

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No 777561
Call identifier: H2020-S2RJU-2017 | Topic: S2R-OC-IP2-01-2017 – Operational conditions of the signalling and automation systems; signalling system

hazard analysis and GNSS SIS characterization along with Formal Method application in railway field

D4.3 – Validation Report

Deliverable ID D4.3

Deliverable Title Validation Report

Work Package WP4

Dissemination Level PUBLIC

Version 1.3

Date 30/08/2019

Status Final

Lead Editor SIRTI

Main Contributors CNR

Published by the ASTRAIL Consortium

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 2 of 70

Document History

Version Date Author(s) Description

0.0 2019-05-24 SIRTI First Draft with TOC

0.1 2019-06-07 CNR Changes in structure and tasks distribution

0.2 2019-06-26 CNR Section 3 “Moving Block and ATO Modelling” added

0.3 2019-06-27 CNR Section 3 “Moving Block and ATO Modelling” updated

0.4 2019-07-02 CNR, SIRTI Section 5 “Quantitative Verification” updated

0.5 2019-07-10 CNR Section 2 “Validation of the Process” updated

0.6 2019-07-24 CNR Section 4 “Qualitative verification” updated

0.7 2019-08-06 CNR Section 4 “Qualitative verification” updated

0.8 2019-08-09 SIRTI Annex A added

0.9 2019-08-14 CNR Section 4 “Qualitative verification” updated

1.0 2019-08-22 CNR Section 5 “Qualitative Verification” removed, “Introduction” added,
Section 2, 3, 4 Updated

1.1 2019-08-26 CNR Added Conclusion section

1.2 2019-08-27 SIRTI Updated Conclusion section, typo review

1.3 2019-08-30 SIRTI, CNR Annex A updated. Final release.

Legal Notice

The information in this document is subject to change without notice.
The Members of the ASTRail Consortium make no warranty of any kind with regard to this document,
including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
The Members of the ASTRail Consortium shall not be held liable for errors contained herein or direct,
indirect, special, incidental or consequential damages in connection with the furnishing, performance, or use
of this material.
The Shift2Rail JU cannot be held liable for any damage caused by the Members of the ASTRail Consortium
or to third parties as a consequence of implementing this Grant Agreement No 777561, including for gross
negligence.
The Shift2Rail JU cannot be held liable for any damage caused by any of the beneficiaries or third parties
involved in this action, as a consequence of implementing this Grant Agreement No 777561.
The information included in this report reflects only the authors' view and the Shift2Rail JU is not responsible
for any use that may be made of such information.

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 3 of 70

Table of Contents

Document History .. 2

Legal Notice .. 2

Table of Contents ... 3

1 Introduction .. 5

1.1 Purpose and Scope .. 5

1.2 Executive Summary ... 5

1.3 Related documents.. 7

2 Validation of the Process... 8

2.1 Formal methods selection .. 8

2.1.1 Main Output from Previous Deliverables .. 8

2.1.2 Choice of Formal Methods based on the Development Context .. 8

2.2 Formal Methods Application Process .. 9

2.2.1 Requirements Elicitation and Simulation ... 10

2.2.2 Mapping to Formal Languages ... 11

2.2.3 Formal Verification ... 11

3 Moving Block and ATO modelling .. 12

3.1 Simulink and Stateflow Languages ... 12

3.2 Moving Block ... 14

3.2.1 Moving Block Overview .. 14

3.2.2 Moving-block Model Architecture ... 15

3.2.3 Behaviour of the Moving-block System: OBU Component.. 17

3.2.4 Behaviour of the Moving-block System: LU Component ... 20

3.2.5 Behaviour of the Moving-block System: RBC Component ... 20

3.2.6 Behaviour of the Moving-block System: Train Component ... 21

3.3 ATO .. 22

3.3.1 ATO Overview ... 22

3.3.2 ATO Model Architecture .. 23

3.3.3 ATO Behaviour: Operating Modes ... 24

3.3.4 ATO Behaviour: Speed Control and Train ... 26

3.4 Integrated Model ... 30

3.4.1 Integrated Model Architecture .. 30

3.4.2 Integrated Model Behaviour ... 32

3.5 Requirements Elicitation and Simulation with Simulink: Observations .. 34

4 Qualitative verification ... 36

4.1 The UML system description ... 36

4.1.1 Briefs on the used UML statecharts notation .. 36

4.1.2 Some differences w.r.t Simulink/Stateflow modelling .. 37

4.1.3 Introduction to the Moving Block and ATO UML modelling .. 38

4.1.4 OBU... 38

4.1.5 RBC .. 41

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 4 of 70

4.1.6 ATO ... 44

4.2 The EventB/ProB modelling ... 46

4.3 The EventB/ProB verification ... 50

4.3.1 Moving Block verification .. 51

4.3.2 ATO verification ... 55

4.3.3 Integrated Moving Block and ATO verification ... 57

4.4 Observations .. 59

4.4.1 Correctness of the system design .. 59

4.4.2 Correctness of the ProB translation ... 59

4.4.3 Correctness of the LTL formulas.. 60

4.4.4 Correctness of the ProB tool .. 60

4.4.5 Current limits of our approach .. 60

5 Conclusions ... 62

Acronyms ... 64

List of figures .. 65

Annex A – System Requirements ... 66

References ... 70

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 5 of 70

1 Introduction

1.1 Purpose and Scope

Formal methods are mathematically-based techniques to support the development of software intensive
systems [23][22]. Normally, formal methods oriented to design and verification of systems include (i) a
modelling language, which is used to model a system, and (ii) a verification strategy, which is used to
verify properties on the system. Formal methods are usually associated to formal tools, which can provide
textual or visual editors to create a model of the system, as well as automated verification capabilities.
Formal methods have been largely applied in industrial projects, especially in the safety-critical market,
including railways [24]. However, it cannot yet be said that a single mature technology has emerged.

The Work Package 4 (WP4) of the ASTRail project aims to identify, based on an analysis of the state-of-the-
art and on concrete trials, the candidate set of formal and semi-formal methods that appear as the most
adequate to be used in the railway context. In the following, when we will use the general term “formal
method”, we will implicitly include also semi-formal methods, i.e. those methods that use languages for which
the semantics is not formally defined but depends on their execution engine.

Since formal methods are normally associated with tools, we will also use the terms formal methods and
formal tools interchangeably.

To address the goal of identifying the most adequate formal methods, WP4 is structured into four tasks
(T4.4, in bold, is the focus on the current deliverable):

 Task 4.1 - Benchmarking: this task aims at studying the state-of-the-art and state of the practice of
formal and semi-formal methods, by gathering knowledge from the literature and railway
practitioners.

 Task 4.2 - Ranking: this task aims at providing a ranking matrix to support the selection of the most
adequate formal methods to be used in a certain development context.

 Task 4.3 - Trial Application: this task aims at experimenting the usage of a set of selected formal
methods through the modelling of the moving-block system, from Task 2.1.

 Task 4.4 - Validation: this task aims at validating the usage of the selected formal methods by
integrating the moving-block model with the automated driving technologies from Task 3.3.

The current deliverable D4.3 Validation Report is the output of Task 4.4 – Validation. The results of Task 4.1-
2 and 4.3 have been reported in D4.1 [RD.1] and D4.2 [RD.5] respectively.

1.2 Executive Summary

The description of Task 4.4 - Validation Report is as follows:

In order to validate the choices and techniques consolidated in task T4.3 we will address, in
collaboration with the other partners of the project, the modelling of the integration of Moving Block
with Automated Driving Technologies (from T.3.3), providing for each considered item a full model
that will represent a rigorous and verifiable definition of functional, interoperability and dependability
requirements.

In Task 4.3 a series of formal techniques were evaluated and a main output of the task was that a
combination of techniques is required to address different needs and phases of the railway process.
Combinations of techniques should be chosen based on the context. Therefore, validating choices and
techniques, as discussed in the proposal, implies defining and assessing a formal development process that
is appropriate for the current context of development. Hence, this deliverable is concerned with the validation
of a proposed formal process, by means of modelling and verification, applied to Moving Block with
Automated Driving Technologies.

In the context of the ASTRail project, both Moving Block and Automated Driving Technologies (referred in
the following as Automated Train Operation or ATO) can be considered as being at the concept phase of
development. Indeed, preliminary requirements were defined for the Moving Block (see [RD.5]), and only
high-level functions were defined for the ATO in Task 3.3 (see [RD.4]).

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 6 of 70

For the concept phase of the development, in which requirements need to be elicited and consolidated, the
proposed process supported by formal methods foresees the following phases:

 Requirements Elicitation and Simulation: for which Simulink-Stateflow was selected as
appropriate tool to provide a rigorous, complete modelling of the integration of the Moving Block with
ATO, and to produce a requirements specification for the integrated system;

 Mapping to Formal Languages: for which UML was chosen as intermediate language towards a
formalisation into Event-B;

 Formal Verification: for which ProB was chosen as formal tool to verify the requirements against
the Event B model.

The proposed process was applied to the modelling and verification of the Moving Block with ATO. First, two
separate Simulink-Stateflow models were developed for the Moving Block and the ATO, based on a set of
preliminary requirements. The requirements were then extended and consolidated based on the simulation,
an integrated model was developed and a final integrated requirements specification was produced. The
models are reported at [25]. Instead, the requirements are reported in the Annex A – System Requirements.

The model and the requirements were used as input to define a UML model oriented to have a clear,
established specification that could be used as a reference for translation into formal languages. The UML
model was translated into EventB, the formal input language of ProB. The graphical UML model is reported
in this deliverable, while the ProB model is available at [25].

Given the EventB model that integrates Moving Block and ATO, formal verification activities were carried out
with the ProB tool. Specifically, part of the requirements reported in the Annex A – System Requirements
were mapped to Linear Temporal Logic (LTL) formulae, and model checking was performed with ProB.

The implementation of the process and its application to the Moving Block with ATO has showcased strong
points and weaknesses of the applied strategy. Specifically, the main strengths are:

1. Modelling and simulating with Simulink-Stateflow enables the identification of incomplete,
inconsistent, or too generic requirements, as it forces the modeller to take implementation choices,
and allows the user to observe the behaviour of the system and interact with it.

2. Graphical models are easy to understand by domain experts, and reading Simulink-Stateflow models
required limited guidance, therefore making the language suitable for interaction between formal
methods experts and railway domain experts.

3. The UML modelling activity enables the abstraction from concrete choices required by the Simulink-
Stateflow platform, and, in particular, allows the modeller to observe nondeterministic behaviour.

4. The translation of the UML model into Event B enables the further activities of formal verification, but
allows also the modeller to identify mistakes in the design.

5. The translation of the requirements into temporal logic formulas to be verified again allows the
identification of mistakes in the model or in the requirements.

6. The formal verification activity can be performed with acceptable, though not negligible, time for most
of the requirements.

Instead, observed weaknesses to consider are:

1. The modelling and translation processes are time consuming with respect to defining a requirements
document in natural language.

2. The produced models, although consolidated and revised multiple times throughout the process, are
not guaranteed to be stable, as new requirements may emerge during further refinements.

3. The formal methods experts must make choices both in the modelling phase and in the translation
activities. These choices, concerning for example the decision of modelling subsets of the system to
enable formal verification, require the expertise in formal methods and cannot be automatically
performed with the selected tools.

4. Depending on their nature, part of the requirements could be not formally verified, and require other
means to assess them.

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 7 of 70

5. The whole proposed process is not entirely supported by tools. In particular, the translation activities
are performed manually.

Given these observations, the proposed formal process cannot be considered as a fully automated
technique. However, the different steps involved, the different languages used, and the different degree of
formality of the different steps enabled the possibility of producing a set of consolidated requirements for the
integrated Moving-block and ATO system as well as verifiable specifications of the requirements in the form
of formal and semi-formal models.

The remainder of the deliverable is structured as follows:

1. In Section 2 we present the overview of how the formal methods choices have been validated within
ASTRail;

2. In Section 3 we present the activity of modelling and simulating with Simulink-Stateflow;
3. In Section 4 we present the activities of translation into formal models, through UML and Event B,

and formal verification with ProB;
4. In Section 5, we report conclusion and final remarks.

1.3 Related documents

ID Title Reference Version Date

[RD.1] D4.1 Report on Analysis and Ranking of Formal methods D4.1 4.2 17/01/2019

[RD.2] D2.1 Modelling of the moving block signalling system D2.1 2.0 28/01/2019

[RD.3] D2.2 Moving Block signalling system Hazard Analysis D2.2 2.0 28/01/2019

[RD.4]
D3.2 Automatic Train Operations: implementation,
operation characteristics and technologies for the Railway
field

D3.2 1.2 28/01/2019

[RD.5] D4.2 Preliminary Trial Report D4.2 1.1 27/11/2018

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 8 of 70

2 Validation of the Process

This section describes the methodology followed to validate the proposed process to select and adopt formal
methods in the railway context. Specifically, we first explain how we selected a subset of the available formal
methods, and how we have used them for different purposes, namely requirements elicitation and
simulation, and formal verification.

It is worth highlighting that the process outlined is applied in the concept phase of the development process,
in which early requirements are defined and preliminarily validated. It is outside the scope of this deliverable
to present a full formal process from early requirements to implementation. Our goal is instead to highlight
how the features of diverse tools can be exploited for different purposes.

2.1 Formal methods selection

In this section we present how we have leveraged the information from the previous deliverables, namely
D4.1 and D4.2, to select the appropriate formal methods to use in our context. Specifically, we justify why we
have chosen Simulink-Stateflow for requirements elicitation and consolidation, and why we have selected
UML as intermediate representation and ProB for formal verification. In the following, we first outline the most
relevant information from previous deliverables, and then we motivate our choices.

2.1.1 Main Output from Previous Deliverables

In this section, we list the main output from the previous deliverable that we considered to support the
selection of formal methods for our specific context.

In D4.1, we performed a literature survey on formal methods applications to railway problems,
complemented with a review of projects, a questionnaire with practitioners and a preliminary tool evaluation.
One of the main output from D4.1, also published in [20] and [21], is the dominance of the B method and
associated supporting tools (Rodin environment, Atelier B, ProB) in the railway context.

In D4.2, we performed a tool trial, by modelling a preliminary specification of the moving-block system with
fourteen formal tools, selected based on the survey from D4.1. Furthermore, we performed a usability test for
the eight selected tools. Despite the dominance of the B method in literature and practice, D4.2 has shown
that each method and associated tool is appropriate for different development contexts. Specifically, one
of the main conclusions from D4.2 was as follows:

 Simulink and SCADE are appropriate for both early prototyping and detailed design towards code
generation, other tools need to be used when aiming at formal verification.

 UMC is appropriate for initial prototyping, when one wants to adopt a design based on UML state
machines to facilitate communication with different stakeholders, but wants also verification
capabilities as the ones provided by UMC.

 Uppaal is appropriate when one needs to focus on the verification quantitative, real-time properties
and probabilistic aspects.

 NuSMV and SPIN are appropriate when the system, or composition of systems, has a large state
space, and one needs to verify temporal logic properties.

 Atelier B and ProB are the right choice for top-down development (i.e., from initial design to code) of
single systems, and have somewhat complementary verification capabilities, with Atelier B
supporting invariants checking, and ProB supporting model checking.

Other tools, although not widely used in railways, such as CADP and FDR4, have been also experimented in
the context of the project and demonstrated their appropriateness for the modelling and verification in the
context of large scale, systems of systems.
Finally, another output from D4.2, concerning usability of formal tools, as evaluated by railway practitioners
in the context of the project, is that tools that offer graphical simulation capabilities such as Simulink,
SCADE, ProB and Uppaal are considered more usable, and easy to understand by practitioners.

2.1.2 Choice of Formal Methods based on the Development Context

As mentioned, the current context is the concept phase of the development. In this phase, requirements for
the moving-block system and the ATO need to be (1) elicited from stakeholders and documentation, (2)
preliminary assessed with formal verification.

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 9 of 70

Therefore, we have chosen Simulink (and its package for state machines modelling, named Stateflow) as a
means to support the requirements elicitation task of this phase. Although also SCADE would have been
an appropriate choice according to the conclusions reported above, we selected Simulink since, from our
tool usability evaluation presented in D4.2, the tool was considered the most usable by the participants
(System Usability (SUS) Score: 76 over 100). Since in the early phase of elicitation it is crucial that all the
involved stakeholders, namely formal methods experts and railway experts, understand the language used
for modelling, Simulink was considered as a suitable choice for our project.

Concerning formal verification of the requirements, i.e., verification of qualitative properties related to
conditions and expected actions, we have selected ProB as the main tool given (a) the dominance of this
tool in the railway context, as outlined by D4.1, and (b) it evaluation in terms of usability as shown in D4.2
(SUS Score: 62 over 100, ranked third in terms of usability right after Simulink and SCADE).

2.2 Formal Methods Application Process

In this section we provide an overview of the application of the formal process, based on the selected formal
methods and tools. The output of the process in terms of models is further detailed in Sect. 3 and 4.

Figure 1 outlines the adopted formal process. The starting point of the process is a set of input documents
about the systems to be developed (External Documents). Specifically, in our context, we leveraged the
preliminary requirements of the moving-block system developed in D4.2, and the requirements for the ATO
system available from the Shift2Rail X2Rail-1 deliverable D4.1 - ATO over ETCS GoA2 Specification [26].
These documents were used as a source to draft the first early requirements for the moving-block and ATO
systems (Requirements Drafting). The produced requirements, expressed in natural language and
complemented with informal models, were then represented and simulated by means of Simulink-Stateflow
(Semi-formal Modelling and Simulation with Simulink-Stateflow). This activity allowed to further elicit,
refine and improve the drafted requirements towards a stable requirements document.

The produced Simulink-Stateflow model together with the produced requirements were used as a starting
point for formal verification. To enable verification, the requirements expressed through the model were first
represented into an intermediate format, namely UML Statecharts (Semi-formal Modelling with UML
Statecharts). The goal was to have an intermediate model expressed in a format from which different,
comparable formal models could be potentially derived. We have chosen to use UML Statecharts as UML is
the most common language for representation of systems in railways, as shown by the results in D4.1. From
the UML Statecharts model, a formal ProB model was derived (Formal Modelling with ProB). Qualitative
formal verification was then performed on this model, based on the requirements defined earlier. The
verification allows to assess the requirements and possibly improve them (Formal Verification with ProB).
The UML model can also be used as a starting point to derive other models, and practice formal methods
diversity, by comparing the results obtained with other tools.

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 10 of 70

Figure 1 Overview of the adopted formal process

2.2.1 Requirements Elicitation and Simulation

In this section we outline the process followed to provide the models for the moving-block and the ATO, and
to define the final set of requirements for the two components, including systems integration elements.

Moving-block: the moving-block requirements were preliminarily defined as part of D4.2. During the current
task of ASTRail, the preliminary requirements were further refined and simulated by means of Simulink-
Stateflow. Specifically, representative formal methods experts from CNR developed the Simulink-Stateflow
model based on the requirements reported in D4.2. Whenever a requirement was considered inconsistent,
incomplete, or unclear, based on the modelling and simulation activities, reported back the problem to the
railway domain experts from SIRTI. The interaction was aided by the graphical models presented to the

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 11 of 70

experts from SIRTI, who took care of updating and modifying the original requirements, based on the
reported problems. At the end of these iterations, a novel requirements document was produced for the
moving-block system. The document is reported in Annex A – System Requirements – Part 1, Moving Block.

ATO: the initial ATO requirements come from the Shift2Rail X2Rail-1 deliverable D4.1 - ATO over ETCS
GoA2 Specification [26]. Differently from the moving-block requirements, these are very detailed, and a
complete model of them was considered out of the scope of the current project. Therefore, in this case, the
railway experts from SIRTI selected a subset of the requirements that could be suitable to produce a model
to be integrated with the moving-block model. These initial requirements were modelled, simulated and
refined with the same approach used for the moving-block system, i.e., by means of multiple iterations and
discussion between CNR and SIRTI. The document is reported in Annex A – System Requirements – Part 2,
ATO.

Integrated System: following the definition of the requirements for moving-block and ATO, an integrated
Simulink-Stateflow model was produced by CNR. This model was used as a baseline to define the final
requirements concerning the interaction between ATO and moving-block. These final requirements,
developed by SIRTI, are reported in Annex A – System Requirements – Part 3, Integrated System.

2.2.2 Mapping to Formal Languages

In this section we outline how the original model and requirements for the Integrated System were mapped
into the ProB input language, named ProB, to enable verification. This activity involved modellers from CNR
and representative of SIRTI, to adjust the requirements previously produced.

For the mapping towards EventB, a first modelling by means of the UML language was performed by CNR.
This modelling activity took into account the requirements produced, and reported in Annex A – System
Requirements, together with the integrated Simulink model (Annex A – System Requirements – Part 3,
Integrated System). The modelling abstracted away from quantitative aspects that were not relevant for the
foreseen type of formal verification. After the UML representation, an EventB model was defined as a faithful
mapping of the UML model, to enable formal verification. The mapping activity, together with the UML model
and EventB model, is reported in Section 4 together with the formal verification activity introduced in the next
section.

It is worth mentioning that the model produced in UML, and translated into EventB, is not a faithful translation
of the original Simulink-Stateflow model. Indeed, the goal of this model is to enable the analysis of relevant
requirements aspects, and not to verify the original Simulink-Stateflow design, which was oriented towards
the elicitation of the requirements. This opportunistic and non-systematic approach to modelling and
verification is considered appropriate for this concept phase, to clarify whether the elicited the requirements
are reasonable.

2.2.3 Formal Verification

In this section we outline the process followed verify the components from a quantitative and qualitative point
of view. This verification activity was oriented to showcase the process, to demonstrate that the system
specification produced, i.e., the requirements and the Simulink-Stateflow model, is verifiable, as originally
planned in the DoW. The formal verification was performed by means of the ProB tool. To this end, part of
the requirements reported in Annex A – System Requirements were considered and translated into linear
temporal logic (LTL) formulas. The translation process, results and comments are reported in Section 4.3.

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 12 of 70

3 Moving Block and ATO modelling

In this section we provide a description of the moving block and ATO Simulink models developed, based on
the process described in Sect.2.2.1. We first describe some basic principles of the Simulink and Stateflow
languages, which are useful to understand the rest of the section. Then, we present each model individually,
and we describe the final, integrated model, pinpointing the adjustments needed to complete the integration.
At the end of the section, we discuss observations throughout the process of requirements elicitation and
simulation.

3.1 Simulink and Stateflow Languages

Simulink is a commercial model based development tool, distributed by Mathworks, that allows the user to
graphically draw diagrams of the system modelled in the form of input-output blocks. The blocks can be
further refined in the form of hierarchical state machines through the tool Stateflow, included in Simulink.
Simulink comes with several packages, also for code generation from the models. For the current models,
we used Simulink 2017b. Below, we present some basic concepts about the Simulink and Stateflow
languages, useful to interpret the models presented in the following sections. For more details, we refer to
the extensive Simulink documentation [2]

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 13 of 70

Figure 2 Simulink and Stateflow basic concepts

 Simulink Blocks: a sample Simulink diagram is represented in Figure 2 (top). The basic elements
of Simulink are the blocks, which are components that take some input and produce some output.
Each component in Simulink, including elements with several input and output variables, is
considered a block. Blocks can communicate with direct links, or through labels. Labels with the
same name are associated to the same variables or messages exchanged between blocks. In the
Simulink diagrams that we will consider in this deliverable, the main blocks are sub-systems blocks,
i.e., complex blocks with several input and output variables. To observe the status of the different
variables during the simulation, one can use specific scope blocks.

 Stateflow Statecharts: subsystems can have different forms, and can include several blocks. In our
context, each sub-system is a Stateflow statechart (or Chart, in Stateflow dialect). Figure 2 (bottom)

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 14 of 70

represents a sample statechart. The statechart inherits input and output from the associated sub-
system block. Furthermore, it is composed by a set of hierarchical states. The decomposition of
states can be parallel (dashed lines, PARALLEL_1 and PARALLEL_2) or mutually exclusive (solid
line, for example OFF, ON). Parallel states are actually executed in a sequential order, and the order
is visually specified on the chart itself (top-right corner of each parallel state).

 Conditions and Actions: Conditions and actions can be used in the transitions from mutually
exclusive states. Conditions are expressed in squared brackets, and actions are expressed in curly
brackets. Conditions are normally associated to variables. However, they can also refer to the
reception of messages. In this case they do not make use of square brackets.

 Internal Actions: Actions can be defined also within the states. There are three types of actions:
entry actions (en), which are executed only once when the system enters the specific state; during
actions (du), which are executed at each simulation step; exit action (ex), which are executed when
the system exists the state.

 Functions: functions are graphical flowcharts, with conditions and actions analogous to those used
for transitions between states. Functions can be called within actions in states, in transitions, and in
functions themselves. The main difference between a function and a statechart with mutually
exclusive states is that a function is entirely executed within one simulation step, while at each
simulation step only one state in a certain hierarchy can be active in a statechart. This is similar to
the difference that we have between a C function with nested if-then-else statements, and a C
function with a switch case statement. The former is analogous to Stateflow functions. The latter is
analogous to Stateflow statecharts with mutually exclusive states.

3.2 Moving Block

3.2.1 Moving Block Overview

The components of the moving block system considered are depicted in Figure 3. The train carries the
Location Unit (LU) and OBU (On-board Unit) components, while the RBC (Radio-block Centre) is a trackside
component. The LU receives the train’s location from GNSS satellites, sends this location (and the train’s
integrity) to the OBU, which, in turn, sends the location to the RBC. Upon receiving a train’s location, the
RBC sends a Movement Authority (MA) to the OBU (together with speed restrictions and route
configurations), indicating the space the train can safely travel based on the safety distance with preceding
trains. The RBC computes the MA by communicating with neighbouring RBCs and by exploiting its
knowledge of the positions of switches and other trains (head and tail position) by communicating with a
Route Management System (RMS). In our context, we abstract from an RMS and communication among
neighbouring RBCs: we consider one train to communicate with one RBC, based on a seamless handover
when the train moves from one RBC supervision area to an adjacent one, as regulated by its Functional
Interface Specification [1]. Next to these physical components, there are two temporal constraints for the
OBU to respect: the location is continuously updated every 5 seconds, whereas the MA must be
continuously updated within 10 seconds. If the OBU does not receive an MA within 10 seconds from the last
MA, the OBU is required to force the train to brake
.

Figure 3 Overview of the Moving-block system

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 15 of 70

3.2.2 Moving-block Model Architecture

Figure 4 reports the architecture of the model, which includes four main Simulink blocks representing the
interacting subsystems, namely OBU, LU, RBC, and Train. Each block communicates with the other blocks
by means of input/output messages. For example, the label named location is one of the outputs of the LU,
and it is input to the OBU block. This indicates a virtual channel by which a message is exchanged between
LU and OBU, including the current train location. Similarly, location_to_RBC is one of the outputs of the
OBU block, also serving as input to the RBC block: the OBU location, received from the LU, is passed to the
RBC, which, in turn, can compute the MA and send it to the OBU. The OBU is also in charge of activating
the brake, and the brake’s status can be visualised in the BRAKE_COMMAND scope element. Similarly,
other scope elements are used to visualise a TIMER, indicating the time from the last received MA (2.4
seconds in Figure 4), and SPACE_TO_EOA, which is the space from the current position to the end of the
MA (996.4 meters). Following the requirements, failure inputs (OBU_FAIL, RBC_FAIL, and LU_FAIL) are
associated to each block to simulate external events that may trigger system failures.

In the following sections we describe the behaviour of the different components of the model, namely OBU,
LU, RBC and Train.

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 16 of 70

Figure 4 Architecture of the Moving-block Simulink Model

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 17 of 70

3.2.3 Behaviour of the Moving-block System: OBU Component

Figure 5 reports a high-level view of the behaviour of the OBU component. The model has two main parallel
states: MESSAGE_QUEUE_MANAGER and OBU_MAIN.

MESSAGE_QUEUE_MANAGER, which appears in all the developed Simulink models, handles the queue
of received messages. Specifically, at each clock cycle the queue is emptied, and only the last message
received is read and processed. The internal part of the state is not reported in the picture, as this parallel
state has solely an ancillary role for the model.

OBU_MAIN represents the main behavioural block of the OBU is composed of a statechart of two states,
RUN and BRAKE. The system passes from the normal state RUN to the BRAKE state whenever the timer
set to receive a movement authority (OBU_out_timer) exceeds 10 seconds, or there is a failure (OBU_fail
== 1) or the train is moving and the current space limit is exceeded, i.e., the MA has been violated. The
system can return to the RUN state only upon reset (OBU_reset == 1).

The RUN state is itself composed of parallel states that handle the different functions of the OBU.
Specifically, four states are considered, and described in the following.

 GENERATE_LOCATION_REQUEST (Figure 6). Every 500 milliseconds (see condition after(500,
ms)) a location request message is sent to the LU.

 SEND_LOCATION_TO_RBC (Figure 7). At every cycle, the sub-state SEND_LOC_TO_RBC
controls whether a new location is received from the LU (function check_new_location). Then,
every 5 seconds (see condition after(5, sec)) a position report including the current location is sent
to the RBC. This happens only if the location received is not older than 1 second (function
check_location_fresh). In case an alarm is received from the LU, the statechart goes to the state
POSITION_ERROR. From this state, no update is sent to the RBC. As a consequence, no MA will
be received, and the system will eventually brake thanks to the 10 seconds timeout
(OBU_out_timer > 10 in Figure 5).

 RECEIVE_MA (Figure 8). If a new MA is received from the RBC (OBU_REC_MA_flg == 1), the
current MA value is updated, and an ACK message is sent to the RBC.

 COMPUTE_BRAKING_CURVE (Figure 9). At every cycle, the space to the end of authority is
computed based on the current MA value (MA_value), the location in which the MA was received
(MA_reference), and the current location (l_current_location). The space to the end of authority is
represented by the variable OBU_out_current_space_limit. This represents a form of braking
curve in the current instant, expressed in terms of space. The actual computation of the braking
curve in terms of speed, and taking into account the train weight and other parameters that depend
on the line, is not considered in the current model, as its main focus is on the interaction between
the different components and not on a faithful implementation of all the details of the control system.

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 18 of 70

Figure 5 Behaviour of the OBU component: High-level view

Figure 6 Behaviour of the OBU Component: GENERATE_LOCATION_REQUEST State

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 19 of 70

Figure 7 Behaviour of the OBU Component: SEND_LOCATION_TO_RBC State

Figure 8 Behaviour of the OBU Component: RECEIVE_MA State

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 20 of 70

Figure 9 Behaviour of the OBU Component: COMPUTE_BRAKING_CURVE State

3.2.4 Behaviour of the Moving-block System: LU Component

Figure 10 represents the behaviour of the LU component. Besides the support state
MESSAGE_QUEUE_MANAGER, which handles the message queue, and was already described in Section
3.2.3, we have a main state called LU_MAIN. This is composed of two sub-states: SEND_LOC and
LU_FAIL. The former sends a position report message including the current location of the train, every time
a request is received from the OBU (LU_REC_location_reques_flg == 1). Whenever a failure occurs, the
LU goes into the LU_FAIL state, and raises an alarm, which is received by the OBU (out_alarm == 1).

Figure 10 Behaviour of the LU Component

3.2.5 Behaviour of the Moving-block System: RBC Component

Figure 11 represents the main behaviour of the RBC system (here, we do not report the
MESSAGE_QUEUE_MANAGER state, for ease of visualisation). The system has three states, namely:
SEND_MA_TO_OBU, WAIT_ACK and FAIL.

In the state SEND_MA_TO_OBU, whenever a new location is received (RBC_REC_location_flg == 1) and
no failure occurred, a message called RBC_SEND_MA to be sent to the OBU is composed. Such message
includes the MA value for the OBU, which is computed by means of the set_current_MA_value function.

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 21 of 70

This function, reported at the bottom of the figure, takes into account the current location of the train, the
previous MA value sent, as well as the previous train position (OBU_current_location, previous_MA,
previous_train_pos). If the current location of the train does not appear to violate the old MA, a new MA
value is sent, always equal to 1000 meters, for the sake of simplicity. Instead, if the train appears to have
violated the MA, a message is sent to the OBU including an MA value equal to 0, so that the train is forced to
brake.

After sending the message to the OBU, the RBC goes into the WAIT_ACK state. If an ACK is received
(MA_ACK_from_OBU_flg == 1), the RBC goes back to the initial state and waits for another position report
from the OBU. If an ACK message is not received, the RBC remains in the WAIT_ACK state, and sends
again the message after one second from the previous one (see function check_resend_MA). This is
repeated for three times maximum. Then, if no ACK is received from the OBU, the system goes back to the
initial state (see transition l_count_MA_sent >= 3).

Figure 11 Behaviour of the RBC Component

3.2.6 Behaviour of the Moving-block System: Train Component

Figure 12 reports a simple statechart that represents the train behaviour, and it was introduced for simulation
purposes, as the train is not strictly part of the moving-block system, but it belongs to the controlled
environment. Hence, the one presented is not a faithful train model, but rather a model that enables the
whole moving-block system to be simulated, with variations of speed and space, based on user’s input and
on the brake activated by the OBU (variable in_brake). From the architecture view (Figure 4), the user can
select the current speed of the train, and set the value for the in_speed variable, coming from the SPEED
parameter (set to 30 in Figure 4). The statechart includes two states: TRAIN_STANDING and
TRAIN_MOVING. In the second state, the location of the train (variable out_space) is computed based on

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 22 of 70

the selected speed and the location of the train when the train was standing (out_space_old). The constant
parameter 0.05 is used simply to adjust the simulation and has not physical meaning.

Figure 12 Behaviour of the Train Component

3.3 ATO

3.3.1 ATO Overview

Figure 13 depicts the automatic train operation system (ATO) and the contextual elements of the
environment with which the ATO system interacts. Specifically, we have a train DRIVER, the ETCS On-
board Unit (called OBU, in the following), which is the on-board automatic train protection (ATP) system, and
the TRAIN.

The OBU interacts with the ATO to send information about certain external conditions, configuration data, as
well as the values of the MA received from the RBC. In our simplified context, the MA values represent also
the missions of the ATO. In a more realistic context, missions and MA would be separated.

The DRIVER is in charge of starting the automatic driving mode of the ATO. In this mode, the ATO
accelerates the train until a certain target speed, and then brakes the train sufficiently in advance before the
end of the MA received from the OBU. We will see that in the integrated model, presented in Section 3.4 all
accelerate and brake commands will pass through the OBU. However, at this stage, it is assumed that the
ATO has full control of the train.

Figure 13 Overview of the ATO in its context

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 23 of 70

3.3.2 ATO Model Architecture

Figure 14 represents a high-level view of the ATO component (light grey block) in its environment. The
environment is composed of three components:

 DRIVER (cyan block), which starts the ATO system (label POWER_ON), commands the automatic
driving function (label DRIVE), and activates the train brake lever (label TBL). These commands are
set by the user, and forwarded to the ATO.

 OBU (Stub) (green block), which is a simplified version of the OBU considered in the moving-block
system from Section 3.2, and limited to those functionalities that are relevant for the ATO, namely
sending the movement authority (label MA), setting the status of the external conditions that allow
the ATO to change its internal states (ATO_COND, ETCS_COND), and sending data configuration
messages (DATA) when requested by the ATO at start-up (DATA_REQ).

 TRAIN (red block), which is again a representation of the train dynamics, although slightly more
complex with respect to the one used for the moving-block system and presented in Section 3.2.6.
Indeed, the block takes as input the acceleration and braking commands coming from the ATO
(ACCELERATE, BRAKE, full_service_brake), and changes Speed and Space accordingly. Two
parameters (INC_CONST_SPEED, INC_CONST_SPACE) are used as input to enable a realistic
simulation.

The ATO component takes input from the different elements of the environment and produces output, mainly
towards the TRAIN component. Besides the input to the ATO already mentioned above, the ATO has also
two external input variables, which are in_EXT_CONST_START_BRAKE, a parameter to decide when the
system shall start braking with respect to the end of the MA (currently arbitrarily set to 0.4), and
in_EXT_fault, which simply injects a failure in the ATO system.

Figure 14 Architecture of the ATO Model

In the following section, we describe the internal behaviour of the ATO block, including also some details of
the TRAIN block that are relevant to understand the ATO behaviour.

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 24 of 70

The DRIVER and OBU components of the environment are used only for simulation purposes, to enable
debugging and simulation of the ATO behaviour, and therefore their internal behaviour is not reported here.

3.3.3 ATO Behaviour: Operating Modes

Figure 15 reports the main statechart of the ATO named ATO_Operating_Modes, which controls the
changes of ATO operating modes, based on external conditions (as for the other models, also in this case
we have a MESSAGE_QUEUE_MANAGER block, but it is not reported in the figure). The statechart has
three main states, namely NO_POWER_NP (representing the initial status of the system when it is not
activated yet by the driver), POWER_ON (state of activation) and FAULT_FA (state of fault due to external
conditions).

In the POWER_ON_STATE, the ATO system starts from the configuration state (ATO_CONFIG_CO), and
requests the data to the OBU. When the data is received (l_msg_data_flg == 1), the system goes to
ATO_Not_Available_NA. If the operational conditions are fulfilled, the system goes to ATO_Available_AV.
Note that the operational conditions are fulfilled when both the ATO and ETCS conditions coming from the
OBU (ATO_COND, ETCS_COND already mentioned in Figure 14) are fulfilled, and this is controlled by the
check_op_conditions function in Figure 15. From the ATO_Available_AV state the system goes to the
ATO_Ready_RE state, if the engagement conditions checked by the function check_eng_conditions are
also fulfilled.

From the ATO_Ready_RE state, the system goes to the ATO_Engaged_EN state upon external command
coming from the DRIVER block. This external command identified by the variable l_DRIVE_msg_flg, which
is a local variable linked to the DRIVE label from Figure 14. The internal part of the ATO_Engaged_EN state,
which is the main state of the ATO and is concerned with the automatic driving of the train, will be described
in Section 3.3.4.

From the ATO_Engaged_EN state, the system can move to three states: back to the ATO_Available_AV
when its mission is finished (l_end_of_control_cycle == 1); back to the ATO_Not_Available_NA, in case
ETCS conditions are not fulfilled anymore; to the ATO_Disengaged_DE state if only the ATO conditions are
lost, but the ETCS conditions are still fulfilled. In case ATO conditions are restored within 5 seconds, the
system goes back to the ATO_Engaged_EN state, otherwise the system starts the full service brake going to
the ATO_FSB state. When the train is standing (in_train_moving == 0), the system goes back to
ATO_Not_Available_NA. This state is also reached if the driver activates the TBL, hence taking charge of
braking the train.

Note that the ATO system does not activate the brake in case ETCS conditions are lost, as the train control
should be performed by the OBU in this case.

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 25 of 70

Figure 15 Statechart representing the Operating Modes of the ATO

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 26 of 70

3.3.4 ATO Behaviour: Speed Control and Train

In this section we describe how the ATO system controls the train speed, based on the MA messages
received from the OBU.

Figure 16 reports the internal behaviour of the engaged state of the ATO, called ATO_Engaged_EN. Instead,
Figure 17 reports the simple model of the train, which is controlled by the ATO.

The statechart ATO_Engaged_EN has two main states, UPDATE_MA and DRIVE_TRAIN. The former takes
care of unpacking new MA messages coming from the OBU. The latter is in charge of commanding
acceleration (variable out_acceleration) and brake (out_brake) based on the space to the end of the MA
(out_space_to_EOA) which is continuously computed by the function get_current_space_limit, analogous
to the one already described in Section 3.2.3, and included in the OBU of the moving-block system. The
DRIVE_TRAIN statechart has four exclusive states: NO_ACCELERATION, in which the train does not
accelerate; YES_ACCELERATION, which is active until the target speed is reached; BRAKE, which is
activated if the space to the end of the MA is lower than a certain rate set by the input parameter
CONST_START_BRAKE; STANDING, which is the final state, reached when the mission is finished, the
train is standing, and no new MA is received.

The states in the ATO_Engaged_EN statechart have some corresponding states in the statechart that
represents the train behaviour in Figure 17. This statechart includes the states TRAIN_STOPPED,
TRAIN_MOVING, TRAIN_CONSTANT_SPEED and TRAIN_BRAKING, which have an intuitive role. As the
model of the train is a simplified version of the actual dynamic of a train, the space and the speed are
increased constantly according to the input parameters INC_CONST_SPEED and INC_COST_SPACE
whenever the train is moving. When simulating the model, these parameters shall be adjusted to enable a
realistic simulation: they are currently set to 0.001 and 0.0001, but different values maybe set if the
simulation is too slow or too fast (this depends on several factors, including the characteristics of the PC
used to run the simulation).

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 27 of 70

Figure 16 Statechart representing the internal behaviour of the ATO Engaged State

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 28 of 70

Figure 17 Statechart representing the Train model for the ATO

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 29 of 70

Figure 18 Multiple MA received and corresponding speed and space

To understand the interaction between the different components that appear in Figure 14, and especially the
ATO, the OBU (Stub) and the TRAIN, it is useful to look at the scenario reported in Figure 18. The figure
shows the space crossed by the train, its speed, and the variations of the variable out_space_to_EOA
indicating the space remaining to the end of the MA. In the scenario, four MA messages are received, with a
constant value of 1000 meters. At each iteration, the train accelerates until the speed of 80 Km/h is reached,
keeps its speed constant and then starts braking when approaching the end of the MA. If a new MA is
received, the train starts accelerating again.

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 30 of 70

Figure 19 Brake and acceleration commands in relation to the train speed

To better appreciate the variation of speed, in relation to acceleration and brake, it is useful to look at Figure
19, which is associated to the same scenario with the reception of multiple MA messages described above.
In the figure, we see that the acceleration command is active until the target speed of 80 Km/h is reached,
and the train starts braking after a while to avoid violation of the MA. This process is repeated for four times,
i.e., anytime a new MA message is received. At the end, no new MA is received, and the train reaches 0
speed (in Figure 16 this activates the variable l_end_of_control_cycle). To activate again the automatic
driving mode, and enter the ATO_Engaged_EN state, a new MA must be received, and the DRIVER block
needs to send another DRIVE message to the ATO system (see Figure 14).

3.4 Integrated Model

The moving-block system model and the ATO model described in the previous paragraphs were developed
independently, and then integrated in a single model. While the initial models maintained their overall nature
and structure, adjustments were performed to enable a coherent simulation. In the following, we describe the
architecture of the integrated model, and we present scenarios of its behaviour in a typical, successful case,
and in case of violation of the MA by the ATO. We do not discuss again the details of the behaviour of the
different blocks, as these were already described in the previous sections.

3.4.1 Integrated Model Architecture

Figure 20 and Figure 21 report the two parts that compose the overall architecture of the model that
integrates moving-block system components and ATO. The DRIVER and TRAIN blocks come from the
environment of the ATO model. The ATO block is architecturally equivalent to the original one. The RBC and
LU come from the moving-block model. The RBC has been adapted, in that it now includes an additional
constant as input, named DEC_CONST_MA. Such constant value is used to constantly decrease the MA
value sent to the OBU during the simulation. The value is decreased every time a new MA is requested. This

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 31 of 70

was necessary in order to have a realistic simulation in which the MA value changes at each iteration and it
is not constantly set to 1000, as in the initial model.

The OBU block is substantially the same as the original one described in Section 3.2.3, with some additional
input (DATA_REQ, full_serv_brake_to_OBU, etc.) that come from the ATO model. Indeed, the OBU is the
only component that has a direct control of the TRAIN. All the commands from the ATO (accelerate, braking)
are forwarded to the OBU, which in turn forwards them to the TRAIN component. With this architectural
solution, the OBU has full control of the train movement.

The OBU also has an additional input named BRAKE_SPACE. This parameter indicates the number of
meters (100, in the figure) before the end of the MA that the system should consider to start emergency
braking. This happens only when the ATO fails to control the train, and does not brake sufficiently in
advance. Such a scenario can be triggered by setting to -1 the input parameter of the ATO named
IN_EXT_CONST_START_BRAKE, as in Figure 20. If the user wishes to trigger a normal scenario, in which
the ATO brakes before the OBU, then the parameter shall be set to values such as 0.4, as in Figure 14.
These scenarios will be discussed in the following sections, in which we describe the behaviour of the
integrated model.

Figure 20 Architecture of the model that integrates Moving-block system and ATO (Part 1)

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 32 of 70

Figure 21 Architecture of the model that integrates Moving-block system and ATO (Part 2)

3.4.2 Integrated Model Behaviour

Figure 22 and Figure 23 represent the main variables of the considered integrated model, in a normal
scenario. In the scenario, the ATO drives the train based on the MA produced by the RBC and forwarded by
the OBU, and the OBU does not activate the emergency braking. Specifically, Figure 22 shows the value of
the signal space_to_EOA as computed by the OBU, which varies in relation to the train movement and to
the new MA value received from the RBC, which decreases constantly each time the OBU sends a position
report. The ATO accelerates until a maximum speed value, and some space before the end of the
movement authority, it starts braking. Then, when a new MA is received, the system starts moving again,
after the DRIVER has allowed that, by triggering the signal in_DRIVE in Figure 20.
Figure 23 focuses on the speed, accelerate and brake variables for the same scenario.

Figure 24 shows the behaviour of the system in case the ATO does not stop the train as expected, and the
OBU is forced to brake. The MA values included in the messages from the RBC (pink lines) decrease until
the OBU starts braking, so that the train is stopped before the end of the MA.

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 33 of 70

Figure 22 Normal behaviour of the ATO in the integrated model

Figure 23 Normal behaviour of the ATO in relation to acceleration, brake and speed

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 34 of 70

Figure 24 Case of MA violation by the ATO

3.5 Requirements Elicitation and Simulation with Simulink: Observations

This section is dedicated to discuss the observations through the usage of Simulink-Stateflow for early
requirements elicitation and simulation in the context of ASTRail.

 Immediate visual feedback on system behaviour: when modelling through Simulink-Stateflow, the
user can simulate the requirements, and have an immediate feedback of the system behaviour. This
is not possible with a static diagram. Such feedback allows the user to increase their confidence on
the correctness of the requirements, but also to identify incomplete requirements. A typical case of
incomplete requirements occurs when one observes the simulation flipping between neighbouring
states: this may occur because the conditions to remain in a certain state are not well defined. In
other cases this may occur because there are variations of the input variables that are too frequent,
leading to frequent switches between states. A case of incomplete, or too generic, requirements
emerge when there is a the need to take some practical decision when modelling the system.
Sometimes, the decisions were not necessarily guided by the requirements, which tend to abstract
away from concrete behaviours. By asking the domain expert for clarifications, it was possible to
further refine the requirements.

 Ease of interpretation for domain experts: in our context, the models were developed by formal
methods experts, and were agreed by the domain expert. After an explanation of the principles of the
Simulink-Stateflow language, and using the images of the developed Simulink-Stateflow diagrams as
references, the domain expert was able to pinpoint undesired behaviour and defects in the model. At
the same time, the domain expert could more easily visualise problems with the requirements that
were used as a source to define the model, and take corrective actions.

 Simulation time depends on multiple factors: the model and its parameters have been set to execute
a simulation in a reasonable amount of time, and observe the train movement, acceleration and
speed with some degree of realism. The goal was to have a feeling of the overall behaviour, and not

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 35 of 70

to find the correct values of each parameter. However, the simulation time may have very relevant
variations, also using the same parameters’ values. These time variations are related to the
processing time of the simulation, and may depend on several factors, including the size of the
simulated model, and the technical capabilities of the PC. The reader will notice that in Figure 14 the
parameters for the train INC_CONST_SPEED and INC_CONST_SPACE, which are used to
increase speed and space of the train, are set to 0.001 and 0.0001, respectively. In Figure 21, where
the integrated model is presented, these parameters are set to 0.1 and 0.01. This increase in the
parameter was driven by the fact that, since the model was larger, the previous parameters would be
too low to have a realistic change of the values of space and speed. Overall, when using Simulink-
Stateflow for the purpose of a realistic, early simulation, these aspects need to be taken into
account.

 Nondeterminism not supported: the Stateflow language does not support nondeterministic choices.
This implies that the user has to define all the input and associated output, without leaving space for
nondeterministic behaviour. On the one hand, this leads to a more faithful representation of the
actual code that will run on the real system, which will be deterministic. On the other hand, this
leaves less space to abstract away from deterministic behaviours that are not decided during the
early stages of development, therefore leading to a more complex, but also more restricted model.

 Not a faithful model of reality: while the user is constrained to take some choices to let the simulation
run, some of the choices taken are unavoidably a simplification of reality. For example, in Figure 11,
the RBC always sends a MA with a value of 1000 meters. Although this allows the user to have an
acceptable simulation as shown in Figure 18, this is not what would happen in reality, as the value of
the MA may depend from the train position in relation to other trains. When integrating the moving-
block system with the ATO, another problem emerged: the MA value should be reduced in a
progressive manner, in order to have the ATO brake the train (we recall that the ATO mission is
equivalent to the MA in this model). To address this issue and have the simulation run presented in
Figure 22, the RBC needed to be modified so that it would decrease the MA value each time an MA
was sent. This is of course a simplification of reality, oriented to enable a coherent collective
behaviour of the different components. This is acceptable at this stage of development, as our goal
is to assess the logic of interaction. However, when more detailed models are defined, these issues
need to be considered, and realistic choices need to be taken.

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 36 of 70

4 Qualitative verification

In this section we provide a description of the qualitative/functional formal specification and verification
process followed, based on the process described in Sect. 2.2.2.

As said in Section 2, the initial step of the validation process has been the refinement of the initial moving
block model, its extension with ATO modelling, and the animation of the composition with the Simulink-
Stateflow tool. The result of this step is a stable set of natural language as reported in Annex A – System
Requirements.
At this point, our interest is to define a formal model, consistent with respect to established requirements,
upon which to verify the functional (behavioural) requirements of the system.

Our choice is to pass from the initial requirements and initial Simulink model towards a preliminary
behavioural semi-formal description of the system based on UML statecharts.
Before tackling the issue of translating the design of the source specification language of a formal-verification
tool, that could in principle be any of tools available at the state of art (e.g. CADP, ProB, SPIN), it is
important to have a system design that is as clear as possible.
The Simulink model might play with some success this role, but it has three main drawbacks: the first one is
that it relies on a proprietary notation which only the commercial tool is able to animate (and partly verify), the
second one are the strong assumptions made in the composition of concurrent, but independent,
subsystems (which are sequentially ordered and executed synchronously one step at a time), and the third
one is that the Simulink model is inherently deterministic therefore specific choices need to be taken,
possibly leading to over specification, to support the system simulation.

Our choice of using standard UML has been impacted by the fact that this notation has a public specification
(OMG UML2.5 Specification)1, a rather clearly defined semantics when certain problematic aspects are not
used, and the support of a rich set of design, transformation, animation and verification tools some of which
are commercial only (e.g. IBM Rational Software Architect2, MagicDraw3, PTC Integrity Modeller4, Enterprise
Architect5), while others free and open source (e.g. . OpenMBEE6), UML Designer7, UMC8, Papyrus UML9).
Clearly also the standard UML choice is not immune from drawbacks, both in terms of tool support and
specification language aspects, with which we will have to deal.

In Section 4.1 we will show our reference UML description of the system, while in Section 4.2 we will
describe the followed approach for translation the UML description into a real formal model based on the
Event B notation and in Section 4.3 the present to verification process conducted with the tool ProB while in
Section 4.4 we will present some conclusions and observations.

4.1 The UML system description

In this section, after a brief summary of the graphical elements used in the diagrams (subsection 4.1.1), we
will hint the main characteristics of our UML modelling of the Moving Block system and the ATO system
(subsection 4.1.2), before presenting the detailed UML models of the OBU (subsection 4.1.3), RBC
(subsection 4.1.4), and ATO (subsection 4.1.5) system components.

4.1.1 Briefs on the used UML statecharts notation

In the following sections we will present a graphical representation of the OBU, RBC, ATO components of
the system. Those graphical representations will make essentially use of the following symbols:

 denoting the initial state of a composite sequential state.

1 https://www.omg.org/spec/UML/2.5.1/PDF
2 https://www.ibm.com/developerworks/downloads/r/architect/index.html
3 https://www.nomagic.com/products/magicdraw
4 www.ptc.com
5 https://sparxsystems.com/products/ea
6 http://www.openmbee.org
7 http://www.umldesigner.org/
8 https://fmt.isti.cnr.it/umc
9 https://www.eclipse.org/papyrus/

https://www.omg.org/spec/UML/2.5.1/PDF
https://www.ibm.com/developerworks/downloads/r/architect/index.html
https://www.nomagic.com/products/magicdraw
http://www.ptc.com/
https://sparxsystems.com/products/ea
http://www.openmbee.org/
http://www.umldesigner.org/
https://fmt.isti.cnr.it/umc
https://www.eclipse.org/papyrus/

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 37 of 70

 denoting the exit point from a composite state (or submachine)

 denoting a simple state of the model

 denoting a composite state of the system separately expanded (i.e. a submachine).

 denoting the information associated to a transition between states, where in particular:
- The red identifier represents a unique label associated to the edge (used for the ProB translations)
- The trigger part (on the left side of "/") denotes the event triggering the transition (highlighted in italic) and
possible a guard condition.
 In particular:
 The trigger "tick" denotes a clock event signalling the passing of 500 ms.
 The trigger "istep" denotes the execution of an internal step, not trigger by any external event.
- Transitions without trigger (with trigger represented by "-") denote "UML completion transitions" and,
 as required by the UML semantics, have a higher priority w.r.t all other triggered transitions.
- The actions part (on the right side of "/") denotes the sequence of actions performed when the transition is
 fired.
- The action of sending a signal to another active component is highlighted using a bold case.
- The GREEN IDENTIFIERS are used to denote the abstract events corresponding to the triggering of the
 transition (useful for mapping the properties to be verified to the actual system evolutions).
Notice that the red and green parts of this information are not part of the UML specification and have just an
informative role (with no semantic effects).

For example the diagram fragment illustrated in Figure 25 A statechart diagram fragment describes that

when the state checkMSG is active, when the signal istep can be dispatched from the event pool, and

when the guard LastMA != null is true, then the signal istep can be removed from the pool and the

object can move into the update_BC state, after sending to the RBC object the msgACK signal. That system

evolution, to which has been given the name o12_new_MA corresponds the to tree abstract events (maybe

mentioned in the requirements) i.e. the fact of having received a new MA (NEW_MA),the fact of having sent

the corresponding ACK (SEND_ACK), and the sending of the MA data to the ATO (NOTIFY_MA).

Figure 25 A statechart diagram fragment

We refer to the OMG UML2.5 Specification - Section 14 State Machines - for a more detailed and complete
description of the semantics of UML statecharts and of the statecharts graphical notation.

4.1.2 Some differences w.r.t Simulink/Stateflow modelling

The semi-formal specification language used for this step, and the necessary choices to be performed in the
modelling, inevitably introduce a specific language/tool flavour to the result. This is the reason for which the
formal model resulting from this step is somewhat different from the Simulink model already developed
during the requirements elicitation phase.

Some examples between the two semi-formal methodologies of system design are the following:

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 38 of 70

- The Simulink model relies on internal timers to represent time-related aspects of the model, while
our UML models relies on explicit "tick" signals arriving from the environment as a way to represent
the same aspects.

- In a Stateflow chart the transitions exiting from a state are numbered and their number represents
the order in which they should evaluated for execution, while in UML there is no such numbering and
any priority among the exiting transitions should be explicitly modelled by the conditions appearing in
the transition guards.

- In Stateflow a transition which has source in a composite state has a higher priority than any
transition nested inside the composite state itself, while in UML the converse applies.

- When a Stateflow model includes different statecharts representing concurrent entities, the possible
evolutions of the system are obtained by letting each component to advance one step, in a statically
fixed order. The UML definition does not actually specify the behaviour of a system composed by
several independent state machines. Only in the case of concurrent regions of the same parallel
state the UML definition specifies that all the fireable parallel transitions should be fired in the same
run-to-completion step in an unspecified order. In our UML model of the system we suppose that the
state machines corresponding to the various system components (OBU, RBC, ATO) can evolve
independently and asynchronously, being coordinated only through their exchanges of messages, or
explicit - time modelling - "tick" signals. We moreover suppose that the event pools associated to
each object are plain FIFO queues.

4.1.3 Introduction to the Moving Block and ATO UML modelling

The three main components of our system are the OBU, the RBC, and the ATO. In our case, we abstract
from a separate modelling of the LU as an independent entity, and we consider it just an internal sub-activity
of the OBU. When not necessary for the verification of the system requirements, the interactions of our main
components with other external components of the system are abstracted without explicitly modelling the
details of them. For example, when the OBU commands an emergency braking because of an ATP violation,
we model this fact as an occurring abstract event ATP_BRAKE (the abstract events occurring as logical
effect of a transition are highlighted in green) without actually modelling the sending of signal from the OBU
the train component.

Following the same abstraction principle, we do not model the precise data and messages being exchanged
between OBU and the RBC (or OBU and ATO), like the actual train position data or the actual structure of
the movement authority data. From our abstract point of view, it is sufficient to know that a new movement
authority has been sent by the RBC and received by the OBU, or that a new Position Report has been sent
by the OBU and received by the RBC.

In the design of ATO we abstract from the actual values of the current movement authority, the current train
position and speed, and therefore from the actual acceleration deceleration commands used to drive the
train according to some driving strategy when in the Engaged or Disengaged states. Our model also does
not take into consideration all the driving aspects related to the interactions with the Trackside component
related, e.g. to the details of the possible train mission data.

Finally, we model the OBU and RBC as concurrent, independent periodic activities that are activated with a
period of 500 ms, and 500 ms is also the atomic step at which the ATO can perform a state transition.
This means, for example, that the ATO receives any relevant data from the OBU no more than once
between from one step and the next. No assumptions are made on the possible way in which the OBU,
RBC, ATO cycles may overlap, i.e. any interleaving of their internal activities is possible.

Since we are using for the modelling only Standard UML notations (i.e. not using any specific UML-RT or
SysML profiles) we abstract from a real-time modelling of time and we relate all the temporal system
properties the equivalent number of the component cycles. For example, since the OBU cycle is of 500 ms,
the requirement of not sending a new Position Report before 5 seconds from the last one is translated into
the not sending of a new Position Report before 10 OBU cycle have been completed. Similarly, the
requirement of stopping the train if no MA is received within 7 seconds is transformed into the modelling of
the train stopping if no MA is received before 14 OBU cycles have been completed.

4.1.4 OBU

Figure 26 shows the high-level structure of the UML OBU state machine.

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 39 of 70

The OBU behaviour is that of a cycle that is triggered by a tick signal that arrives every 500 ms.
At each cycle, three main sub activities are performed in sequence:

1) the computation of the current train position
2) the (possible) sending of the position of RBC, and
3) the handling of (possibly arrived) messages and update of the Braking Curve (with possible brake

activation in case of ATP violation or MA timeout).

If the cycle last more than 500ms a fatal error occurs and the train stops.

Figure 26 OBU State Machine

The computation of a new train position starts with a Request being sent to the Location Unit (LU). The
Location Unit replies either with a new position (notified to ATO), or with the notification of the failure to
compute the current position. Figure 27 show the expansion of the Compute_Position stub present in Figure
26. The sending of istep signal to the object itself (the OBU) is a necessary trick to avoid the use of transition
without trigger (i.e. completion transitions) inside the Send_PR submachine (see Figure 28).

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 40 of 70

Figure 27 The Compute_Position submachine

Figure 28 shows the activity that must be performed for deciding whether a new Position Report (PR) has to
be sent to RBC. The sending occurs only if a "recent position" of the train is available, and 5 seconds are
passed from the last sending of a Position Report. A "recent position" is a train position computed either in
this cycle or in the previous one (i.e. not older that 1 second). Figure 28 show the expansion of the Send_PR
stub present in Figure 26.

Figure 28 The Send_PR submachine

After having possibly sent a new PR, the OBU activity proceeds with the elaboration of the arrived
messages, as shown by Figure 29. Correctly arrived Movement Authorities (MA), if any, are received, and
notified to ATO (o15_end_cycle). If no Authority is arrived and the 7 seconds timeout is expired train
braking is activated (o13_MA_timeout). If a new Movement Authority is arrived, an ACK msg is sent to RBC
(o12_new_MA) and the received MA is forwarded to ATO. If the MA timeout has not expired (whether or not
a new MA has just arrived) the Breaking Curve is updated and this activity might trigger an emergency
braking in the case of an ATP violation (o16_ATP_violation). If a ZeroMA has just been received the
activation of the brakes is always performed. When braking, the loss of the ETCS and ATO conditions is
notified to ATO.

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 41 of 70

Figure 29 show the expansion of the Handle_Msgs stub present in Figure 26.

Figure 29 The Handle_Msgs submachine

The "any:bool" notation used in ATO.NotifyATO(any:bool) signalling indicates that any nondeterministic
true/false value might be sent as ATO_Condition.

4.1.5 RBC

The RBC behaves as a cycle that is triggered by a tick signal that arrives every 500 ms. If the whole RBC
cycle lasts more than 500ms a fatal error occurs and the RBC shuts down.

As shown in Figure 30, at each cycle four main sub activities are performed. The first activity deals with the
handling of all the arrived messages (PR and ACK). If a Position Report is arrived the next step is to
compute and send a new Moving Authority. If no Position Reports are arrived, but there are still old MA that
might have to be resent the next step is to handle the possible resending. If there are no MA to compute or
resend we complete the cycle.

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 42 of 70

Figure 30 The RBC State Machine

In the Receiving phase (see Figure 31) all the incoming messages (msgACK, msgPR) are acquired, and the
next step is selected depending on them. The reception of new Position Report triggers the computation of a
new MA, the reception of an ACK disables further sending of old MA. The possible loss or damage of a
message is modelled by the nondeterministic possibility of discarding a just arrived message.

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 43 of 70

Figure 31 The Receiving submachine

The computation and sending of a new Moving Authority (see Figure 32) begins with a check on the validity
of the received Position Report. If the check Fails a ZeroMA is sent instead of a NewMA.

Figure 32 The Compute_MA and Send_MA submachines

The resending of a Moving Authority (see Figure 33) occurs only for at most n times (n=3) at intervals of x
seconds (x =1), i.e. every two cycles, for three times.

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 44 of 70

Figure 33 The resend_MA submachine

4.1.6 ATO

The statechart structure of the ATO component reflects rather precisely the structure already described in
Figure 15. Briefly, we remember that after power-up the ATO asks for, and waits from, some configuration
data from the OBU. Once configured, it moves into the Not_Available state until all its Operational conditions
are satisfied (etcs_conditions, ato_conditions). When this happens the ATO passes in the Available state in
which it waits for the availability of a sufficient Moving Authority and the confirmation on the status of the train
doors before moving to the Ready state. In the Ready state the activation driver "drive_cmd" command is
waited before starting the actual engagement of the ATO and its control of the train motion.

From the Engaged State, the system returns to the Not_Available state if the etcs_conditions are lost, and to
the Disengaged state is just the ato_conditions are lost. From the Engaged State, if the operational
conditions still remain valid, the system returns to the Available state if the train normally stops having
reached the end of the current Moving Authority. ATO can remain in the Disengaged state for at most 5
seconds (in the ato_conditions do not become valid again) before activating the full service brake, or the
ATO can (before the 5 seconds expiration) directly return to the Not_Available state if the driver commands
the TBL.

In our model the ATO system (see Figure 34) is modelled as composed by two concurrent regions ATO_Ops
and Main_Control, the first modelling the desired operational behaviour of the ATO as described above, and
the second one modelling the acquisition of signals and data from the external environment.

In our model we make the assumption that ATO state transition occur at the same frequency of the OBU and
RBC cycle, i.e. once every 500 ms. The passing of the 5 seconds delay in the Disengaged state is therefore
modelled by the progress of 10 ATO steps.

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 45 of 70

Figure 34 The ATO State Machine

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 46 of 70

We can see that the behavior of the ATO is affected by several signals arriving not only from the OBU, but
also from the Train and the Driver. We suppose that both the train and driver may send signals to the ATO
with a period that is no shorter than the 500 ms of the rest of the system.

From this point of view, it is useful/necessary to give at least a minimal description of these other
components of the environment in order to build a complete, closed and executable model of the full system.

The modelled driver (see Figure 35) executes just one sequence of power-on/power-off cycles w.r.t the ATO.
A similar assumption has been made for OBU and RBC, that once Stopped or Shutdown, remain in that
state. At any time, before powering off the ATO (but no more than once every 500 ms) may send a signal to
ATO notifying the change of status of the TBL or the issuing of a DRIVE command (after power-on).

Figure 35 The Driver State Machine

The modelled train (see Figure 36)can be in a stopped or moving state, and when stopped can have the
doors open or closed. Each time the status of the train changes a notification is sent to ATO (no more than
once every 500 ms).

Figure 36 The Train State Machine

4.2 The EventB/ProB modelling

The basic element of an EventB model is a state machine. A state machine has a local state and defines a
set of operations that can be triggered from the environment to perform transformations of this local state.
The state transformation performed by an operation can be nondeterministic, and the machine operations
may be enabled only under certain state-dependent conditions. A state machine can be hierarchically
structured in submachines, but no two machines can call each an operation of the other.

The overall structure of a ProB state machine (as used in our modelling) is shown in Figure 37:

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 47 of 70

Figure 37 The structure of a ProbB state machine

A typical structure of the definition of an operation is as shown in Figure 38:

Figure 38 Structure of a ProB operation definition

In our case we have at least three system components that communicate in a bidirectional way:

 OBU <--> RBC and OBU <--> ATO

We cannot model these components as stand-alone ProB machines, and we are forced, instead, to merge
all our components into a single ProB state machine. In the UML model, each object is implicitly associated
with its own events queue where all incoming signals are enqueued, and from where they are dispatched at
each run-to-completion step of the UML state machine. In our ProB model we have to model explicitly the
presence of these queues (one for each UML component) in the local state of the ProB machine, and the
corresponding dispatching operations.

Our UML -> ProB translation idea is to associate each edge in the UML model as a possible ProB operation
supported by the EventB machine, which is enabled precisely under the same conditions of the UML model,
and with precisely the same effects. To increase the readability of the ProB model, the unique identifier
associated in UML to an edge becomes in ProB the name of the operation modelling the same evolution.
While the full ProB models can be retrieved from [25], here we show just a few examples of such
translations.

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 48 of 70

Let us consider the case shown in Figure 39 of UML State Machine evolution taken from the model of the
OBU behaviour:

Figure 39 An OBU completion transition

Supposing that we will have in our ProB machine the set of initial definitions shown Figure 40:

Figure 40 Initial part of ProB machine definition

Then, the list of operations will include the definition of the o3_position_ok operation as shown in Figure 41:

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 49 of 70

Figure 41 The o3_position_ok Operation

As a second example, in the case of the OBU State Machine evolution shown in Figure 42:

Figure 42 A triggered OBU transition

the translation of this transition will be described by the operation shown in Figure 43:

Figure 43 The o13_MA_timeout Operation

Some UML aspects are more complex to model inside a ProB machine. For example, in the case of an UML
transition activated by an event possibly preceded in the object event queue by another deferred (but not
enabled for dispatching) event, some additional complexity in needed for the definition of the conditions and
transformations performed by the corresponding ProB operation.

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 50 of 70

4.3 The EventB/ProB verification

Once the full model of the integrated ATO-OBU-RBC system is modelled in ProB, the observation and
monitoring of its evolutions become quite easy and friendly. The Figure 44 shows the way in which (one of)
the ProB GUI allows to monitor and animate the system evolutions.

Figure 44 The ProB simulation GUI

We are mainly interested with the LTL verification approach because this is the most useful for the
expression of temporal event-based behavioural properties.

It is worth noticing that the LTL logic supported by ProB allows the specification not only of basic state

predicates involving the values of the machine local variables (e.g. {OBUSTATE /= STOPPED}), but also

the specification of properties referring the operation names triggering the system evolutions (e.g.

Values of the State Machine variables

at the current state
Possible evolutions from

the current state

Prob model

Sequence of steps performed

to reach the current state

Navigation buttons

for moving in the history

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 51 of 70

[o1_startcycle]). ProB supports a rich set of temporal operators, inclusing the classical X, F, G, U, W,

R, that can be arbitrarily composed (for more detail see10).

Here we only hint a few examples that reflect most of our usages:

G (<subformula1> => <subformula2>)

Starting from the curent state of the path, whenver <subformula1> holds, also <subformula2> holds.

F (<subformula>)

Starting from the curent state of the path, eventually <subformula1> holds.

<subformula1> U <subformula2>

Starting from the curent state of the path, <subformula1> holds until <subformula2> eventually holds in

the future.

<subformula1> W <subformula2>

Starting from the curent state of the path, <subformula1> holds until <subformula2> possibly holds in

the future (but if <subformula2> never holds in the path, it is acceptable that <subformula1> holds

forever).

X <subformula>

Starting from the curent state of the path, <subformula1> must immediately hold after one step.

When verifying a property that is internal to a subsystem, e.g. one of the "Moving Block System
Requirements" described in Annex A – System Requirements, it would be overkilling to attempt its
verification in the full integrated system including the actual ATO, when the presence of such subsystem is
actually not relevant.

It is instead convenient to the prove these properties taking into account a reduced subsystem in which
some components, if possible, are removed or replaced by a smaller, and more abstract models.

For example, while proving the Moving Block Requirements we might simply omit the presence of the ATO,
DRIVER and TRAIN components, and when proving properties of the ATO component we might simply omit
the presence of RBC and replace the OBU system with a simpler abstract model describing its abstract
behaviour. These simplifications actually allow to make the verification feasible reducing the magnitude of
the number of states to be analysed from billions of to a few hundreds of thousands (or just a few millions)
states.

Unfortunately, these "abstract replacement" of subsystems cannot be done automatically in the ProB/EventB
setting but must be performed by hand, taking the responsibility to find the optimal choice in terms of state-
space reduction and preservation of the system properties of interest11.

4.3.1 Moving Block verification

The verification of the Moving Block subsystem can be performed by just taking into account the OBU and
RBC components. The resulting ProB state machine is the one described in the file "PROB-MB-alone-
v13.mch" (See [25]).

We show here only some of verifications that can be performed to show how the functional requirements are
actually reflected within our model, and possibly encoded and verified in terms of ProB LTL logics.
It is beyond the purpose of this deliverable to show in detail how all the requirements stated in Annex A are
handled by our modelling and verification. In the following we will show also a few examples of how some
other requirements couldn't instead be formally proved on the current system, mostly because they may refer

10 https://www3.hhu.de/stups/prob/index.php/LTL_Model_Checking
11 We did not investigate in detail the Prob/ EventB machine refinement features, that might help to this
purpose

https://www3.hhu.de/stups/prob/index.php/LTL_Model_Checking

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 52 of 70

to aspects intentionally not modelled or modelled in an abstract way. Then, we will focus on those
requirements that can be proved, instead.

Let us consider requirement SFT_01:

We do not model the real binary content of messages, and we assume it to be just an abstract value like
"NewMA", ZeroMA", NewPR", therefore we do not explicitly model peer authentication and message integrity
evaluations. However, when a message arrives to OBU or RBC, we model the nondeterministic possibility of
discarding it (abstract events MA_MSG_FAIL, ACK_MSG_FAIL, PR_MSG_FAIL). This abstract possibility
of discarding an arrived message models the possibility of loss of messages, as well the implicit presence of
a communication protocol that discards corrupted messages. In our model we do not consider delays in the
message passing, and all messages arriving at a system component are stored into a FIFO queue (In UML
this is the implicit event pool of the state machine, in ProB it is an explicit data structure). This guarantees
the correct sequencing of them.

Let us now consider the requirement SFT_01:

This is another example of requirement that cannot be validated in our abstract model. We do not explicitly
model any breaking curve calculation since we have no data on which to perform such calculations (we do
not even have any specification of the required precision and time margins). What we model is just the

nondeterministic possibility, when OBU is in the "update_BC" state, of either activating the emergency

brakes because of an ATO violation (ATP_BRAKE), or the possibility of normally completing the OBU cycle
(OBU_CYCLE_CONCLUDED). Actually, this SFT_02 requirement does not explicitly prescribe the required
OBU behaviour in case the breaking curve calculation reveals an ATP violation. Our interpretation is that in
this case emergency braking must be activated.

SFT_05 is another requirement that describes non-functional aspects that we cannot expect to verify in our
setting.

Let us now consider the requirement SFT_03:

For SFT_03 we can make the same considerations as for SFT_02. We do not model the details of the
explicit MA computations, which depend on the current railway layout and traffic.

We can however formalize and evaluate SFT_04, specifying in particular that:

Whenever RBC receives a train position report (r4_receive_PRmsg) must compute the appropriate Moving
Authority (r9_compute_NewMA, r10_compute_ZeroMA) before the beginning of the next 500 ms cycle
(r1_start_cycle) or a fatal error occurs (r15_fatalerror). A possible formalization for this SFT_04
requirement can be:

[SFT_04]

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 53 of 70

G ([r4_receive_PRmsg] =>
 ((not [r1_start_cycle]) U ([r9_compute_NewMA] or [r10_compute_ZeroMA] or [r15_fatalerror])))

Notice that the formalisation of the SFT_04 requirement must take into consideration also what stated by
requirements SFT_09 and CMA_01.

With respect to CMA_01, in our model we do not have any real data about the train position nor about the
current train MA. However, once RBC receives a PR, we model the nondeterministic possibility of either
being the train position acceptable - and therefore computing a NewMA, or being the reported train position
not acceptable - therefore sending to the train a ZeroMA (requesting emergency braking). This second effect
is actually not explicitly mentioned in the Moving Block requirements and should therefore be considered a
particular interpretation of the requirements done during the modelling phase.

Let us now consider the requirement:

This requirement, w.r.t. the OBU behaviour, should be interpreted that OBU should not send more than one
PR or one ACK messages per cycle.

In the case of OBU PR message, the formula that checks this requirement can be formalized as:

[GEN_06a]
 G ([o7_sendPR] => X (not [o7_sendPR] W [o1_startcycle]))

The shown formula reflects the precise encoding of the sentence: "Whenever OBU sends a PR, no other PR
are sent before the beginning of the next cycle".

Several Moving Block System Requirements mention the concept of "machine cycle" in reference to the
OBU and RBC behaviour. In our modelling we made the assumption that the machine cycle has a period of
500 m, and that the period is the same for both OBU and RBC. However, is can happen that the two cycles
overlap in time.

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 54 of 70

The properties guaranteed by our model are the following:

1) OBU and RBC continuously repeat the same execution cycle until the cycling activity is aborted.

In the case of OBU this property is formalized as:

[GEN_02a]
 G ([o1_startcycle] =>
 X F ([o1_startcycle] or [o18_stopped]))

2) Whenever OBU starts a new cycle, it cannot happen that OBU starts a further new cycle if in the
meanwhile RBC does not start its new cycle (and vice-versa).

This property is formalized as:

[GEN_02b]
 G ([o1_startcycle] =>
 X ((not [o1_startcycle]) U
 ([o18_stopped] or [r1_start_cycle] or [r15_fatalerror] or [r16_shutdown])))

One the requirements that can easily translated into an LTL formula is SARBC_01:

The corresponding formula is:

[SARBC_01]
G ([o9_receive_MAmsg] => ((not [o1_startcycle]) U ([o12_new_MA] or [o17_fatalerror])))

the formula precisely encodes the property: "Upon receiving a new MA, an ACK message must be sent to
RBC before the beginning of the next cycle, or a fatal error occurs.", where the [o12_new_MA] transition
corresponds to the sending to RBC of the ACK message.

Most of the properties seen so far are rather directly reflected by the structure UML OBU statechart and their
verification does not actually give deeper insights on the system, apart from (partially) validating the
correctness of the formal specification.

However, the following GEN_05 requirement:

i.e. "A train cannot receive an initial MA, if an initial PR has not been sent in advance"

Involves the interactions between the OBU component and the RBC component, and cannot be checked by
observing the structure of the OBU statechart alone. This property can be encoded as:

[GEN_05]
not ((not [o7_sendPR]) U [o9_receive_MAmsg])

I.e. It is not possible that a o9_receive_MAmsg operation occurs if we do not have a preceding o7_sendPR
operation.

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 55 of 70

The evaluation of all the mentioned six formulas ([SFT_04] ,[GEN_06a], [GEN_02a], [GEN_02b],
[SARBC_01], [GEN_05]) can be performed with the command:

> probcli -model_check -ltlfile PROB-MB-alone-v13-properties.txt PROB-MB-alone-v13.mch

The whole statespace of the MB model (361119 states) is computed in about 10 minutes, and the validity of
all the formulas is verified in approximately one additional minute12.

4.3.2 ATO verification

The verification of the ATO properties can be performed without taking into account the RBC component, but
it requires at least an abstract version of the OBU. An example of such state machine is described in the file
"PROB-ATO-alone-v13.mch" (see [25]).
In this model, we have used our full ATO definition, plus an abstract version of the environment composed
by the TRAIN, the DRIVER, and an abstract version of OBU.

We have already shown in Figure 35, Figure 33 the models of the TRAIN and DRIVER components, and
here we suppose that the abstract (reduced) OBU component is as shown in Figure 45.

Figure 45 Abstract (reduced) OBU State Machine

I.e. Our abstract OBU is a cycling activity with the same period or the actual OBU. It can continue its cycling
until it moves into a stopped state. While cycling, it replies to any configuration request from the ATO, and at
each step may notify to ATO the train position and a new Moving Authority, while always notifies the ETCS
conditions as true, and ATO conditions that can no deterministically have a true/false value.
When moving into the stopped state, and when remaining in this state, OBU notifies to ATO the ETCS
conditions as false, while the ATO conditions can still nondeterministic ally have a true/false value.

With this environment, we can verify many of ATO requirements, like:

Whose ProB LTL encoding becomes:

[ATO_02]
G (([a26_power_off] or [a29_power_off]) => X G {ATOSTATE = END_NOPOWER})

12 Computations performed on Apple MacBook Air with 8G RAM

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 56 of 70

Let us now consider the requirement ATO_04:

the correct translation of the above requirement is for example the following formula:

[ATO_04]
G ({ATOSTATE = WAIT_CONFIG} =>
 ({ATOSTATE = WAIT_CONFIG} W ([a4_config_ok] or [a26_power_off] or [a27_ato_fault])))

I.e. ATO remains in WAIT_CONFIG until it receives the configuation data, unless powered-off by the driver,
or unless a fault occurs. Notice the use of the Weak Until logical operator (W) because the conditions on the
right side of the until might in principle also never occur. In particular, it the train stops before providing the
ATO configuration it will nevermore reply to the ATO configuration request (actually this is one of the
interpretations of the requirements introduced in our model), and if the driver does not poweroff and no fault
occur, ATO will remain in the WAIT_CONFIG state.

The translation of the requirement ATO_07 follows the same line of ATO_08.

The translation of ATO_07 becomes:

[ATO_07]
 G ({ATOSTATE = NOT_AVAILABLE} =>
 ({ATOSTATE = NOT_AVAILABLE} W
 (({etcs_conditions = TRUE} & {ato_conditions = TRUE}) or
 ([a26_power_off] or [a27_ato_fault]))))

Again, it is true that ATO remains in the NOT_AVAILABLE state, as long no poweroff of fault occur.

If we consider noe the requirement ATO_08:

Also in this case the implicit assumptions behind the above statement (i.e. provided that the operational
conditions remain true, and no faults nor poweroff occur) must be made explicit in order to have a valid
formula, that becomes:

[ATO_08]
G ({ATOSTATE = AVAILABLE} =>
 ({ATOSTATE = AVAILABLE} W
 (({ doors_closed = TRUE} & { first_MA_received =TRUE} &
 {etcs_conditions = TRUE} & {ato_conditions = TRUE})
 or [a8_op_conds_lost] or [a4_config_ok]
 or [a26_power_off] or [a27_ato_fault])))

Beyond verifying the explicitly required properties described by the requirements (often directly reflected by
the statechart structure), it is useful to analyse further properties, maybe not directly expressed by the
requirements) that might however help in getting e deeper view of the system behaviour.

Let us consider, for example, the property:

"It cannot happen that the train doors are open when ATO has full_service_brake activated"

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 57 of 70

whose translation is the following formula:

[FSB_OPEN]
G ({full_serv_brake = TRUE} => {doors_closed = TRUE})

The verification of the above formula actually returns a FALSE result. This maybe unexpected result does
not necessarily mean that the model is wrong, but maybe it can suggest the usefulness to further refine it.
The above formula is FALSE because when in the Disengaged (within a 5 seconds delay), it is possible that
that train actually stops, and that the doors open; after the expiration of the delay the ATO moves into FSB
state and activates the full service brake, even if at the next cycle immediately exit the FSB state moving into
the Not_Available state.

It is also useful to verify properties on the modelled environment that has been wrapped around the ATO
system, just to check its correspondence with the designer intentions.

For example, a property of the TRAIN environment (directly reflected also by the statechart structure) is the
one mention is requirement ATO_21

The encoding of this property is the following:

[TRAIN_DOORS]
not [moving] W [closingdoors]
 &
G ([openingdoors] => (not [moving] W [closingdoors]))

I.e. initially (when the doors are open) the train cannot move until the doors close, and
each time the door opens, they must close before the train moves.

Also in the ATO case we will have requirements that are not verifiable in our model because of the our level
of abstraction in the design. E.g.

In our design we do not model the details of brake and traction commands, nor the following of a specified
Operational Speed Profile.

The evaluation of the mentioned six formulas ([ATO_02], [ATO_04], [ATO_07], [ATO_08],
[TRAIN_DOORS], [FSB_OPEN]) can be performed with the command:

> probcli -model_check -ltlfile PROB-MB-alone-v13-properties.txt PROB-MB-alone-v13.mch

The whole statespace of the MB model (170173 states) is computed in about 6 minutes, and the validity of
all the formulas is verified in less than one minute13.

4.3.3 Integrated Moving Block and ATO verification

If we compose the full system by putting together all the OBU, RBC, ATO, TRAIN, DRIVER components, the
resulting system (see the model PROB-MB+ATO-v13.mch in [25]) can be used for simulating specific
scenarios of interest, but is too big (in the order of billions of states) for directly trying to apply LTL model
checking techniques .

13 Computations performed on Apple MacBook Air with 8G RAM

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 58 of 70

The only possibility for proving by LTL model checking some behavioural properties is to reduce and further
abstract some components, by trimming those aspect not relevant for the verification of a given property.

For example, some of the requirements in the ATO-MB Integrated System Section of Annex A deal with the
passing of data from OBU to ATO. In order to be able to verify these requirements we need to include the
complete Moving Block (OBU + RBC), but not necessarily the full ATO and its environment. For our
purposes it is sufficient a reduced ATO that just includes the components needed to receive the data from
OBU. A possible example of OBU-related reduced ATO is shown in Figure 46

Figure 46 A reduced ATO for receiving OBU data

The system composed by OBU, RBC and reduced ATO (see file PROB-MB+ATOobudata-v13.mch in [25]) is
still of a manageable size (7054861 states) and allows to verify the OBU behaviour with respect to the
passing of data to the ATO component.

Let us consider for example the requirement ATOMB_01:

The propagation to the ATO of the train position or the MA received from RBC can be described by a formula
saying that, whenever a new position or MA msg is received, before the beginning of the next OBU cycle the
data message has been delivered to ATO. I.e.:

[ATOMB_06]
G ([o9_receive_MAmsg] =>
 ((not [o1_startcycle]) U
 (([o12_new_MA] & X {enqueued(atobuff,NotifyMA) = TRUE}) or [o17_fatalerror]))))

If we consider instead the requirements ATOMB_07 .. ATOMB_09:

There translation can be the following:

[ATOMB_07_08_09]
G (([o13_MA_timeout] or [o17_fatalerror] or [o16_ATP_violation])
 => X ({OBUSTATE = STOPPED & enqueued(atobuff,NotifyETCSfalse) = TRUE})

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 59 of 70

ProB can verify the two formulas formula in about 5 hours (mostly spent the in the state space generation).

The requirements ATOMB_03, ATOMB_04, ATOMB_05 instead describe the possible ATO-driver
interactions and can be verified on the same model used for the analysis of the internal ATO requirements
(see file ATO-alone-v13.mch in [25]), which already includes both the ATO and DRIVER models.

The property the something must have the possibility to happen can be verified in the LTL case by proving
that the converse in not true. I.e. that it is not true that something does not never happen.
The formulas corresponding to the above requirements are therefore the following:

[ATOMB_03]
(G (not [driver_poweron] or not X {enqueued(atobuff, poweron) = TRUE}))

[ATOMB_04]
(G (not [driver_poweroff] or not X {enqueued(atobuff, poweroff) = TRUE}))

[ATOMB_05]
(G (not [driver_DRIVEcmd] or not X {enqueued(atobuff, NotifyDRIVEcmd) = TRUE}))

 [ATOMB_06]
(G (not [driver_TBLon] or not X {enqueued(atobuff, NotifyTBLon) = TRUE}))

[ATOMB_06]
(G (not [driver_TBLoff] or not X {enqueued(atobuff, NotifyTBLoff) = TRUE}))

The above formulas can be verified on a very small system composed by a reduced version of ATO and the
DRIVER, and for each formula the counter example is found almost instantaneously.

4.4 Observations

4.4.1 Correctness of the system design

The overall formal modelling and verification process requires a not trivial amount of time and effort.
It is therefore reasonable to ask whether, in the end, we could trust the resulting design to be correct.

If for "correct" we mean "something that will surely not need to be fixed at a later time", then we can hardly
guarantee this desire. Indeed, we have found in our models small mistakes which needed to be fixed even
after having built, animated, and verified the requirements on models. The problem is that the system
requirements rarely describe completely the actually intended system behaviour (especially from the point of
view of liveness properties).
From this point of view the animation of the formal model, and the verification of further expected properties
might help in increasing the confidence of the robustness of the design and the completeness of the
requirements.

If for "correct" we mean that the system simply "satisfies all its stated requirements" the answer can hopefully
be positive (w.r.t. the set of actually verified requirements), provided that the whole verification process has
been carried out without making mistakes. And this leads us to the following points.

4.4.2 Correctness of the ProB translation

The first step of our verification process consists in the formalisation in terms of a ProB machine of the
original UML design. We have two potentially weak points from this point of view.

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 60 of 70

The first one is related to the UML notation and its semantics, that might be misunderstood by the designer
or by the person performing the translation. This is an issue related to the intrinsic ambiguities of UML that
we will not discuss further.
The second weak point is the possibility of having made mistakes during the translation process.
In our case the translation performed is rather mechanical and not difficult to check (given the simple
structure of our UML models), moreover the formal animation and verification of the ProB specification surely
helps greatly in detecting possible translation mistakes (and indeed this happened many times in our
activity).
In principle, if we could mechanically save the LTS semantics of the UML design, and the LTS semantics of
the ProB specification, we might also formally verify the correctness of the translation result.
This approach has been experimented (in the case of the Moving Block model) using the UMC tool14 for
saving the LTS semantics of the UML design, using the ProB functionalities to save the statespace and
using CADP15 to verify the equivalence of the two models. This activity actually helped in discovering some
initial mistakes during the first experimentations of the UML -> ProB translation.

4.4.3 Correctness of the LTL formulas

In our verification process we have translated most of the system requirements into LTL formulas and
verified them on the resulting Prob model. However, the LTL encoding of a given property is another activity
"at risk". The meaning of the temporal logic formulas is not always easy to understand, even for people well
experienced, and with a solid background on the subject. The formulas resulting from our verification
process have almost always been the final result of a sequence of trials and errors, where the errors were
identified at each step either in the UML design, or in the ProB translation, or in the formula.
ProB provides several verification/analysis methods that go beyond the verification of LTL or CTL formulas
The possibility of encoding the same properties in several ways (e.g. using LTL versus CTL, using state-
based versus operation-based properties) might allow to exploit a certain degree of diversity in encoding the
properties that might be of help.

4.4.4 Correctness of the ProB tool

It would be desirable that the tool itself were certified and validated for a high lever of integrity. However
requiring a SIL4 level of integrity is definitely overkilling (since we are not dealing with the final system
validation and certification, but just its high level speciation). Even if we cannot exclude the presence of
errors in the Prob verification engine, the maturity of the tool and its relatively wide use probably allow us to
consider this aspect the smallest of the problems mentioned so far.

4.4.5 Current limits of our approach

Efficiency of validation
Model checking with the internal engine of ProB is not as efficient as other famous model checkers. During
the design/early prototyping phase (as opposed to final validation) a fast response (in the order of few
minutes max) by the verification is particularly useful.
This relative weakness is highly reduced by the fact that ProB directly supports several different verification
methods16 like:

- Consistency Checking
- Constraint BasedChecking
- Refinement Checking
- LTL (and partially CTL) Model Checking
- Symbolic Model Checking.

ProB also supports interfaces and plugins for the verification using other external model checkers like
LTSmin and TLC. Last, but not least, ProB allows the saving of the full state-space in an open textual format.
It becomes therefore possible to translate the ProB state-space into a standard notation of Labelled
Transition Systems (using the .aut format), which in turn enables explicit, on the fly model checking with
further advanced model checking tools like CADP, or MCRL2.

14 http://fmt.isti.cnr.it/umc
15 http://cadp.inria.fr
16 https://www3.hhu.de/stups/prob/index.php/User_Manual

http://fmt.isti.cnr.it/umc
http://cadp.inria.fr/
https://www3.hhu.de/stups/prob/index.php/User_Manual

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 61 of 70

Degree of competence required for mastering the tools
In the case of Prob, the extreme richness of the tool in some sense risks to fight back. It allows so many
different verification/ analysis approaches that it might become quite difficult to master the tool in all its
aspects.

Graphical Specification Language
Currently ProB lacks of a graphical / user friendly syntax (aspect inherited by EventB) for its machines.
Many silly design errors (e.g. wrong target states, typically result of copy&paste operations) would become
immediately visible in a graphical view of the system design. But on the contrary, graphical editing of a
design is not always the most desirable approach for reasons of efficiency and documentation (a textual
model representation is probably much more robust and easy to maintain). From this point of view, the
definition of specific UML-B profiles and the support of bidirectional automatic translations might provide a
possible solution. Vice versa, if we start from a graphical layout, the manual translation of it into a textual
representation can easily be source of errors. These kinds of errors are very likely to be discovered in the
subsequent verification phase, but certainly contribute in making more complex and lengthy the verification
process.

Interacting state machines
In ProB, if two system components need to interact in a bidirectional way, we are forced to merge them into
a single EventB state machine. This is a limit inherited by the EventB methodology that is needed in order to
guarantee the preservation of the system invariants, but that is somewhat in contrast with the principles of
design for systems of systems.

Abstractions / Minimizations /Refinements
In our verification process we had to manually build our "abstract versions" of system fragments in order to
keep the size of the system into a verifiable limit, depending on the kind of property we intended to verify.
UML formal background still lacks of theoretical support for refinements / minimisations and compositional
verification of interacting state machines. ProB relies on EventB theoretical background for the support of
refinements but, unfortunately, we did not have enough time and effort to investigate this possibility in detail.
The possibility of "driving" a ProB machine from a CSP process might reveal to be another useful approach.
Using other process-algebra based approaches and tools (e.g. CADP, MCRL2, FDR) this property
dependent minimization activity could be done in an almost automatic way by exploiting equivalences,
minimizations and congruence. Surely this is a line of research that might lead to great improvements of the
state of art.

UML limits
The main weak aspect of UML is probably the incompleteness of its definition for a system of systems
design; many implementations defined aspects related to statemachine-statemachine interactions are just
implementation defined. Moreover, the official specification of UML statemachines notoriously contains many
ambiguities that hinder its widespread use as a basis for formal modelling and verification.
Finally, the state or art of freely available tools for design, animation and verification of UML models is
currently not satisfactory. In our case we used UML unaware tools for the design of the statcharts
(Omnigraffle on MacOS), and a custom, academically developed tool (UMC) for animation and verification of
the systems. UMC however, being an academic prototype, does not have the degree of maturity needed for
use in an industrial environment.

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 62 of 70

5 Conclusions

The current deliverable presents the results of the final task of WP4 of the ASTRail project concerned with
the validation of the choices of formal tools for the development of railway systems, based on the formal
specification of the Moving-block system integrated with Automated Driving Technologies (ATO, Automatic
Train Operation). In the deliverable, we have first illustrated the proposed formal process to be applied in the
concept phase of the system development. The formal process consists of (1) a requirements elicitation and
simulation phase; (2) a phase of mapping towards formal languages; (3) a phase of formal verification. In the
first phase, the Simulink-Stateflow tool was applied to model and simulate the requirements provided by the
railway experts, in order to produce a stable requirements specification document, together with an
executable Simulink-Stateflow model of the integrated system including Moving-block and ATO. In the
second phase, the requirements specification document and the Simulink-Stateflow model were used as
input to produce a UML model, which focused on relevant abstraction of the system, and enabled a
translation into the Event B formal language. In the third phase, the requirements produced were translated
into logic formulae to formally verify the Event B model by means of the ProB tool. Most of the requirements
could be verified by means of the tool. The final requirements specification is reported in Annex A – System
Requirements. Instead, the Simulink-Stateflow models, together with their documentation in HTML format is
available at [25]. In the same repository, we report the Event B models resulting from the activity, while UML
models are reported as figures in the current deliverable (see Section 4.1).

The summarised process demonstrates the feasibility of using formal methods in the concept phase of the
development, and demonstrates the suitability of the choices made throughout the ASTRail project.
Specifically, we observed that modelling and simulating early requirements enables the discovery of
incomplete or too generic requirements, and it is an appropriate approach to provide an initial refinement and
consolidation of the requirements. The graphical language used by Simulink-Stateflow could be interpreted
by the domain experts with limited guidance, and was therefore an appropriate means to communicate
between formal methods experts and domain experts. The usage of UML enabled the definition of an
abstract specification oriented to model nondeterministic behaviour, which could not be modelled with
Simulink-Stateflow. Further, translating the UML model into Event B enabled the discovery of incorrectness
in the original UML model. Similarly, the translation of requirements into temporal logic formulas, and their
verification by means of the ProB tool enabled further reflections on the modelled system, and further
adjustments towards the consolidation of the requirements.

Other relevant aspects should be considered when applying the proposed process. The time required for
modelling in the different languages is not negligible, and high expertise is required for managing the
different languages and tools. Furthermore, concerning the formal modelling and verification activity with
ProB, it is important to notice that some abstraction choices needed to be manually made to enable efficient
formal verification. These choices require expertise in formal modelling and verification, and human
judgment is highly important. Overall, the process is not entirely supported by tools for what concern the
translation from one language to another, including the translation of the requirements into temporal logic
formulas. These observations indicate that, although the choices made within ASTRail can be considered
valid for the scope of the project, the introduction of formal modelling and verification techniques in the
railway process is not a fully automated process, as diverse expertise are required and the role of the expert
subjects involved is paramount. Furthermore, especially in the concept phase, as the one we are concerned
in this deliverable, the application of formal methods cannot be considered as a guarantee that requirements
will not change in the future, when further refinement occurs towards the implementation. However, we
argue that the usage of formal methods, in different forms and for different purposed, i.e., formal modelling,
simulation, verification, certainly increases the confidence of the specified system requirements, and
provides an increased guarantee that unexpected behaviour will be limited in future development phases.

Further investigations about benefits of the adoptions formal methods in the complete development process
of high safety-integrity-level products, especially targeted to railway market, could be a natural way to exploit
and extend the results obtained in this work. An effective verification and validation activity (as required by
shared rules, standards and best practices in the automotive and railway industries), needed to obtain the
required product certification, is a complex and articulated process that involves the entire development
phase, from the requirements definition to the deployment of the product itself. This process usually requires
a lot of effort when compared to the entire development cycle. The introduction of formal methods in the
entire flow could lead to better performance of the development process while improving the overall quality of

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 63 of 70

the final product, even considering the maintenance phase. In this way, a cost benefit analysis, oriented to
the entire life cycle cost of a product, could be addressed by further investigating the optimization role of
formal methods, when put at the centre of the development process, considering the long-term scenario.

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 64 of 70

Acronyms

Acronym Explanation

ATO Automatic Train Operations

LTL Linear Temporal Logic

OBU On Board Unit

RBC Radio Block Centre

LU Location Unit

MA Movement Authority

PR Position Report

MA_Req Movement Authority Request

IP Information Point

ACK Acknowledge

LRBG Last Relevant Balise Group (IP)

BC Braking Curve

LR Location Request

SMC Statistical Model Checker

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 65 of 70

List of figures

Figure 1 Overview of the adopted formal process .. 10

Figure 2 Simulink and Stateflow basic concepts .. 13

Figure 3 Overview of the Moving-block system ... 14

Figure 4 Architecture of the Moving-block Simulink Model ... 16

Figure 5 Behaviour of the OBU component: High-level view ... 18

Figure 6 Behaviour of the OBU Component: GENERATE_LOCATION_REQUEST State ... 18

Figure 7 Behaviour of the OBU Component: SEND_LOCATION_TO_RBC State .. 19

Figure 8 Behaviour of the OBU Component: RECEIVE_MA State .. 19

Figure 9 Behaviour of the OBU Component: COMPUTE_BRAKING_CURVE State .. 20

Figure 10 Behaviour of the LU Component .. 20

Figure 11 Behaviour of the RBC Component ... 21

Figure 12 Behaviour of the Train Component ... 22

Figure 13 Overview of the ATO in its context .. 22

Figure 14 Architecture of the ATO Model ... 23

Figure 15 Statechart representing the Operating Modes of the ATO ... 25

Figure 16 Statechart representing the internal behaviour of the ATO Engaged State .. 27

Figure 17 Statechart representing the Train model for the ATO ... 28

Figure 18 Multiple MA received and corresponding speed and space .. 29

Figure 19 Brake and acceleration commands in relation to the train speed .. 30

Figure 20 Architecture of the model that integrates Moving-block system and ATO (Part 1) ... 31

Figure 21 Architecture of the model that integrates Moving-block system and ATO (Part 2) ... 32

Figure 22 Normal behaviour of the ATO in the integrated model ... 33

Figure 23 Normal behaviour of the ATO in relation to acceleration, brake and speed ... 33

Figure 24 Case of MA violation by the ATO ... 34

Figure 25 A statechart diagram fragment ... 37

Figure 26 OBU State Machine .. 39

Figure 27 The Compute_Position submachine .. 40

Figure 28 The Send_PR submachine .. 40

Figure 29 The Handle_Msgs submachine .. 41

Figure 30 The RBC State Machine... 42

Figure 31 The Receiving submachine .. 43

Figure 32 The Compute_MA and Send_MA submachines ... 43

Figure 33 The resend_MA submachine .. 44

Figure 34 The ATO State Machine .. 45

Figure 35 The Driver State Machine... 46

Figure 36 The Train State Machine ... 46

Figure 37 The structure of a ProbB state machine .. 47

Figure 38 Structure of a ProB operation definition ... 47

Figure 39 An OBU completion transition ... 48

Figure 40 Initial part of ProB machine definition .. 48

Figure 41 The o3_position_ok Operation .. 49

Figure 42 A triggered OBU transition.. 49

Figure 43 The o13_MA_timeout Operation .. 49

Figure 44 The ProB simulation GUI .. 50

Figure 45 Abstract (reduced) OBU State Machine ... 55

Figure 46 A reduced ATO for receiving OBU data ... 58

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 66 of 70

Annex A – System Requirements

X2Rail-1 D4.1 - ATO over ETCS GoA2 Specification [26] – inspired the following System Requirements. The
ATO State Diagram in Figure A1 is a reworking of use cases taken from [26].

Moving Block System Requirements

Req Num Description

SFT_01 The communication protocol between RBC and OBU must guarantee peer authentication,
message integrity and message sequencing.

SFT_02 OBU braking curve calculation and train emergency brake must be performed with stated
precision and time margins, able to guarantee the safety of the train.

SFT_03 RBC must calculate the MA with a predetermined precision, able to guarantee the safety of the
train .

SFT_04 RBC must calculate the MA within a single machine cycle.

SFT_05 The computation of the current train position must be performed with high Safety Integrity Level
(SIL4).

SFT_06 LU must compute the train position within a single machine cycle.

SFT_07 If the LU is not able to provide the current position, a fatal error must be raised .

SFT_08 If OBU cannot complete the processing of all the messages received in one cycle, it shall rise a
fatal error and stop the train.

SFT_09 If RBC cannot complete the processing of all the messages received in one cycle, it shall rise a
fatal error and shutdown.

GEN_01 No pre-emption of any cycle is allowed for LU, OBU and RBC. Before processing new
messages or events, the computation cycle shall always be concluded.

GEN_02 OBU cycle and RBC cycle shall refer to a common time base; however, this does not imply that
these cycles are synchronized.

GEN_03 In case of multiple messages of the same type from the same sender, the least recent one shall
be deleted.

GEN_04 The MA always refers to the distance that the train is allowed to run, starting from the last IP.

GEN_05 When a train initiates its trip for the first time, the OBU shall require a MA to the RBC.

GEN_06 RBC and OBU send just one message per cycle.

CL_01 When the LU receives a LR, LU shall compute the location without additional delay.

SL_01 After computing the location, the LU shall send the location to OBU.

GR_01 Every 500 ms OBU shall send a LR to LU.

SR_01 The OBU sends the LR to the LU (anytime a PR is required, see GR_01) without additional
delay.

SLRBC_01 OBU shall send a PR to RBC every 5 s (regardless of passing over a balise).

SLRBC_02 Any PR must contain a position not older than 1 s (older positions must be dropped), based on
internal clock .

SLRBC_03 PR must contain timestamps, based on internal clock.

RMA_01 When a MA is received, the connection timeout is reset.

RMA_02 If OBU does not receive a new MA within 10 s from the reception of the last MA, the OBU shall
stop the train.

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 67 of 70

RMA_03 Upon receiving a new MA, a new BC is computed by OBU.

SARBC_01 Upon receiving a new MA, an ACK message must be sent to RBC.

CMA_01 When RBC receives the PR, RBC shall check the reported position with respect to current train
MA.

CMA_02 RBC sends the MA only as a reply to a PR.

CMA_03 RBC shall process in parallel messages coming from all the trains under its control.

CMA_04 Only the PR with the most recent timestamp must be processed.

SMA_01 After computing the MA, RBC shall send the MA to the OBU.

SMA_02 If no ACK is received from RBC within 1 s, the MA is sent again, up to 3 times at regular
intervals of ‘x’ s.

ATO System Requirements

Req Num Description

ATO_01 The ATO-OB is switched on by the Driver

ATO_02 The ATO-OB shall remain in NP State when it is switched off

ATO_03
When the ATO-OB enters CO State, the ATO-OB shall send a “Specific ATO Data Need”
information to the ETCS-OB indicating whether it needs or not Specific ATO Data

ATO_04
The ATO-OB shall remain in CO until it has received the required ETCS Data and Specific ATO
Data

ATO_05
ATO Operational Conditions are composed by ETCS-OB Conditions and ATO-OB Conditions
and are mutually independent

ATO_06
Engagement Conditions are composed by Movement Authority availability and doors closed
signal

ATO_07 The ATO-OB shall remain in NA State until the “ATO Operational Conditions” are fulfilled

ATO_08 The ATO-OB shall remain in AV State until the “ATO Engagement Conditions” are fulfilled

ATO_09 The ATO-OB shall remain in RE State until the Driver enables automatic driving

ATO_10 The ATO-OB shall engage only when the TBL is in neutral or traction position

ATO_11
In EG State, the ATO-OB is responsible for driving the train controlling brake and traction
according to the computed ATO Operational Speed Profile

ATO_12
When the train in Self Driving mode stops, the system must not be able to control traction and
brake and shall wait in a stable state for the Engagement Conditions are fulfilled again

ATO_13
When the Driver, during the Self Driving mode, commands the Train Braking Level, the system
must end the automatic driving and wait for the Driver to engage the Self Driving mode again

ATO_14
The ATO-OB State shall change to DE State, if any of the “ATO Operational Conditions” but the
“ETCS related” ones is lost while the ATO-OB is in EG State

ATO_15
During the first 5 seconds after the ATO State has changed to DE, the ATO-OB shall continue
to follow the last computed ATO Operational Speed Profile with the limitation of not requesting
traction

ATO_16
If the ATO-OB recovers the “ATO Operational Conditions” within the first 5 seconds after the
ATO State has changed to DE, the ATO-OB State shall change to EG

ATO_17
If the ATO-OB does not recover the ATO Operational Conditions within the first 5 seconds after
the ATO State has changed to DE, the ATO-OB shall apply the Full Service Brake (if it is not
already applied)

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 68 of 70

ATO_18
The ATO-OB shall enter the ATO Failure State in case of a fault that does not allow performing
ATO functions

ATO_19 From the Fault State, the system can only move to the not powered state

ATO_20 The authorisation for the safe release of the doors is performed by an external safe system

ATO_21 An external safe system shall ensure that the train cannot move when the doors are open

ATO-MB Integrated System Requirements

Req Num Description

ATOMB_01
OBU is required to send to ATO Train Position, MA, with no additional delay after a value
change

ATOMB_02
OBU is required to send to ATO ETCS_Conditions and ATO Conditions at every execution
cycle

ATOMB_03 The driver must be able to power on/off the ATO-OB

ATOMB_04 The driver must be able to set the auto-driving mode

ATOMB_05 The driver must be able to use the TBL

ATOMB_06
OBU must forward to ATO-OB the MA as it is received from the RBC and with no further
modification

ATOMB_07 In case of Emergency Brake required by OBU, ETCS_Conditions are set to FALSE

ATOMB_08 In case of OBU Fatal Error, ETCS_Conditions are set to FALSE

ATOMB_09 In case of MA timeout, ETCS_Conditions are set to FALSE

ATOMB_10 ETCS_Conditions and ATO Conditions are mutually independent

ATOMB_11
The Train must forward to the ATO-OB the Doors status information (opened/closed), the train
stopped condition the speed and the distance travelled

ATO State Diagram

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 69 of 70

Figure A1 ATO State Diagram

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block
Validation

Deliverable nr.

Deliverable Title

Version

D4.3

Validation Report

1.3 - 30/08/2019

Page 70 of 70

References

[1] UNISIG: FIS for the RBC/RBC handover, version 3.1.0 (15 06 2016)
[2] The Mathworks: Simulink: Simulation and Model-based Design,

https://www.mathworks.com/help/simulink/ (Accessed 26/06/2019).
[3] David, A., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B.: Uppaal SMC tutorial. Int. J. Softw.

Tools Technol. Transf. 17(4), 397–415 (2015)
[4] Behrmann, G., et al.: UPPAAL 4.0. In: QEST. pp. 125–126. IEEE (2006)
[5] Agha, G., Palmskog, K.: A Survey of Statistical Model Checking. ACM Trans. Model. Comput. Simul.

28(1), 6:1–6:39 (2018)
[6] Larsen, K.G., Legay, A.: Statistical Model Checking — Past, Present, and Future In: ISoLA. LNCS, vol.

8802, pp. 135–142. Springer (2014)
[7] Arnold, A., et al.: An Application of SMC to continuous validation of heterogeneous systems. EAI

Endorsed Trans. Indust. Netw. & Intellig. Syst. 4(10) (2017)
[8] ter Beek, M.H., Legay, A., Lluch Lafuente, A., Vandin, A.: Statistical Model Checking for Product Lines.

In: ISoLA. LNCS, vol. 9952, pp. 114–133. Springer (2016)
[9] Cappart, Q., et al.: Verification of Interlocking Systems Using Statistical Model Checking. In: HASE. pp.

61–68. IEEE (2017)
[10] Filipovikj, P., et al.: Simulink to UPPAAL Statistical Model Checker: Analyzing Automotive Industrial

Systems. In: FM. LNCS, vol. 9995, pp. 748–756. Springer (2016)
[11] Gilmore, S., Tribastone, M., Vandin, A.: An Analysis Pathway for the Quantitative Evaluation of Public

Transport Systems. In: IFM. LNCS, vol. 8739, pp. 71–86. Springer (2014)
[12] Puch, S., Fränzle, M., Gerwinn, S.: Quantitative Risk Assessment of Safety-Critical Systems via Guided

Simulation for Rare Events. In: ISoLA. LNCS, vol. 11245, pp. 305–321. Springer (2018)
[13] Basile, D., ter Beek, M.H., Ciancia, V.: Statistical Model Checking of a Moving Block Railway Signalling

Scenario with Uppaal SMC. In: ISoLA. LNCS, vol. 11245, pp. 372–391. Springer (2018)
[14] Basile, D., Di Giandomenico, F., Gnesi, S.: Statistical Model Checking of an Energy Saving Cyber-

Physical System in the Railway Domain. In: SAC. pp. 1356–1363. ACM (2017)
[15] Douglass, B.P.: Real-Time UML. In: FTRTFT. LNCS, vol. 2469, pp. 53–70. Springer (2002)
[16] Selic, B.: The Real-Time UML Standard: Definition and Application. In: DATE. pp. 770–772 (2002)
[17] Mazzanti, F., Ferrari, A., Spagnolo, G.O.: Towards formal methods diversity in railways: an experience

report with seven frameworks. Int. J. Softw. Tools Technol. Transf. 20(3) (2018)
[18] David, A., et al.: On Time with Minimal Expected Cost! In: ATVA. LNCS, vol. 8837, pp. 129–145.

Springer (2014)
[19] Gadyatskaya, O., et al.: Modelling Attack-defense Trees Using Timed Automata. In: FORMATS. LNCS,

vol. 9884, pp. 35–50. Springer (2016)
[20] Basile, D., ter Beek, M. H., Fantechi, A., Gnesi, S., Mazzanti, F., Piattino, A., ... & Ferrari, A. (2018,

September). On the industrial uptake of formal methods in the railway domain. In International
Conference on Integrated Formal Methods (pp. 20-29). Springer, Cham.

[21] Ferrari, A., ter Beek, M. H., Mazzanti, F., Basile, D., Fantechi, A., Gnesi, S., ... & Trentini, D. (2019,
June). Survey on Formal Methods and Tools in Railways: The ASTRail Approach. In International
Conference on Reliability, Safety, and Security of Railway Systems (pp. 226-241). Springer, Cham.

[22] Clarke, E. M., & Wing, J. M. (1996). Formal methods: State of the art and future directions. ACM
Computing Surveys (CSUR), 28(4), 626-643.

[23] Boca, P., Bowen, J. P., & Siddiqi, J. (Eds.). (2009). Formal methods: State of the art and new
directions. Springer Science & Business Media.

[24] Basile, D., ter Beek, M. H., Fantechi, A., Gnesi, S., Mazzanti, F., Piattino, A., Trentini, D. & Ferrari, A.
(2018). On the industrial uptake of formal methods in the railway domain. In International Conference on
Integrated Formal Methods (pp. 20-29). Springer, Cham.

[25] Alessio Ferrari, Franco Mazzanti, & Andrea Piattino. (2019). ASTRail Deliverable 4.3, Task 4.4 -
Supplementary Material [Data set]. Zenodo. http://doi.org/10.5281/zenodo.3377823

[26] D4.1 - ATO over ETCS GoA2 Specification - https://projects.shift2rail.org/s2r_ip2_n.aspx?p=X2RAIL-1

https://www.mathworks.com/help/simulink/
http://doi.org/10.5281/zenodo.3377823
https://projects.shift2rail.org/s2r_ip2_n.aspx?p=X2RAIL-1

	Document History
	Legal Notice
	Table of Contents
	1 Introduction
	1.1 Purpose and Scope
	1.2 Executive Summary
	1.3 Related documents

	2 Validation of the Process
	2.1 Formal methods selection
	2.1.1 Main Output from Previous Deliverables
	2.1.2 Choice of Formal Methods based on the Development Context

	2.2 Formal Methods Application Process
	2.2.1 Requirements Elicitation and Simulation
	2.2.2 Mapping to Formal Languages
	2.2.3 Formal Verification

	3 Moving Block and ATO modelling
	3.1 Simulink and Stateflow Languages
	3.2 Moving Block
	3.2.1 Moving Block Overview
	3.2.2 Moving-block Model Architecture
	3.2.3 Behaviour of the Moving-block System: OBU Component
	3.2.4 Behaviour of the Moving-block System: LU Component
	3.2.5 Behaviour of the Moving-block System: RBC Component
	3.2.6 Behaviour of the Moving-block System: Train Component

	3.3 ATO
	3.3.1 ATO Overview
	3.3.2 ATO Model Architecture
	3.3.3 ATO Behaviour: Operating Modes
	3.3.4 ATO Behaviour: Speed Control and Train

	3.4 Integrated Model
	3.4.1 Integrated Model Architecture
	3.4.2 Integrated Model Behaviour

	3.5 Requirements Elicitation and Simulation with Simulink: Observations

	4 Qualitative verification
	4.1 The UML system description
	4.1.1 Briefs on the used UML statecharts notation
	4.1.2 Some differences w.r.t Simulink/Stateflow modelling
	4.1.3 Introduction to the Moving Block and ATO UML modelling
	4.1.4 OBU
	4.1.5 RBC
	4.1.6 ATO

	4.2 The EventB/ProB modelling
	4.3 The EventB/ProB verification
	4.3.1 Moving Block verification
	4.3.2 ATO verification
	4.3.3 Integrated Moving Block and ATO verification

	4.4 Observations
	4.4.1 Correctness of the system design
	4.4.2 Correctness of the ProB translation
	4.4.3 Correctness of the LTL formulas
	4.4.4 Correctness of the ProB tool
	4.4.5 Current limits of our approach

	5 Conclusions
	Acronyms
	List of figures
	Annex A – System Requirements
	References

