition is adapted to store data based on a topic
associated with the data, wherein the temporal cache parti-
tion is further partitioned into a plurality of topic portions,
each portion adapted to store data relating to an associated
topic, wherein the associated topic is selected from among
determined topics of queries received by the computer
system, and wherein the data cache is adapted to retrieve
data responsive to at least some queries from the computer
system.

BRIEF DESCRIPTION OF THE DRAWINGS

The details of the present invention, both as to its structure
and operation, can best be understood by referring to the
accompanying drawings, in which like reference numbers
and designations refer to like elements.

FIG. 1 illustrates an exemplary environment in which
embodiments of the present systems and methods may be
implemented.

FIG. 2 is an exemplary diagram of a Static-Temporal-
Dynamic (STD) Cache, according to embodiments of the
present systems and methods.
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FIG. 3 illustrates an exemplary process of operation of a
Static-Temporal-Dynamic (STD) Cache, according to
embodiments of the present systems and methods.

FIG. 4 is an exemplary diagram of different configurations
of an STD cache, according to embodiments of the present
systems and methods.

FIG. 5 illustrates an exemplary process of Latent Dirichlet
Allocation (LDA) generation, according to embodiments of
the present systems and methods.

FIG. 6 illustrates exemplary results distribution of topic
popularities for query logs, according to embodiments of the
present systems and methods.

FIG. 7 illustrates exemplary per-topic average miss dis-
tances for query logs, according to embodiments of the
present systems and methods.

FIG. 8 illustrates exemplary hit rates of SDC and STDg-
pc” for different values of N and of f,, for the query logs,
according to embodiments of the present systems and meth-
ods.

FIG. 9 is an exemplary block diagram of a computer
system, in which processes involved in the embodiments
described herein may be implemented.

DETAILED DESCRIPTION

Embodiments of the present systems and methods may
provide techniques that provide caching of queries that are
not sufficiently globally popular to be cached in a static
cache and are not requested frequently enough within a short
timeframe to be kept in a dynamic cache. Embodiments of
the present systems and methods may provide a cache for
query results that can adapt the cache-space utilization to the
popularity of the various topics represented in the query
stream. Queries may be grouped based on broad topics (such
as the queries “forecast” and “storm” belong to the topic
weather, while queries “faculty” and “graduate” to the topic
education), and queries belonging to different topics might
have different temporal-locality patterns. The topic popular-
ity may be represented by the number of distinct queries
belonging to the topic; to capture the specific locality
patterns of each topic, the cache entries may be split among
the different topics proportionally to their popularity. This
may provide queries belonging to frequently requested top-
ics greater retention probability in the dynamic cache.

As an illustrative example, consider a cache with size 2
and the query stream AB C AD E A F G, where query A,
for example, is about a specific topic. A classical LRU
replacement strategy will get a 0% hit rate (all queries will
cause a miss). Instead, using 1 entry for the temporal cache
and 1 entry for the dynamic LRU based cache will provide
a 22.2% hit rate (the first occurrence of A causes a miss, the
other two occurrences will cause two hits in the temporal
cache).

The temporal cache may be combined with a static cache
in different configurations. For example, the SDC approach
may be improved by adding yet an additional cache space
partition that stores results of queries based on their topics.
Embodiments may be called Static-Temporal containing
temporal cache-Dynamic cache (STD). To detect the query
topics and incorporate them in the caching strategy, embodi-
ments may rely on the standard topic modeling approach
called Latent Dirichlet Allocation (LDA). It is within the
scope of this invention to rely on any other known in the art
topic modeling approaches including but not limited to
probabilistic latent semantic analysis (PLSA) or hierarchical
latent tree analysis (HLTA). LDA gets as input a document
collection and returns lists of keywords representing the
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topics discussed in the collection. Each document in our
setting consists of the query keywords and the textual
content of their clicked results. Given the topics, the queries
can be classified into topical categories, and we estimate the
topic popularity observing the number of distinct queries
belonging to that topic.

Embodiments of the present systems and methods may
cluster queries to capture their different temporal localities.
For example, queries may be clustered by topic, such as
weather, sport, entertainment, etc. Further, in embodiments,
queries may be clustered by factors such as geographic/
demographic/behavioral/nature/etc. The human brain can
easily infer the topic from a natural-language text, such as
sport, politics, etc., while for a computer, topic detection is
challenging. For example, known unsupervised approaches
can be used for discovering topics from large text corpora
using a distribution hypothesis: words that occur in similar
context have similar meaning. Given a set of topics and a
query, a topic classifier may be used to find the topic.

Embodiments may provide a STD Cache, which may
include a Static-Dynamic Cache plus an extra layer for
capturing the temporal localities of queries belonging to the
same topic.

Example: queries about weather (e.g., weather forecast,
storm) have temporal patterns different from other queries
and are captured in a particular portion of the temporal
cache.

Methodology

Embodiments of the present systems and methods may
provide a query-result caching strategy based on user search
topics. In embodiments, the caching architecture may
include different implementation configurations and also
may utilize a query topic extraction approach. In embodi-
ments, the cache may store the Search Engine Results Pages
(SERPs) of the queries. For simplicity, in this disclosure, the
terms query results or just results may be used to refer to the
content of a cache entry.

An exemplary environment 100 in which embodiments of
the present systems and methods may be implemented is
shown in FIG. 1. In this example, environment 100 may
include a user operating one or more user computer systems
102, one or more caching servers 104, and one or more web
search servers 106. User computer systems 102 may include
one or more computer systems that may be operated by users
to generate and submit queries for information, as well as to
receive and display query results. User computer systems
may include any type of device including computing func-
tionality, such as personal computers, laptops, smartphones,
tablet computers, etc. Caching server 104 may include one
or more server computer systems that provide caching
functionality. Typically, caching server 104 may be imple-
mented as a network of computer systems, but may include
any number of computer systems, including only one, com-
puter system. Web search server 106 may include one or
more server computer systems that provide web search
functionality. Typically, web search server 106 may be
implemented as a network of computer systems, but may
include any number of computer systems, including only
one, computer system.

A user at user computer system 102 may generate a query
108 for information and transmit 110 query 108 to caching
server 104. Caching server 104 may send 112 query 108 to
topic classifier 114 for determination of a topic or topics 116
associated with query 108. Topic classifier 114 may access
or send 118 query 108 and topic(s) 116 to cache 120. Cache
120 may include a plurality of partitions, including static
cache 122, temporal cache 124, and dynamic cache 126,
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further described below. If information related to query 108,
as associated with topic 116, is found in cache 120, then that
information, as search results 128 for query 108, may be
returned 130 to caching server 104 and further returned 132
to user computer system 102. If information related to query
108, as associated with topic 116, is not found in cache 120,
then query 108 and topic(s) 116 may be sent 134 to web
search server 106, which may return 136 search results 128
for query 108, to cache 120, which may store some or all of
search results in the temporal cache 124 or dynamic cache
126, and may return 130 search results 128 to caching server
104 and further return 132 search results 128 to user
computer system 102.

As shown in FIG. 1, cache 120 may include a plurality of
partitions, including static cache 122, temporal cache 124,
and dynamic cache 126 to implement topic-based caching.
Given the total number N of cache entries available for
storing the results of past queries, embodiments may provide
a Static-Temporal-Dynamic (STD) cache which may
include the following components:

A static cache 122 S of size ISI=f'N entries is used for
caching the results of the most frequently requested queries.
The static cache S is updated periodically with the fresh
results of the top frequent IS| queries submitted in the
previous time frame (e.g., the previous week or month). This
static cache 122 may serve very popular queries such as
navigational ones.

A temporal cache 124 T of size ITI=f,N entries, which
may be in turn be partitioned into k topic-based sections T t,
with te{T,, T,, . . ., T,}, where k is the number of distinct
topics. Each section T-t may be considered as an indepen-
dent cache, managed with some caching policy, and aimed
at capturing the specific temporal locality of the queries
belonging to a given topic, such as queries more frequent in
specific time intervals or with periodic “burstiness”, such as
queries on weather forecasting, typically issued in the morn-
ing, or queries on sport events, typically issued during the
weekend.

A dynamic cache 126 D of size IDI=fN. The dynamic
cache D may be managed using some replacement policy,
such as LRU. It is expected to store the results of “bursty”
queries, such as queries requested frequently for a short
period of time, which are not captured by either S or T as
they are not sufficiently popular or are unassigned to any of
the k topics.

Queries may not be assigned to a topic for two reasons: (i)
the query was never seen before, hence topic classifier 114
fails to detect its topics, or (ii) even though it was already
submitted in the past, no topic was assigned to it due to a
very low classification confidence, as further described
below.

The parameters f,, f, and f, denote the fractions of entries
N devoted to the static, temporal, and dynamic caches,
respectively, so that f +f+f,~1. Note that, if {=0, the STD
cache becomes the classical SDC cache. The number of
entries in each section T+t of the temporal cache 124 may be
fixed, such as IT-tI=ITI/k, for every te{T,, T, . .., T;}, or
may be chosen on the basis of the popularity of the associ-
ated topic (observed in a past query stream). In the latter
case, the topic popularity may be modeled as the number of
distinct queries in the topic since estimating this number
allows assignment to the topic a number of entries propor-
tional to its requested queries. This may provide a more
efficient utilization of the cache space since queries belong-
ing to a popular topic have greater chances to be retained in
the cache as their topic receives more entries as compared to
other queries belonging to unpopular topics.
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An exemplary process of STD cache operation 150 is
shown in FIG. 1. Process 150 begins with 152, in which, in
response to receiving a query, STD cache 120 may deter-
mine whether the query results are present in the static cache
122, that is, whether there is a hit in static cache 122. If so,
STD cache 120 may return the cached page or pages from
static cache 122 in response to the query. At 154, STD cache
120 may determine whether there is a hit in temporal cache
124. If so, STD cache 120 may update temporal cache 124
to indicate the query and hit, and may return the cached page
or pages from temporal cache 124 in response to the query.
At 156, STD cache 120 may determine whether there is a hit
in dynamic cache 126. If so, STD cache 120 may update
dynamic cache 126 to indicate the query and hit, and may
return the cached page or pages from dynamic cache 126 in
response to the query. It is within the scope of this invention
that the order by which the static, temporal, and dynamic
caches are examined for content may be modified. That is,
it is possible for the dynamic cache to be examined 156 prior
to examining the temporal cache 154. Without limitation,
such reordering might be advantageous should the majority
of the queries fail to be classified in terms of topic. More so,
it is also within the scope of this invention that the ordering
of cache examination processing in its entirety 152, 154, and
156 can be as illustrated or reordered into any combination
thereof. At 158, if there is a miss in all caches, STD cache
120 may send a request for one or more pages of results to
one or more web search servers 106, receive and store the
results from web search servers 106, and return the received
page or pages in response to the query.

An exemplary diagram of a Static-Topic-Dynamic (STD)
Cache 120 is shown in FIG. 2. As shown, STD cache 120
may include a static cache portion 122, a temporal cache
portion 124, and a dynamic cache portion 126. The temporal
cache 124 may be divided into k portions T,-T, (one for
each topic). In embodiments, the size of each portion may
depend on the popularity of the topic in a particular temporal
window. In this example, temporal cache 124 may be
configured in an SDC configuration. For example, a portion
of the entries for each topic may be static, while the
remaining portion of the entries for each topic may be
dynamic and managed, for example, using LRU. In the
example shown in FIG. 2, topic T, may include a plurality
of static entries 202 and a plurality of dynamic entries 204,
but all entries may be related to topic T,. The temporal cache
124 may be similarly configured for each other topic T,-T,.
In embodiments, each topic portion T,-T, may be further
partitioned with further refinements of the given topic into
corresponding sub-topics. The partitioning may be recur-
sive, as the sub-topics, sub-sub-topics, etc., may further be
partitioned with further more specific refinements of the
given topic.

An example of operation of STD cache 120 is shown in
FIG. 2. In this example, a query stream may include a
training stream including queries AB CD CE B C, and a test
stream including queries B B C A C D. Given the training
stream, a topic may be assigned to each query. Query
keywords may be enriched with the content of the clicked
page, and LDA may be performed to extract topics. An
exemplary Query Topic Assignment 220 is shown as follows
A-T,, B-T,, and E-T,. An exemplary cache 222 has a size
of 5 entries, assigned with one entry for static cache, three
entries for temporal cache, and one entry for dynamic cache.
In this example, as the most frequent query in the training
stream is C, it goes in the static cache. In this example, the
number of topics is 2 and the topic popularity is T;: 2 (A,

10

15

20

25

30

35

40

45

50

55

60

65

8
E)—2 entries, T,: 1 (B)—1 entry. Queries without a topic or
static cache assignment, such as D, go in the dynamic cache.

An exemplary process 300 of management of an STD
cache is shown in FIG. 3. When a query q with its topic
we{T,, T,, ..., T,} arrives, at 301, the cache manager may
first check whether query q is in the static cache S. If so, at
302, the process may return a hit. Otherwise, at 303, if the
query has a topic handled by the cache, then at 304, the
cache manager may check the topic-specific section of the
temporal cache T-t, and at 305, may update the temporal
cache with its specific replacement policy if necessary, and
return a hit, or at 306, return a miss if the query was not
cached in the temporal cache. If the query was not assigned
to any topic, the dynamic cache D may be responsible for
managing the query and at 307, the dynamic cache D may
be checked, and at 308 may update the topic dynamic with
its specific replacement policy if necessary, and return a hit,
or at 309 return a miss if the query was not cached in the
dynamic cache. As previously noted, other embodiments of
this invention may reorganize the order by which the static,
temporal, and dynamic caches are examined. The example
shown in FIG. 3 does not detail the retrieval of the query
results from the cache or the processing of the inverted index
of the search engine in case of hit or miss, respectively,
although embodiments of the present systems and methods
may perform such functions.

The cache misses may incur different costs since some
queries are more expensive to process than others (in term
of time and resources). The performance analysis of some
embodiments may be simplified to focus on the hit rate,
considering all the misses with the same cost. In embodi-
ments that focus on determining which element must be
evicted from the dynamic cache or admitted to the static
cache, the cost of the misses may be taken into account.
Such embodiments, which may include these strategies,
based on how costly is the computation of query results, may
be used with embodiments of the caching architecture to
improve their performance.

STD Cache Configurations. Embodiments may include a
cache model that may be implemented in different ways,
depending on several parameters such as the values of f, f,,
and f,, the number of entries assigned to each topic in the
temporal cache 124, the replacement policy adopted, and so
on. Examples of some of these implementations are shown
in FIG. 4.

Among the examples of embodiments of cache imple-
mentations shown in FIG. 4 are STD with temporal cache
managed by LRU with fixed size (STD,z,/) 402. Cache
embodiment 402 may include the static, topic, and dynamic
caches discussed above. The temporal cache entries may be
divided equally among the different topics without taking
into account the topic popularity, and each temporal cache
section may be managed according to the LRU replacement
policy. STD with temporal cache managed by LRU with
variable size (STD; ;") 404 is similar to cache embodiment
402 with the difference that each topic has a number of
entries proportional to its popularity. The topic popularity
may be quantified as the number of distinct queries that
belong to the topic in the training set of the query log. STD
with temporal cache managed by SDC with variable entry
size (STDg,~") 406 is similar to cache embodiment 404, but
now the temporal cache may be managed by SDC instead of
LRU. Each topic may get a given number of entries pro-
portional to its topic popularity, and all temporal cache
sections may be split in a static and dynamic cache. The
fraction of entries allocated to the static portion of these
caches may be a constant fraction of the temporal cache
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entries and denoted with {;°. The remaining entries allocated
for the topic are managed by LRU. Also shown is a
topic-only cache managed by SDC with variable entry size
(Tspce”) 408. This is an alternative version of the previous
implementation since the queries with no topic are managed
as queries belonging to an additional topic k+1. This means
that instead of having a predefined size for static and
dynamic caches, the number of entries would depend on the
number of queries without a topic. Note that these are
merely exemplary configurations of an STD cache.

Modeling Queries as Topics. Query topic categorization
of user queries is well addressed within Web companies to
increase effectiveness, efficiency, and revenue potential in
general-purpose Web search engines. To distill the topics of
the queries in the query logs, Latent Dirichlet Allocation
(LDA) topic modeling may be used. LDA is an unsupervised
approach not requiring any prior knowledge of the domain
for discovering the latent topics.

Latent Dirichlet Allocation (LDA). An exemplary process
500 of LDA generation is shown in FIG. 5. Given a
collection of documents and the number k of topics, LDA
generation process 500 may return k lists of keywords, each
representing a latent topic. At 501, for each document d, at
502, let 6, be the per-document topic distribution, which is
assumed to be drawn from a Dirichlet distribution with
hyper-parameter o Dir(a). The documents may be a mixture
of topics, and the multinomial random variable z,;, of a topic
to appear in position n of document d is conditioned on 0.
At 503, each word appearing in document d, at position n,
may, at 505, be selected according to another multinomial
distribution with hyper-parameter [, conditioned on the
chosen topic. In this way, each word has a probability that
depends on its likelihood to appear in the document relevant
to the topic. In summary, LDA may be seen as a generative
process where documents are generated sequentially as
shown in process 500, shown in FIG. 5.

By inverting the generative process, it is possible to infer
the topics from the words appearing in the documents. So,
given a document d, the posterior distribution of the hidden
variables z; and 0, may be computed as follows:

pOa, 24 wa | @, B)

0, =
pOa, za | wa, @ B) FCAENG)

where the vector w, represents the words observed in d,
while the vector z, represents the positions of words in d.
Both vectors have the same size, equal to the length of d.
Statistical inference techniques, such as Gibbs sampling,
may be employed to learn the underlying topic distribution
0, of each document.

Finding Latent Topics from Query-Document Pairs.
Given a training query log, a query topic classifier may be
learned based on LDA. Since queries are short and lack
context, it is difficult to train the model accurately. To
circumvent this problem, the queries may be enriched with
the content of their clicked pages whose URLs are available
in the training query log. Thus a collection of query-
document samples made of queries plus the text of their
clicked results gathered from the Web may be created. In
case, for a given query, the user did not click any results, or
the clicked URL was not available any longer, the corre-
sponding query from the set may be removed. In this way,
a set of query-documents pairs may be obtained. Given a
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query-document pair, this content may be used as a proxy of
the query, and LDA may be trained to learn the topic of the
associated query.

The trained LDA classifier may return a distribution of
topics for each query-document pair. Since it is assumed that
a query can be assigned to only one topic, for the pair, the
topic with the highest probability may be chosen. In the
experiments, different query logs may be used with respect
to the training one, and it may be assumed the LDA classifier
is able to classify only queries already seen in the training
query log, since for new queries it will lack the content of
clicked pages.

Query Topic Assignment. Once the topics of the proxy
query-documents are known, a single topic may be assigned
to each query. Since the same query may appear in different
query-document pairs, possibly assigned to different topics,
which one of these topics to associate with the query may be
determined. To this end, a simple voting scheme that assigns
to each query the topic of the query-document that got more
clicks by the users can be adopted. In doing so, the strong
signal coming from clicks about the relevance of'a document
and its topic to the information need expressed by the query
may be leveraged. Also, it allows estimation of the most
popular topic that can be assigned to ambiguous queries,
such as queries with more than one meaning that have more
possible topics.

Estimating Topic Popularity. In some of the implementa-
tions of the temporal cache, an amount of cache entries
proportional to the topic popularity may be assigned to each
topic. Similarly to the static cache, where past popular
queries are assumed popular in the future, it may be assumed
that popular topics observed in the past remain popular in the
future; so they get more entries in the temporal cache T.

This topic popularity may be quantified as the number g,
of distinct queries that belong to the topic T. Note that this
statistic may be computed over the training period. More in
detail, let ITI be the size of the temporal cache, q be the
number of distinct queries in the training set, each topic

we{T,, T,, ..., T,} will get a number of entries IT-tl equal
to
7
7= | g
q

For example, with a temporal cache with size |TI17=5 and
9 distinct queries observed in the training: 6 for the topic
weather and 3 for education, there may be | T-weather|=3 and
IT-education|=2.

Dataset Description.

Query logs. For the experiments described below, two
publicly available for research purposes query logs were
used. One such query log includes about 29.8M queries
(9.3M distinct queries). About 19M queries have at least one
clicked URL, with 1.3M distinct URLs. The second query
log consists of about 14.9M queries (6.2M distinct queries).
About 8.8M queries have at least one clicked URL, with
3.4M distinct URLs.

Both query logs were partitioned into two portions, one
for training purposes, for example, cache initialization, and
one for testing the performance of the cache. The query logs
were sorted by time and split into two fractions: X for the
training set and 100-X for the test set with X=30%, 50%,
and 70%. Only the results for the 70%-30% split are
presented, but similar results were observed for the other
training-test splits. In this case, the training (resp. test) set
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contains 6.7M (resp. 3.2M) unique queries for the first query
log and 4.5M (resp. 2.1M) unique queries for the second
query log.

Document Collections. Given the URLs from both query
logs, the associated pages were collected from the Web, and
1M documents for the first query log and 2.1M documents
for the second query log were gathered. Then, the text was
extracted and pre-processed, for example, for stop-word
removal, lemmatization, and stemming. Overly short and
long documents (less than 5 and more than 100K words)
were removed. Lastly, the documents were enriched with the
corresponding query keywords.

LDA Topics. The LDA model was learned using S00K
documents from the first query log and 350K documents
from the second query log. The very frequent and rare words
were removed from the dictionary, and the number k of
topics to discover to 500 was set, estimated empirically. The
approach was probabilistic; hence the topic detection can
change with different collections and different number of
topics. Other configurations were tried, such as changing the
subsets of documents in the training set and using different
values of k, such as 50, 100, and 500. The impact on the
caching performance was observed to be negligible. Some
of the topic keywords, extracted from the first query log
dataset, are shown in Table 1.

TABLE 1

Topic Topic Keywords

Shopping shop, order, item, ship, gift, custom, sale, return, account,
cart

University student, program, faculti, campu, graduat, research, academ,
alumni, colleg, univers

Weather weather, forecast, snow, storm, rain, wind, winter, radar,
flood, cold

Movies movi, comic, news, star, theater, review, marvel, film, seri,
comedi

Cooking recip, cook, bean, chicken, chef, salad, cake, flavor, potato,
rice

Travelling travel, trip, destin, flight, vacat, book, deal, airlin, hotel,

search

The distribution of topics extracted from both datasets is
shown in FIG. 6. It is worth noting that the topic portion of
STD cache exploits the subset of queries in the test set
stream having a known topic. These queries are necessarily
among those already encountered in the training set stream
and successfully classified. The test queries that were not
assigned to a topic compete instead for the use of the static
and dynamic portions of the STD cache. The percentage of
queries in the test set with a topic is 70% for the first query
log and 58% for the second query log.

EXPERIMENTS. Experiments were run using the first
and second query logs described above. For the caching
simulations, the scenario of storing the query results in the
cache, for example, the first SERP, was considered. The
stream of queries was taken as input. If the query was found
in the cache, there was a cache hit; otherwise, there was a
cache miss, and in case the cache was full, the eviction
policy was applied. For the experiments, the cache size N
was set to different values: 64K, 128K, 256K, 512K, and
1024K. The data in the training set were used for three
purposes: (1) learning the frequency of the queries and
loading popular queries in the static cache(s), (2) training the
LDA topic classifier from the queries (and clicked docu-
ments) and estimating their popularity for balancing the
entries of the temporal cache(s), and (3) warming up the
LRU cache(s). The cache performance was assessed in terms
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of hit rate, namely the number of cache hits in the test set
divided by the number of queries in the test set.

For the experiments, the following caches were consid-
ered:

SDC: as baseline the traditional static and dynamic cache
was used, where the dynamic portion is managed by LRU.

STD, ,,/: the STD cache where the temporal cache is
managed by LRU and all topics receive the same amount of
entries.

STD; z;: the STD cache where the temporal cache is
managed by LRU and the topics receive an amount of entries
that is proportional to the topic popularity, as explained
above.

STDgp": the STD cache where the temporal cache is
managed by SDC and whose size depends on the popularity
of the topic. Compared to the previous two configurations,
this cache has another parameter f,° representing the static
fraction of the SDC used inside the temporal cache. In the
tests, two different implementations of this configuration
were included. In the first implementation, the static cache
S stores only the frequent queries with no topic (C1) as the
popular queries assigned to a topic would be stored in the
static portion of the corresponding temporal cache. In the
second implementation (C2), the S stores all the top queries
(with or without the topic). For popular queries with topic,
the algorithm checks if they are already in S. If not, it stores
them in the f;° fraction of entries of the corresponding SDC
used in temporal cache.

Tope": The cache entries are divided proportionally to the
topic popularity and the no-topic queries that belong to an
additional topic T==T,, .

For the baseline SDC cache and the proposed STD cache
configurations, the static parameter f, varies from 0.0 to 1.0
with step of 0.1, while the other parameters (f, and f,) are
tuned based on the remaining size of the whole cache, for
example, N (1-f,). Regarding STDg,, ", the fraction of static
of the SDC caches used in the topic portion, £, is the same
for all the topics. Experiments with variable f;° estimates per
topic were also performed, but the overall experimental
results were similar to those achieved with a fixed {,°, and are
not reported here. The following research questions were
investigated:

RQI1. For a given cache size, is the proposed STD cache
able to improve the hit rate performance metric with respect
to SDC and, if so, adopting which configuration and optimal
parameter values?

RQ2. Given the best STD competitor identified in RQ1,
what is the impact of the other configuration parameters? In
particular, given a static fraction f,, what is the impact of the
temporal and dynamic caches of STD with respect to the
dynamic cache of SDC?

RQ3. How large are the hit rate improvements of the best
STD configuration with respect to SDC, measured in term of
the distance with the hit rate of a theoretical optimal caching
strategy?

To address RQ1, a cache with a given number of entries
was assumed, for example, N is defined by the system
administrator, and the aim was to discover the best cache
configuration and parameters in terms of hit rate. Table 2
reports the best hit rates obtained with SDC (our baseline)
and the other topic-caching strategies for different cache
sizes.
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TABLE 2

Cache Query log 1 Query log 2
Size Strategy Hit Rate f, f, f; f7 Hit Rate f, f, f; £
64K SDC 53.20% 0.8 — — —  45.08% 0.9 — — —
STD; ze/ 55.51% 0.8 0.16 0.04 — 4693% 08 0.13 0.07 —
STDzzre” 56.16% 0.8 0.13 0.07 — 4753% 09 0.05 0.05 —
STDgp"(C1) 55.10% 0.1 0.72 0.18 90% 4640% 0.1 0.72 0.18 90%
STDspc"(C2) 56.21% 0.8 0.16 0.04 30% 47.54% 0.8 0.13 0.07 60%
Tspc” 53.16% — —  —  80% 43.04% — —  —  80%
128K SDC 55.84% 0.9 — — —  47.93 % 09 — —
STD; pef 5840% 0.8 0.16 0.04 — 50.05% 09 0.07 003 —
STDzre” 58.78% 0.9 0.07 0.03 — 5039% 09 0.05 0.05 —
STDspc"(C1) 57.98% 0.1 0.72 0.18 90% 49.48% 0.1 0.72 0.18 90%
STDspc"(C2) 58.81% 0.8 0.16 0.04 40% 50.41% 0.8 0.16 0.04 70%
Tsepe” 56.25% — — —  90% 4649% — — —  90%
256K SDC 58.21% 0.9 — — —  5032% 0.9 — — —
STD; ze/ 60.88% 0.8 0.16 0.04 — 5267% 0.8 0.16 004 —
STDzzre” 61.16% 0.8 0.13 007 — 5280% 0.9 0.07 003 —
STDgp"(C1) 60.64% 0.1 0.72 0.18 90% 52.23% 0.1 0.72 0.18 90%
STDspc"(C2) 61.20% 0.8 0.16 0.04 10% 52.90% 0.8 0.16 0.04 80%
Tspc” 59.14% — —  —  90% 49.82% — —  —  90%
512K SDC 60.57% 0.7 — — —  5253% 09 — — —
STD; pef 63.10% 0.8 0.16 0.04 — 5491% 0.9 0.08 002 —
STDzre” 6348% 0.7 020 0.10 — 5503% 0.9 0.08 002 —
STDspc"(Cl) 63.24% 0.1 0.72 0.18 80% 54.96% 0.2 0.64 0.16 90%
STDspc"(C2) 63.55% 0.7 0.24 0.06 10% 55.06% 0.7 0.24 0.06 40%
Tsepe” 6191% — —  — 0% 5278% — — — 9%
1024K  SDC 62.76% 0.7 — — —  5430% 0.9 — — —
STD; e/ 65.16% 0.8 0.13 007 — 56.70% 0.9 0.08 002 —
STDzzre” 65.67% 0.6 0.27 013 — 57.04% 0.5 040 010 —
STDspc"(Cl) 65.57% 0.1 0.72 0.18 60% 57.01% 0.2 0.64 0.16 80%
STDspc"(C2) 65.59% 0.6 0.32 0.08 10% 57.21% 0.5 040 0.10 50%
Tspc” 64.56% — —  —  70% 5550% — —  —  90%

For each caching strategy, the values of the f_f,f, and f° dynamic caches. In STD, .,/, STD, z,*, and STD,,.", the

that achieved the best hit rates are also reported. As shown,
not all parameters are used by all the cache configurations,
so for those caches where the parameter is not needed the
symbol—is used. For each cache size, the best hit rates are
highlighted in bold. The experiments showed that with both
datasets the STD caches always perform better than SDC in
terms of hit rate. In particular, the approach STDg,."
performs better than the others with the exception of the first
query log and N=1024K, where STD, .. beats it, even
though the difference between the two hit rates is minimal,
for example, less than 0.1%.

As expected, STD, ,/ performs worse than STD, ", as
it gives to each topic the same number of entries instead of
allocating the temporal cache entries proportionally to the
topic popularity. Moreover, STDg,-"(C1) cache exhibits
lower hit rates compared to STD,,."(C2) and STD;,."
caches. Analyzing the cache misses encountered with (C1),
it is seen that this reduction of performance is due to the fact
that the static cache S of (C1) hosts only the results of
no-topic queries. Some of these queries may be not very
popular; hence storing them in the static fraction causes a
lower hit rate in static with a reduction of the overall
performance. In particular, this phenomenon is more evident
when f, increases, since we are allocating more space to S
and, at some point, also infrequent no-topic queries are
selected just to fill in the space. Nevertheless, (C2) does not
suffer from this, since it stores in S the frequent queries (with
or without topic), allowing a better utilization of the static
fraction of the whole cache.

The Tgp" cache has lower performance than the other
STD configurations. In most of the cases it performs close
to SDC, and for small caches it does not improve the
baseline. Its results may allow better understanding of the
benefit of using a temporal cache together with static and
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amount of entries dedicated to the no-topic queries is limited
by the parameter f,. Hence, there is a fair division of the
cache space among the queries belonging to a topic and
those that could not be classified. On the other hand, in
Tope" the no-topic queries are treated as queries belonging
to an extra topic (T,,,), so the amount of entries is propor-
tional to the popularity of the (k+1)-th topic, penalizing the
other k topics. Since in the data most of the queries are not
classified, this leads to an unbalanced splitting of the space
between the no-topic queries and the others.

There are several reasons why the STD cache outperforms
the SDC baseline. For example, since the higher STD hit rate
is due to less misses encountered, the average distance of
misses in the test streams (average miss distance) was
analyzed. This distance is defined as the number of queries
between two misses that were caused by the same query, for
example, for the stream AB CADAF G A and a cache of
size 2, the misses caused by A have an average distance of
2. For this experiment, caches with 1024K entries and £=0.6
were considered, as it gave the best hit-rate performance for
STDg". For STD the best configuration was used, such as
STDgp" (C2), and the average miss distance of its dynamic
cache from the average miss distance of its temporal caches
was separately identified. Notice that the static cache does
not impact on the analysis since it is populated by the same
top frequent queries for both STD and SDC caches.

The results are shown in FIG. 7. The curves represent the
average miss distances for the temporal caches sorted by
decreasing values, and we use it as a proxy of temporal
locality. On the left are large distances, which means that a
miss occurred only when the repeated requests of that query
were far away from each other. Notice that the number of
topics can be lower than 500 since for some topics there are
no misses. The average miss distances for the dynamic
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caches in SDC and STD are constant as they are topic-
independent. These two average miss distances are lower
when compared to those reported for most of the temporal
caches. It confirms that an LRU dynamic cache captures the
repeated requests only if they are close to each other (small
average miss distance) On the other hand temporal caches
have large average miss distances. So, the advantage of a
temporal cache with space divided in a proportional way
among the topics is that it allows to serve even requests
distant from each other on a per-topic base, such as with
different temporal localities.

To conclude on RQ1, the experimental results confirmed
that on equal cache sizes the STD approach can improve
SDC, allowing an improvement up to ~3% of the hit rate.
The best configuration is STDg," (C2) as confirmed by
simulations on two real-world query logs. Moreover, this
performance improvement is justified by the analysis of the
average miss distances. In fact, in STD the misses occurring
in the temporal caches are caused by repeated requests that
are much more distant in the query stream as compared to
the misses that are encountered in traditional SDC. To
address RQ2, and see if the improvement of STD, " (C2)
over SDC 1is consistent, their hit rates were compared
varying the cache size and the value off {,. Since the size of
the static portion changes with f,, the remaining N-(1-f))
entries were split between the topic and dynamic caches
using different proportions. The results were obtained with
80% for the temporal cache and 20% for the dynamic cache,
while the {7 parameter was set to 40%. Consistent results
were observed for other parameter values.

FIG. 8 shows the hit rates for the two approaches, using
dashed lines for SDC and solid lines for STDg, " (C2).
Notice that we omit the hit rates for £ =0.0 and {.=1.0 as they
correspond to completely dynamic and static caches, and the
performance among the approaches is the same. Observing
the curves for N=64K, SDC hit rates (dashed lines) are
always lower than STDg,, " hit rates (solid line). The gap of
hit rates between these two caching approaches goes from
~5% for £=0.1 to ~3% for £=0.9. As expected, the maxi-
mum improvement is registered for lower values of f, since
the impact of a topic plus a dynamic cache of STD over the
only dynamic cache of SDC is more evident. A similar result
is observed also for the other cache sizes.

Regarding RQ2, the STDg,," cache always outperforms
the SDC cache, with an average gap of 3.73% for the first
query log and 3.68% for the second query log, and a
maximum gap of more than 5% on both query logs.

To answer RQ3, the best hit rates achieved with STD and
SDC were compared against the best hit rate that can be
achieved with an optimal cache policy. Bélady’s optimal
algorithm (also known as the clairvoyant algorithm) was
used, which always evicts the element that will not be
requested for the longest time. It is not feasible in practice
as it assumes to know the future requests, but it optimizes the
number of hits, and it gives us an upper bound of the
performance over which no other caching strategy can
improve. The gaps between Bélady hit rates and the ones
achieved with the best SDC and STD configurations were
computed. The results are shown in Table 3. As shown, the
hit rates of STD are very close to Bélady hit rates for all
cache sizes (the gap is reported in the 6th column of Table
3). The average gap between the hit rates of STD and Bélady
is 5.70% for the first query log and 5.22% for the second
query log (averaged over the size of the cache). On the other
hand, the distance between SDC hit rate and Bélady hit rate
is bigger (see the 5th column). The average gap between
them is 8.67% for the first query log and 7.81% for the
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second one. To quantify the gap reduction, the relative delta
between the two gaps was computed (see the 7th column).
It gives an indication on how much STD improves SDC with
respect to the Bélady hit rate. To conclude on RQ3, STD hit
rates achieve a significant gap reduction with respect to SDC
from the theoretical optimal hit rate, which is up to 35.96%
for the first query log and up to 39.06% for the second one.

TABLE 3
Cache Best Best Gap Gap Gap
Size Bélady SDC STD SDC STD  Reduction
Query log 1
64K 61.57%  53.20%  56.21% 8.37% 5.36%  35.96%
128K 64.41%  55.84% 58.81% 8.57% 5.60%  34.66%
256K 67.11% 58.21%  61.20% 8.90% 5.91%  33.60%
512K 69.35%  60.57%  63.55% 8.78%  5.80%  33.94%
1024K 71.51%  62.76%  65.67% 8.75%  5.84%  33.26%
Query log 2
64K 52.07%  45.08% 47.54% 6.99% 4.53%  35.19%
128K 55.22% 47.93% 50.41% 7.29% 4.81%  34.02%
256K 58.44%  50.32%  52.90% 8.12%  5.54%  31.77%
512K 61.75%  52.53%  55.06% 9.22%  6.69% = 27.44%
1024K 61.75%  54.30% 57.21% 7.45% 4.54%  39.06%
CONCLUSIONS

Embodiments of the present systems and methods may
provide a Static-Temporal-Dynamic (STD) cache, which
leverages the query topics for a better cache space utilization
and a consequent improvement of the hit rate. Compared to
the traditional SDC cache, embodiments of the STD cache
store queries belonging to a given topic in a dedicated
portion of the cache where for each topic the number of
entries available is proportional to the topic popularity.
Embodiments may capture queries that are frequently
requested at large intervals of time and would be evicted in
a cache only managed by the LRU policy. Extensive repro-
ducible experiments conducted with two real-world query
logs show that STD may increase the cache hit rate by more
than 3 percent over SDC. Such large improvements may
result in a hit rate gap reduction with respect to Bélady’s
optimal caching policy by up to ~39% over SDC, depending
on the query log and the total size of the cache. The greater
hit rate achieved by embodiments of the query-result cache
do not require specific investments by the search engine
companies. The query topic classification service is, in
general, already deployed for other purposes, while embodi-
ments of the caching solution may be managed entirely by
software, and may be easily implemented and deployed in
existing Web search systems.

An exemplary block diagram of a computer system 900,
in which processes involved in the embodiments described
herein may be implemented, is shown in FIG. 9. Computer
system 900 may be implemented using one or more pro-
grammed general-purpose computer systems, such as
embedded processors, systems on a chip, personal comput-
ers, work stations, server systems, and minicomputers or
mainframe computers, or in distributed, networked comput-
ing environments. Computer system 900 may include one or
more processors (CPUs) 902A-902N, input/output circuitry
904, network adapter 906, and memory 908. CPUs 902A-
902N execute program instructions to carry out the functions
of the present communications systems and methods. Typi-
cally, CPUs 902A-902N are one or more microprocessors,
such as an INTEL CORE® processor. FIG. 9 illustrates an
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embodiment in which computer system 900 is implemented
as a single multi-processor computer system, in which
multiple processors 902A-902N share system resources,
such as memory 908, input/output circuitry 904, and net-
work adapter 906. However, the present communications
systems and methods also include embodiments in which
computer system 900 is implemented as a plurality of
networked computer systems, which may be single-proces-
sor computer systems, multi-processor computer systems, or
a mix thereof.

Input/output circuitry 904 provides the capability to input
data to, or output data from, computer system 900. For
example, input/output circuitry may include input devices,
such as keyboards, mice, touchpads, trackballs, scanners,
analog to digital converters, etc., output devices, such as
video adapters, monitors, printers, etc., and input/output
devices, such as, modems, etc. Network adapter 906 inter-
faces device 900 with a network 910. Network 910 may be
any public or proprietary LAN or WAN, including, but not
limited to the Internet.

Memory 908 stores program instructions that are executed
by, and data that are used and processed by, CPUs 902A-
902B to perform the functions of computer system 900.
Memory 908 may include, for example, electronic memory
devices, such as random-access memory (RAM), read-only
memory (ROM), programmable read-only memory
(PROM), electrically erasable programmable read-only
memory (EEPROM), flash memory, etc., and electro-me-
chanical memory, such as magnetic disk drives, tape drives,
optical disk drives, etc., which may use an integrated drive
electronics (IDE) interface, or a variation or enhancement
thereof, such as enhanced IDE (FIDE) or ultra-direct
memory access (UDMA), or a small computer system
interface (SCSI) based interface, or a variation or enhance-
ment thereof, such as fast-SCSI, wide-SCSI, fast and wide-
SCSI, etc., or Serial Advanced Technology Attachment
(SATA), or a variation or enhancement thereof, or a fiber
channel-arbitrated loop (FC-AL) interface.

The contents of memory 908 may vary depending upon
the function that computer system 900 is programmed to
perform. In the example shown in FIG. 9, exemplary
memory contents are shown representing routines and data
for embodiments of the processes described above. How-
ever, one of skill in the art would recognize that these
routines, along with the memory contents related to those
routines, may not be included on one system or device, but
rather may be distributed among a plurality of systems or
devices, based on well-known engineering considerations.
The present communications systems and methods may
include any and all such arrangements.

In the example shown in FIG. 9, memory 908 may include
topic classifier routines 912, cache management routines
914, static cache 916, temporal cache 918, dynamic cache
920, and operating system 922. Topic classifier routines 912
may include software routines to determine a topic or topics
associated with query, using, for example, a Latent Dirichlet
Allocation (LDA), as described above. Cache management
routines 914 may include software routines to determine hits
or misses in the cache, as well as to add, delete, and update
entries in the cache, as described above. Static cache 916
may include memory to store the most popular results, as
described above. The temporal cache 918 may include
memory to store results based on topic, as well as popularity,
as described above. Dynamic cache 920 may include
memory to store results that may be requested frequently for
over a short period of time, as described above. Operating
system 922 may provide overall system functionality.

10

15

20

25

30

35

40

45

50

55

60

65

18

As shown in FIG. 9, the present communications systems
and methods may include implementation on a system or
systems that provide multi-processor, multi-tasking, multi-
process, and/or multi-thread computing, as well as imple-
mentation on systems that provide only single processor,
single thread computing. Multi-processor computing
involves performing computing using more than one pro-
cessor. Multi-tasking computing involves performing com-
puting using more than one operating system task. A task is
an operating system concept that refers to the combination
of a program being executed and bookkeeping information
used by the operating system. Whenever a program is
executed, the operating system creates a new task for it. The
task is like an envelope for the program in that it identifies
the program with a task number and attaches other book-
keeping information to it. Many operating systems, includ-
ing Linux, UNIX®, OS/2®, and Windows®, are capable of
running many tasks at the same time and are called multi-
tasking operating systems. Multi-tasking is the ability of an
operating system to execute more than one executable at the
same time. Each executable is running in its own address
space, meaning that the executables have no way to share
any of their memory. This has advantages, because it is
impossible for any program to damage the execution of any
of the other programs running on the system. However, the
programs have no way to exchange any information except
through the operating system (or by reading files stored on
the file system). Multi-process computing is similar to
multi-tasking computing, as the terms task and process are
often used interchangeably, although some operating sys-
tems make a distinction between the two.

The present invention may be a system, a method, and/or
a computer program product at any possible technical detail
level of integration. The computer program product may
include a computer readable storage medium (or media)
having computer readable program instructions thereon for
causing a processor to carry out aspects of the present
invention. The computer readable storage medium can be a
tangible device that can retain and store instructions for use
by an instruction execution device.

The computer readable storage medium may be, for
example, but is not limited to, an electronic storage device,
a magnetic storage device, an optical storage device, an
electromagnetic storage device, a semiconductor storage
device, or any suitable combination of the foregoing. A
non-exhaustive list of more specific examples of the com-
puter readable storage medium includes the following: a
portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), a static random access memory (SRAM), a por-
table compact disc read-only memory (CD-ROM), a digital
versatile disk (DVD), a memory stick, a floppy disk, a
mechanically encoded device such as punch-cards or raised
structures in a groove having instructions recorded thereon,
and any suitable combination of the foregoing. A computer
readable storage medium, as used herein, is not to be
construed as being transitory signals per se, such as radio
waves or other freely propagating electromagnetic waves,
electromagnetic waves propagating through a waveguide or
other transmission media (e.g., light pulses passing through
a fiber-optic cable), or electrical signals transmitted through
a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
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for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers, and/or edge servers. A network adapter card or
network interface in each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage in a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, con-
figuration data for integrated circuitry, or either source code
or object code written in any combination of one or more
programming languages, including an object oriented pro-
gramming language such as Smalltalk, C++, or the like, and
procedural programming languages, such as the “C” pro-
gramming language or similar programming languages. The
computer readable program instructions may execute
entirely on the user’s computer, partly on the user’s com-
puter, as a stand-alone software package, partly on the user’s
computer and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user’s computer through
any type of network, including a local area network (LAN)
or a wide area network (WAN), or the connection may be
made to an external computer (for example, through the
Internet using an Internet Service Provider). In some
embodiments, electronic circuitry including, for example,
programmable logic circuitry, field-programmable gate
arrays (FPGA), or programmable logic arrays (PLA) may
execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, to per-
form aspects of the present invention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general-purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
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apparatus or other device to produce a computer imple-
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified in the flow-
chart and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of instructions, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted in the blocks may occur out of the order
noted in the Figures. For example, two blocks shown in
succession may, in fact, be executed substantially concur-
rently, or the blocks may sometimes be executed in the
reverse order, depending upon the functionality involved. It
will also be noted that each block of the block diagrams
and/or flowchart illustration, and combinations of blocks in
the block diagrams and/or flowchart illustration, can be
implemented by special purpose hardware-based systems
that perform the specified functions or acts or carry out
combinations of special purpose hardware and computer
instructions.

Although specific embodiments of the present invention
have been described, it will be understood by those of skill
in the art that there are other embodiments that are equiva-
lent to the described embodiments. Accordingly, it is to be
understood that the invention is not to be limited by the
specific illustrated embodiments, but only by the scope of
the appended claims.

What is claimed is:

1. A method for query processing implemented in a
computer system comprising a processor, a memory config-
ured to store program instructions and data, and program
instructions executable by the processor to perform:

receiving a plurality of queries for data;

determining at least one topic associated with each query;

and

requesting data responsive to each query from a data

cache comprising a plurality of partitions, wherein
there are at least a static cache partition, a dynamic
cache partition, and a temporal cache partition, wherein
the temporal cache partition is configured to store data
based on a topic associated with the data, wherein the
temporal cache partition is further partitioned into a
plurality of topic portions, each portion configured to
store data relating to an associated topic, wherein the
associated topic is selected from among determined
topics of queries received by the computer system, and
wherein the data cache is configured to retrieve data
responsive to at least some queries from the computer
system.

2. The method of claim 1, wherein each topic portion is
further partitioned into a static portion configured to store
data entries indefinitely, and into a dynamic portion config-
ured to store data entries until each least recently used data
entry is replaced by a newer data entry.

3. The method of claim 2, wherein the topic portion is
further recursively partitioned with further refinements of
the topic into corresponding sub-topics.

4. The method of claim 1, wherein the at least one topic
associated with each query is determined using a Latent
Dirichlet Allocation.
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5. The method of claim 1, wherein the temporal cache
partition is configured to be trained using a plurality of
training queries associated with a plurality of topics.

6. A system for query processing comprising:

a computer system comprising a processor, a memory
configured to store program instructions and data, and
program instructions executable by the processor to
receive a plurality of queries for data, to determine at
least one topic associated with each query, and to
request data responsive to each query from a data
cache;

the data cache comprising a plurality of partitions,
wherein there are at least a static cache partition, a
dynamic cache partition, and a temporal cache parti-
tion,

wherein the temporal cache partition is configured to store
data based on a topic associated with the data,

wherein the temporal cache partition is further partitioned
into a plurality of topic portions, each portion config-
ured to store data relating to an associated topic,
wherein the associated topic is selected from among
determined topics of queries received by the computer
system, and wherein the data cache is configured to
retrieve data responsive to at least some queries from
the computer system.

7. The system of claim 6, wherein each topic portion is
further partitioned into a static portion configured to store
data entries indefinitely, and into a dynamic portion config-
ured to store data entries until each least recently used data
entry is replaced by a newer data entry.

8. The system of claim 7, wherein the topic portion is
further recursively partitioned with further refinements of
the topic into corresponding sub-topics.

9. The system of claim 6, wherein the at least one topic
associated with each query is determined using a Latent
Dirichlet Allocation.

10. The system of claim 6, wherein the temporal cache
partition is configured to be trained using a plurality of
training queries associated with a plurality of topics.

11. A computer program product for query processing, the
computer program product comprising a non-transitory
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computer readable storage having program instructions
embodied therewith, the program instructions executable by
a computer, to cause the computer to perform a method
comprising:

receiving a plurality of queries for data;

determining at least one topic associated with each query;

and

requesting data responsive to each query from a data

cache comprising a plurality of partitions, wherein
there are at least a static cache partition, a dynamic
cache partition, and a temporal cache partition, wherein
the temporal cache partition is configured to store data
based on a topic associated with the data, wherein the
temporal cache partition is further partitioned into a
plurality of topic portions, each portion configured to
store data relating to an associated topic, wherein the
associated topic is selected from among determined
topics of queries received by the computer system, and
wherein the data cache is configured to retrieve data
responsive to at least some queries from the computer
system.

12. The computer program product of claim 11, wherein
each topic portion is further partitioned into a static portion
configured to store data entries indefinitely, and into a
dynamic portion configured to store data entries until each
least recently used data entry is replaced by a newer data
entry.

13. The computer program product of claim 12, wherein
the topic portion is further recursively partitioned with
further refinements of the topic into corresponding sub-
topics.

14. The computer program product of claim 11, wherein
the at least one topic associated with each query is deter-
mined using a Latent Dirichlet Allocation.

15. The computer program product of claim 11, wherein
the temporal cache partition is configured to be trained using
a plurality of training queries associated with a plurality of
topics.



