
Deep Learning Techniques for Visual Food
Recognition on a Mobile App

Michele De Bonis1, Giuseppe Amato, Fabrizio Falchi, Claudio Gennaro, and
Paolo Manghi

Institute of Information Science and Technologies of the National Research Council of
Italy (ISTI-CNR) http://www.isti.cnr.it

{michele.debonis,giuseppe.amato,fabrizio.falchi,claudio.gennaro,paolo.manghi}@isti.cnr.it

Abstract. The paper provides an efficient solution to implement a mo-
bile application for food recognition using Convolutional Neural Net-
works (CNNs). Different CNNs architectures have been trained and tested
on two datasets available in literature and the best one in terms of accu-
racy has been chosen. Since our CNN runs on a mobile phone, efficiency
measurements have also taken into account both in terms of memory
and computational requirements. The mobile application has been imple-
mented relying on RenderScript and the weights of every layer have been
serialized in different files stored in the mobile phone memory. Extensive
experiments have been carried out to choose the optimal configuration
and tuning parameters.

Keywords: Convolutional Neural Network, Android App, Food Recognition

1 Introduction

The research in this paper exploits the use of Convolutional Neural Networks
(CNN) for food recognition. A CNN is a type of artificial neural network which
is based on a large collection of neural units (artificial neurons), loosely mimick-
ing the way a biological brain solves problems with large clusters of biological
neurons connected by axons.

Since CNNs are very complex and they need powerful hardware in order to
get results in a reasonable time, they usually run on a device with high compu-
tational power in terms of CPU and GPU. The goal of our work was to design
a food recognition system to be used by a mobile application, providing good
recognition performance even when reducing the size of the neural network model
to run on the limited computational and memory resources of a smartphone.

The idea of developing algorithms for food recognition is not new. Bossard
et al. [2] present a method for food recognition based on a dataset of 101 cate-
gories of food. They used Random Forests to mine discriminant components of
each class of food. Image classification is performed relying on Support Vector
Machines (SVM). Wang et al. [12] present a method for food recognition based
on the same classes of food in [2]. Exhaustive experiments of recipe recognition



2 M. De Bonis, G. Amato, F. Falchi, C. Gennaro and P. Manghi

using visual, textual information and fusion are carried out. Visual features are
extracted using different methods, one of which is the OverFeat Convolutional
Neural Network. Chen et al. [3] propose deep architectures for simultaneous
learning of ingredient recognition and food categorization, by exploiting the mu-
tual but also fuzzy relationship between them.

Amato et al. [1] propose a system called WorldFoodMap, which captures
the stream of food photos from social media and, thanks to a CNN food image
classifier, identifies the categories of food that people are sharing.

In our work, we developed an effective CNN for food recognition following
these three directions:

– training from scratch various CNN architectures in order to select the most
promising ones in terms of offered accuracy and network model size

– fine tuning, using food images, the most promising CNN architectures after
a pre-training with the ILSVRC dataset [9]

– selecting the CNN with best accuracy/model size ratio in order to port it on
the mobile phone and still guarantee high accuracy

In addition, we also performed a threshold analysis on the score of the pre-
diction. This analysis helps to assess the confidence of the prediction made by
the food recognition system.

2 Datasets

The experiments were executed on two datasets with 101 classes of very popular
food types (i.e. 101 dishes). In literature, there are two versions of datasets with
these 101 dishes using different sets of images: ETHZ Food101 [2] and UPMC
Food101 [12] (see Figure 1).

The way in which the images are collected to populate the two datasets are
different, and this determines a difference in the number of images per class and
in the type of the images.

We used two different datasets in order to have the possibility to perform
cross-testing (e.g. train a CNN on a dataset and test on the other) to evaluate
the so-called transfer learning (i.e. the ability to recognize images of another
dataset).

The datasets present some noise images (i.e. images not representative of the
class). This is due to the protocol used to collect them. In fact, as will be shown
in next sections, images are collected by querying two different search engines
and it might happen that the result of a query leads to wrong images.

Dataset number of classes images per class source

UPMC 101 790-956 various

ETHZ 101 1000 specific

Table 1: Comparison of datasets



Deep Learning Techniques for Visual Food Recognition on a Mobile App 3

True Pizza Noised Pizza True Hamburger Noised Hamburger

Fig. 1: Example Images of ETHZ dataset (pizza) and UPMC dataset (ham-
burger).

We decided to format the images in both datasets in the same way. More-
over, we divided the datasets into three sets (training, validation and test set).
The testing set of each dataset is exactly the same used in literature. This
allows one to compare the results in terms of accuracy. UPMC dataset has a
test set composed of 22,716 images, while the ETHZ dataset has a test set of
25,250 images. Remaining images have been divided into the training and the
validation set. 25% of remaining images have been used for the validation,
while 75% of them have been used for the training. Every single image has been
formatted following the same specifications. Every image has been squashed to
256x256 pixels and encoded in PNG format in order to have no losses in the
compression. During the database creation, the mean image of the dataset is
computed. The mean image is subtracted from every input image in order to
point out the significant regions of it.

3 Comparison of various CNN architectures

As we stated before, we used an approach based on Convolutional Neural Net-
works. A CNN is composed of a possibly large number of hidden layers, each of
which performs mathematical computations on the input provided by the pre-
vious layer and produces an output that is given in input to the following layer.
A CNN differs from classical neural networks for the presence of convolutional
layers, which can better model and discern the spatial correlation of neighboring
pixels than normal fully connected layers.

For a classification problem, the output of the CNN are the classes which
the network has been trained on. The output layer is processed by a softmax
function which “squashes” a K-dimensional vector of arbitrary real values to a
K-dimensional vector of real values in the range (0, 1) that add up to 1.

One of the objectives of our proposal is to run the CNN entirely on an
Android mobile phone. To this purpose, the CNN has to be small and at the
same time accurate and fast.

We tested the following CNN architectures: the AlexNet [6], the VGG-Net
with 19 layers [10], the GoogLeNet [11], the SqueezeNet [5], the ResNet50 [4],
the Binary Weighted Network and the XNOR-Net [8].



4 M. De Bonis, G. Amato, F. Falchi, C. Gennaro and P. Manghi

As a first step, we trained these CNNs from scratch using the ETHZ and
UPMC datasets. This step aims to identify the most promising CNN for our
purposes. We evaluated the CNNs relying on accuracy on the validation set (e.g.
percentage of images of the validation set correctly classified).

We trained every CNN architecture by setting the same parameters. Gener-
ally, we set the number of training epochs to 60 but, in some cases, we used a
different value depending on the accuracy trend of the CNN. We set the Batch
Size to 128 for every scenario. Moreover, we chose a Learning Rate function with
a step–down policy. This kind of policy consists in a step–down of 90% every
33% of epochs. If the number of epochs is 60, Learning Rate is fixed to 0.01 in
first 20 epochs, to 0.001 in second 20 epochs and to 0.0001 in last 20 epochs.
The Solver Type we choose is the Stochastic Gradient Descent (SGD).

CNN framework model size
accuracy

ETHZ UPMC

ResNet-50 caffe ˜80Mb 16% 20%
XNOR-Net torch ˜410Mb 25% 24%

BWN torch ˜380Mb 38% 34%
AlexNet caffe ˜230Mb 40% 37%

SqueezeNet caffe ˜3Mb 41% 31%
VGG-16 caffe ˜590Mb 44% 37%

GoogLeNet caffe ˜40Mb 56% 43%

Table 2: Comparisons of various CNN architectures trained from scratch

Table 2 shows the result we obtained. As we can see, the most promising
CNNs are the GoogLeNet (highest accuracy on both datasets and very small
model size), the SqueezeNet (smallest model size and high accuracy on ETHZ
dataset), and the AlexNet (good accuracy on both datasets and widely supported
since it has many available implementations). Also the VGG-Net has a good
accuracy on both datasets, but its model size is too big to fit in mobile memory,
therefore it has been discarded.

In many cases, the training sets do not have a size sufficient to train a CNN
with the required accuracy and generalization performance. This is also the
case of the two training sets that we are using. In these cases, much higher
performance can be obtained by pre-training the network (or use an already
pre-trained network) on a different scenario, for which a very large training set
is available, and then fine-tune the CNN on the scenario at hand with the small
training set available.

In this respect, we used available pre-trained models of the most promis-
ing CNN architectures 1. The models are those coming from training on the
ILSCVRC [9] dataset (1,000 classes of images). For the fine-tuning process, we

1 Pre-trained models can be found here: https://github.com/BVLC/caffe/wiki/Model-
Zoo



Deep Learning Techniques for Visual Food Recognition on a Mobile App 5

used the same learning parameters used for training the networks from scratch.
The weights of the last FC layer (which is mostly affected by the fine-tuning
process) were initialized randomly, and the output was set to 101 classes (the
ILSRVC dataset, used for pre-training has 1,000 classes).

An important parameter we set in the fine tuning is the Learning Rate Mul-
tiplier. It is multiplied by the Learning Rate and is set differently in each layer
of the network to allow having different Learning Rates where needed. We set
this parameter to 0.1 for the intermediate layers and to 1 in the last layer. This
way the Learning Rate of the intermediate layers is 10 times smaller than the
Learning Rate of the last layer.

CNN framework model size
accuracy

ETHZ UPMC

AlexNet caffe ˜230Mb 59% 55%
SqueezeNet caffe ˜3Mb 64% 55%
GoogLeNet caffe ˜40Mb 73% 63%

Table 3: Comparisons of various CNN architectures fine tuned

Table 3 shows the result we obtained after fine-tuning. As we can see, the
best CNN architectures in terms of model size and accuracy on the validation
set are the SqueezeNet and the GoogLeNet.

4 Experiments

After the previous preliminary experiments, intended to identify the most promis-
ing CNN, we performed more detailed experiments focusing on the two selected
CNN: the SqueezeNet and the GoogLeNet. We queried both CNNs with all the
images in the testing set of both datasets and we logged the scores assigned by
the CNN to each class. The most promising classes were assigned higher scores.
We performed this process for both CNNs using both datasets performing cross-
testing: we trained on one dataset and tested on the other in order to evaluate
the transfer learning property.

We considered two metrics to evaluate:

– Accuracy Top-K: the percentage of images in the testing set classified in
Top-K by the CNN;

– Distribution of Scores of Correct Class (Scc ICDF): the probabil-
ity that the Scc of the images in the testing set will take a value greater than
or equal to x (i.e. the Inverse Cumulative Distribution Function, considering
the Scc values as a random variable);

Table 4 shows the Top1 Accuracy of the SqueezeNet. The best scenario is the
one in which the CNN is trained and tested over ETHZ dataset (e.g. about 60%).



6 M. De Bonis, G. Amato, F. Falchi, C. Gennaro and P. Manghi

Train/Test UPMC ETHZ

UPMC 50.11% 37.51%

ETHZ 37.06% 59.71%

Table 4: SqueezeNet Cross Test: Top1 Accuracy

Table 5 shows the Top1 Accuracy of the GoogLeNet. Also in this case, the
best scenario is the one in which the CNN is trained and tested over ETHZ
dataset (e.g. about 60%).

Train/Test UPMC ETHZ

UPMC 60.95% 50.63%

ETHZ 46.17% 72.18%

Table 5: GoogLeNet Cross Test: Top1 Accuracy

Since the images in ETHZ dataset have strong selfie-style (images come from
social networks and can contain also people eating food), we chose models coming
from training on ETHZ dataset. We referred to ETHZ dataset also for the test
for the same reason. This is because the CNN is going to be used by a mobile
application, so the input image will be taken by the smartphone camera and will
have strong selfie-style as well.

(a) Comparison of the Accuracies Top-K (b) Comparison of the Scc ICDFs

Fig. 2: Accuracy and Scc ICDF comparisons

Figure 2a shows the comparison of the Top-K accuracies of both CNN ar-
chitectures. The GoogLeNet has the highest accuracy in general, but the differ-
ence between the two accuracies is decreasing over K. This means that, when



Deep Learning Techniques for Visual Food Recognition on a Mobile App 7

K is large, there is no significant difference between the SqueezeNet and the
GoogLeNet. Figure 2b depicts the comparison of the Scc ICDF of both CNN
architectures. The GoogLeNet is far better than the SqueezeNet because it as-
signs higher scores to the correct class. Moreover, the GoogLeNet has a lower
slope in the central part of the graph. This means that Scc assigned have small
variation. The SqueezeNet instead assigns Scc with higher variation.

We chose the GoogLeNet as the CNN architecture to port on the mobile
phone because this architecture is the best approach in term of accuracy on
ETHZ dataset (i.e. 73%). Moreover, it is second only to the SqueezeNet in terms
of model size (about 40Mb vs 3Mb). Since the mobile memory can easily store
40Mb, we preferred the best accuracy. The SqueezeNet is slightly faster than
the GoogLeNet due to its layers, but the speed of GoogLeNet is expected to be
higher as soon as the mobile computational power increases.

We made a further analysis on the chosen CNN architecture: the Threshold
evaluation. The purpose of this analysis is to establish a threshold on the score
of the Top1 prediction in order to find the minimum score needed by the Top1
prediction to be considered correct.

The scheme in Figure 3 depicts the usage of the threshold. If the CNN assigns
a score greater than the threshold to a class, it is confident with that prediction
and therefore it can be directly shown to the user. If the CNN is not confident
with the prediction, the list of Top5 predictions is shown to the user.

Fig. 3: Threshold usage

The graph in Figure 4 has been obtained by varying the threshold and by count-
ing the number of False Positives (FP) and False Negatives (FN). The result
of the test is classified as Positive if the Top1 prediction score is higher than
the threshold, whereas it is classified as Negative if the Top1 prediction’s score
is lower than the threshold. We zoomed the graph in order to better show the
cross-point which is the most important part of it. The lower is the cross-point
on y-axis, the higher is the accuracy. On the y-axis, the lower is the crossing
point of the two functions, the better is the CNN. If the crossing point of the
FP and the FN function is 0, by setting the threshold at that point both zero FP
and FN are obtained. Moreover, also the maximum accuracy is reached. Table
6 shows the results obtained by choosing different thresholds.



8 M. De Bonis, G. Amato, F. Falchi, C. Gennaro and P. Manghi

Fig. 4: Zoom on the cross-point of the threshold analysis

Threshold Result Scc ICDF (threshold)

0.7838 less than 10% of FN 65%

0.9785 minimum FP+FN 54%

0.9924 less than 10% of FP 49%

Table 6: Results with different thresholds

5 Mobile application development

Our proposal consists of an Android mobile application with two different modal-
ities: on-line and offline.
In the online mode, the CNN is deployed on a server and therefore it is imple-
mented in Caffe, which is imported in a Java Web Application. In this modality,
the smartphone acts as a client and queries the CNN on the server.
In the off-line mode, the CNN is implemented relying on RenderScript. Render-
Script is a framework for utilizing heterogeneous computing on Android phones.
During execution, the runtime engine distributes the computation on available
processing elements such as CPU cores and GPU. The used implementation of
the GoogLeNet has been presented in [7]. In our work, we modified this CNN
so that it can be used in Android phones. Figure 5 shows the architecture of
the Android Application. The whole code of both the application and the Web
Application is available on GitHub 2.

6 Conclusions and Future Work

In this work, a mobile application for food recognition has been designed, im-
plemented, and tested. The application recognizes images representing food by
predicting the dish. The application uses a Convolutional Neural Network which

2 https://github.com/m1k3lin0/FoodRecognitionAndroidApp



Deep Learning Techniques for Visual Food Recognition on a Mobile App 9

Fig. 5: Application architecture in blocks

has been deployed on a mobile phone after a training on two state-of-art datasets
for food recognition.

In order to identify the most promising approach in terms of accuracy on the
validation set, eight different CNN architectures have been trained and tested.
Two scenarios have been identified: the SqueezeNet, which has a good level of
accuracy and a model size extremely limited (i.e. 3Mb of model size and about
60% of accuracy), and the GoogLeNet, which has the best accuracy and a model
size second only to the SqueezeNet (i.e. 40Mb of model size and about 70% of
accuracy).

The mobile application has two versions: server-based version (i.e. CNN run-
ning on a Web Application) and local version (i.e. CNN developed by taking
advantage of RenderScript framework). Hence, tests have been done in order to
asses:

– The ability of the CNN to correctly predict the class of food represented in
the image.

– The ability of the CNN to distinguish the correct prediction from the wrong
prediction by establishing a threshold on the score assigned to the Top1
prediction.

The best scenario has been obtained by training and testing on ETHZ dataset.
This is also the result that fits better with the application purpose because of
the nature of the dataset (i.e. images with strong selfie style).
The GoogLeNet CNN is the best approach in terms of accuracy, but the SqueezeNet
CNN is the best in terms of model size. The CNN used in both application
modalities is the GoogLeNet.

References

1. Amato, G., Bolettieri, P., Monteiro de Lira, V., Muntean, C.I., Perego,
R., Renso, C.: Social media image recognition for food trend analysis.
In: Proceedings of the 40th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval. pp. 1333–1336. SIGIR ’17,
ACM, New York, NY, USA (2017). https://doi.org/doi:10.1145/3077136.3084142,
http://doi.acm.org/10.1145/3077136.3084142



10 M. De Bonis, G. Amato, F. Falchi, C. Gennaro and P. Manghi

2. Bossard, L., Guillaumin, M., Van Gool, L.: Food-101 – Mining Discrim-
inative Components with Random Forests, pp. 446–461. Springer Interna-
tional Publishing, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4 29,
http://dx.doi.org/10.1007/978-3-319-10599-4 29

3. Chen, J., Ngo, C.w.: Deep-based ingredient recognition for cooking recipe retrieval.
In: Proceedings of the 2016 ACM on Multimedia Conference. pp. 32–41. MM ’16,
ACM, New York, NY, USA (2016). https://doi.org/doi:10.1145/2964284.2964315,
http://doi.acm.org/10.1145/2964284.2964315

4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(June 2016)

5. Iandola, F.N., Moskewicz, M.W., Ashraf, K., Han, S., Dally, W.J., Keutzer, K.:
Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <1mb model
size. CoRR abs/1602.07360 (2016), http://arxiv.org/abs/1602.07360

6. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger,
K.Q. (eds.) Advances in Neural Information Processing Systems 25, pp. 1097–
1105. Curran Associates, Inc. (2012), http://papers.nips.cc/paper/4824-imagenet-
classification-with-deep-convolutional-neural-networks.pdf

7. Motamedi, M., Fong, D., Ghiasi, S.: Fast and energy-efficient CNN inference on
iot devices. CoRR abs/1611.07151 (2016), http://arxiv.org/abs/1611.07151

8. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: Xnor-net: Imagenet classifica-
tion using binary convolutional neural networks. CoRR abs/1603.05279 (2016),
http://arxiv.org/abs/1603.05279

9. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang,
Z., Karpathy, A., Khosla, A., Bernstein, M.S., Berg, A.C., Li, F.: Ima-
genet large scale visual recognition challenge. CoRR abs/1409.0575 (2014),
http://arxiv.org/abs/1409.0575

10. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. CoRR abs/1409.1556 (2014), http://arxiv.org/abs/1409.1556

11. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (June 2015)

12. Wang, X., Kumar, D., Thome, N., Cord, M., Precioso, F.: Recipe recogni-
tion with large multimodal food dataset. In: 2015 IEEE International Con-
ference on Multimedia Expo Workshops (ICMEW). pp. 1–6 (June 2015).
https://doi.org/doi:10.1109/ICMEW.2015.7169757


