
 
 

 
 

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No 777561  
Call identifier: H2020-S2RJU-2017 | Topic: S2R-OC-IP2-01-2017 – Operational conditions of the signalling and automation systems; signalling system 

hazard analysis and GNSS SIS characterization along with Formal Method application in railway field 

 

 

 
 

 
 

D4.3 – Validation Report 
 
 
 

Deliverable ID  D4.3 

Deliverable Title  Validation Report 

Work Package  WP4 

   

Dissemination Level  PUBLIC 

   

Version  1.3 

Date  30/08/2019 

Status  Final 

   

Lead Editor  SIRTI 

Main Contributors  CNR 

 
Published by the ASTRAIL Consortium 

  



 

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block 
Validation 

 

Deliverable nr. 

Deliverable Title 

Version 

D4.3 

Validation Report 

1.3 - 30/08/2019 

Page 2 of 70 

 

Document History 

Version Date Author(s) Description 

0.0 2019-05-24 SIRTI First Draft with TOC 

0.1 2019-06-07 CNR Changes in structure and tasks distribution 

0.2 2019-06-26 CNR Section 3 “Moving Block and ATO Modelling” added 

0.3 2019-06-27 CNR Section 3 “Moving Block and ATO Modelling” updated 

0.4 2019-07-02 CNR, SIRTI Section 5 “Quantitative Verification” updated 

0.5 2019-07-10 CNR Section 2 “Validation of the Process” updated 

0.6 2019-07-24 CNR Section 4 “Qualitative verification” updated 

0.7 2019-08-06 CNR Section 4 “Qualitative verification” updated 

0.8 2019-08-09 SIRTI Annex A added 

0.9 2019-08-14 CNR Section 4 “Qualitative verification” updated 

1.0 2019-08-22 CNR Section 5 “Qualitative Verification” removed, “Introduction” added, 
Section 2, 3, 4 Updated 

1.1 2019-08-26 CNR Added Conclusion section 

1.2 2019-08-27 SIRTI Updated Conclusion section, typo review 

1.3 2019-08-30 SIRTI, CNR Annex A updated. Final release. 

 

Legal Notice 

The information in this document is subject to change without notice. 
The Members of the ASTRail Consortium make no warranty of any kind with regard to this document, 
including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. 
The Members of the ASTRail Consortium shall not be held liable for errors contained herein or direct, 
indirect, special, incidental or consequential damages in connection with the furnishing, performance, or use 
of this material. 
The Shift2Rail JU cannot be held liable for any damage caused by the Members of the ASTRail Consortium 
or to third parties as a consequence of implementing this Grant Agreement No 777561, including for gross 
negligence. 
The Shift2Rail JU cannot be held liable for any damage caused by any of the beneficiaries or third parties 
involved in this action, as a consequence of implementing this Grant Agreement No 777561. 
The information included in this report reflects only the authors' view and the Shift2Rail JU is not responsible 
for any use that may be made of such information. 
  



 

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block 
Validation 

 

Deliverable nr. 

Deliverable Title 

Version 

D4.3 

Validation Report 

1.3 - 30/08/2019 

Page 3 of 70 

 

Table of Contents 

Document History ...................................................................................................................................................................................... 2 

Legal Notice .................................................................................................................................................................................................. 2 

Table of Contents ....................................................................................................................................................................................... 3 

1 Introduction ........................................................................................................................................................................................ 5 

1.1 Purpose and Scope ................................................................................................................................................................ 5 

1.2 Executive Summary ............................................................................................................................................................... 5 

1.3 Related documents................................................................................................................................................................ 7 

2 Validation of the Process............................................................................................................................................................... 8 

2.1 Formal methods selection .................................................................................................................................................. 8 

2.1.1 Main Output from Previous Deliverables ................................................................................................................ 8 

2.1.2 Choice of Formal Methods based on the Development Context .................................................................. 8 

2.2 Formal Methods Application Process ............................................................................................................................ 9 

2.2.1 Requirements Elicitation and Simulation ............................................................................................................... 10 

2.2.2 Mapping to Formal Languages ................................................................................................................................. 11 

2.2.3 Formal Verification ......................................................................................................................................................... 11 

3 Moving Block and ATO modelling .......................................................................................................................................... 12 

3.1 Simulink and Stateflow Languages ............................................................................................................................... 12 

3.2 Moving Block ......................................................................................................................................................................... 14 

3.2.1 Moving Block Overview ................................................................................................................................................ 14 

3.2.2 Moving-block Model Architecture ........................................................................................................................... 15 

3.2.3 Behaviour of the Moving-block System: OBU Component............................................................................ 17 

3.2.4 Behaviour of the Moving-block System: LU Component ............................................................................... 20 

3.2.5 Behaviour of the Moving-block System: RBC Component ............................................................................. 20 

3.2.6 Behaviour of the Moving-block System: Train Component ........................................................................... 21 

3.3 ATO ............................................................................................................................................................................................ 22 

3.3.1 ATO Overview ................................................................................................................................................................... 22 

3.3.2 ATO Model Architecture .............................................................................................................................................. 23 

3.3.3 ATO Behaviour: Operating Modes ........................................................................................................................... 24 

3.3.4 ATO Behaviour: Speed Control and Train ............................................................................................................. 26 

3.4 Integrated Model ................................................................................................................................................................. 30 

3.4.1 Integrated Model Architecture .................................................................................................................................. 30 

3.4.2 Integrated Model Behaviour ....................................................................................................................................... 32 

3.5 Requirements Elicitation and Simulation with Simulink: Observations .......................................................... 34 

4 Qualitative verification ................................................................................................................................................................. 36 

4.1 The UML system description ........................................................................................................................................... 36 

4.1.1 Briefs on the used UML statecharts notation ...................................................................................................... 36 

4.1.2 Some differences w.r.t Simulink/Stateflow modelling ...................................................................................... 37 

4.1.3 Introduction to the Moving Block and ATO UML modelling ........................................................................ 38 

4.1.4 OBU....................................................................................................................................................................................... 38 

4.1.5 RBC ........................................................................................................................................................................................ 41 



 

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block 
Validation 

 

Deliverable nr. 

Deliverable Title 

Version 

D4.3 

Validation Report 

1.3 - 30/08/2019 

Page 4 of 70 

 

4.1.6 ATO ....................................................................................................................................................................................... 44 

4.2 The EventB/ProB modelling ............................................................................................................................................. 46 

4.3 The EventB/ProB verification ........................................................................................................................................... 50 

4.3.1 Moving Block verification ............................................................................................................................................ 51 

4.3.2 ATO verification ............................................................................................................................................................... 55 

4.3.3 Integrated Moving Block and ATO verification ................................................................................................... 57 

4.4 Observations .......................................................................................................................................................................... 59 

4.4.1 Correctness of the system design ............................................................................................................................ 59 

4.4.2 Correctness of the ProB translation ......................................................................................................................... 59 

4.4.3 Correctness of the LTL formulas................................................................................................................................ 60 

4.4.4 Correctness of the ProB tool ...................................................................................................................................... 60 

4.4.5 Current limits of our approach .................................................................................................................................. 60 

5 Conclusions ....................................................................................................................................................................................... 62 

Acronyms ..................................................................................................................................................................................................... 64 

List of figures .............................................................................................................................................................................................. 65 

Annex A – System Requirements ....................................................................................................................................................... 66 

References ................................................................................................................................................................................................... 70 

 
  



 

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block 
Validation 

 

Deliverable nr. 

Deliverable Title 

Version 

D4.3 

Validation Report 

1.3 - 30/08/2019 

Page 5 of 70 

 

1 Introduction 

1.1 Purpose and Scope 

Formal methods are mathematically-based techniques to support the development of software intensive 
systems [23][22]. Normally, formal methods oriented to design and verification of systems include (i) a 
modelling language, which is used to model a system, and (ii) a verification strategy, which is used to 
verify properties on the system. Formal methods are usually associated to formal tools, which can provide 
textual or visual editors to create a model of the system, as well as automated verification capabilities. 
Formal methods have been largely applied in industrial projects, especially in the safety-critical market, 
including railways [24]. However, it cannot yet be said that a single mature technology has emerged.   
 
The Work Package 4 (WP4) of the ASTRail project aims to identify, based on an analysis of the state-of-the-
art and on concrete trials, the candidate set of formal and semi-formal methods that appear as the most 
adequate to be used in the railway context. In the following, when we will use the general term “formal 
method”, we will implicitly include also semi-formal methods, i.e. those methods that use languages for which 
the semantics is not formally defined but depends on their execution engine.  
 
Since formal methods are normally associated with tools, we will also use the terms formal methods and 
formal tools interchangeably.  
 
To address the goal of identifying the most adequate formal methods, WP4 is structured into four tasks 
(T4.4, in bold, is the focus on the current deliverable):  
 

 Task 4.1 - Benchmarking: this task aims at studying the state-of-the-art and state of the practice of 
formal and semi-formal methods, by gathering knowledge from the literature and railway 
practitioners.  

 Task 4.2 - Ranking: this task aims at providing a ranking matrix to support the selection of the most 
adequate formal methods to be used in a certain development context.  

 Task 4.3 - Trial Application: this task aims at experimenting the usage of a set of selected formal 
methods through the modelling of the moving-block system, from Task 2.1.  

 Task 4.4 - Validation: this task aims at validating the usage of the selected formal methods by 
integrating the moving-block model with the automated driving technologies from Task 3.3.  

  
The current deliverable D4.3 Validation Report is the output of Task 4.4 – Validation. The results of Task 4.1-
2 and 4.3 have been reported in D4.1 [RD.1] and D4.2 [RD.5] respectively. 

1.2 Executive Summary 

The description of Task 4.4 - Validation Report is as follows: 
 

In order to validate the choices and techniques consolidated in task T4.3 we will address, in 
collaboration with the other partners of the project, the modelling of the integration of Moving Block 
with Automated Driving Technologies (from T.3.3), providing for each considered item a full model 
that will represent a rigorous and verifiable definition of functional, interoperability and dependability 
requirements. 

 
In Task 4.3 a series of formal techniques were evaluated and a main output of the task was that a 
combination of techniques is required to address different needs and phases of the railway process. 
Combinations of techniques should be chosen based on the context. Therefore, validating choices and 
techniques, as discussed in the proposal, implies defining and assessing a formal development process that 
is appropriate for the current context of development. Hence, this deliverable is concerned with the validation 
of a proposed formal process, by means of modelling and verification, applied to Moving Block with 
Automated Driving Technologies. 
 
In the context of the ASTRail project, both Moving Block and Automated Driving Technologies (referred in 
the following as Automated Train Operation or ATO) can be considered as being at the concept phase of 
development. Indeed, preliminary requirements were defined for the Moving Block (see [RD.5]), and only 
high-level functions were defined for the ATO in Task 3.3 (see [RD.4]).  
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For the concept phase of the development, in which requirements need to be elicited and consolidated, the 
proposed process supported by formal methods foresees the following phases: 
 

 Requirements Elicitation and Simulation: for which Simulink-Stateflow was selected as 
appropriate tool to provide a rigorous, complete modelling of the integration of the Moving Block with 
ATO, and to produce a requirements specification for the integrated system; 

 Mapping to Formal Languages: for which UML was chosen as intermediate language towards a 
formalisation into Event-B; 

 Formal Verification: for which ProB was chosen as formal tool to verify the requirements against 
the Event B model.   

 
The proposed process was applied to the modelling and verification of the Moving Block with ATO. First, two 
separate Simulink-Stateflow models were developed for the Moving Block and the ATO, based on a set of 
preliminary requirements. The requirements were then extended and consolidated based on the simulation, 
an integrated model was developed and a final integrated requirements specification was produced. The 
models are reported at [25]. Instead, the requirements are reported in the Annex A – System Requirements. 
 
The model and the requirements were used as input to define a UML model oriented to have a clear, 
established specification that could be used as a reference for translation into formal languages. The UML 
model was translated into EventB, the formal input language of ProB. The graphical UML model is reported 
in this deliverable, while the ProB model is available at [25]. 
 
Given the EventB model that integrates Moving Block and ATO, formal verification activities were carried out 
with the ProB tool. Specifically, part of the requirements reported in the Annex A – System Requirements 
were mapped to Linear Temporal Logic (LTL) formulae, and model checking was performed with ProB.  
 
The implementation of the process and its application to the Moving Block with ATO has showcased strong 
points and weaknesses of the applied strategy. Specifically, the main strengths are: 
 

1. Modelling and simulating with Simulink-Stateflow enables the identification of incomplete, 
inconsistent, or too generic requirements, as it forces the modeller to take implementation choices, 
and allows the user to observe the behaviour of the system and interact with it. 

2. Graphical models are easy to understand by domain experts, and reading Simulink-Stateflow models 
required limited guidance, therefore making the language suitable for interaction between formal 
methods experts and railway domain experts. 

3. The UML modelling activity enables the abstraction from concrete choices required by the Simulink-
Stateflow platform, and, in particular, allows the modeller to observe nondeterministic behaviour. 

4. The translation of the UML model into Event B enables the further activities of formal verification, but 
allows also the modeller to identify mistakes in the design. 

5. The translation of the requirements into temporal logic formulas to be verified again allows the 
identification of mistakes in the model or in the requirements.  

6. The formal verification activity can be performed with acceptable, though not negligible, time for most 
of the requirements. 

 
Instead, observed weaknesses to consider are: 
 

1. The modelling and translation processes are time consuming with respect to defining a requirements 
document in natural language. 

2. The produced models, although consolidated and revised multiple times throughout the process, are 
not guaranteed to be stable, as new requirements may emerge during further refinements. 

3. The formal methods experts must make choices both in the modelling phase and in the translation 
activities. These choices, concerning for example the decision of modelling subsets of the system to 
enable formal verification, require the expertise in formal methods and cannot be automatically 
performed with the selected tools. 

4. Depending on their nature, part of the requirements could be not formally verified, and require other 
means to assess them.  
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5. The whole proposed process is not entirely supported by tools. In particular, the translation activities 
are performed manually.  

 
Given these observations, the proposed formal process cannot be considered as a fully automated 
technique. However, the different steps involved, the different languages used, and the different degree of 
formality of the different steps enabled the possibility of producing a set of consolidated requirements for the 
integrated Moving-block and ATO system as well as verifiable specifications of the requirements in the form 
of formal and semi-formal models.  
 
The remainder of the deliverable is structured as follows: 
 

1. In Section 2 we present the overview of how the formal methods choices have been validated within 
ASTRail; 

2. In Section 3 we present the activity of modelling and simulating with Simulink-Stateflow; 
3. In Section 4 we present the activities of translation into formal models, through UML and Event B, 

and formal verification with ProB; 
4. In Section 5, we report conclusion and final remarks. 

1.3 Related documents 

ID Title Reference Version Date 

[RD.1]  D4.1 Report on Analysis and Ranking of Formal methods D4.1 4.2 17/01/2019 

[RD.2]  D2.1 Modelling of the moving block signalling system  D2.1 2.0 28/01/2019 

[RD.3]  D2.2 Moving Block signalling system Hazard Analysis D2.2 2.0 28/01/2019 

[RD.4]  
D3.2 Automatic Train Operations: implementation, 
operation characteristics and technologies for the Railway 
field 

D3.2 1.2 28/01/2019 

[RD.5]  D4.2 Preliminary Trial Report D4.2 1.1 27/11/2018 
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2 Validation of the Process 

This section describes the methodology followed to validate the proposed process to select and adopt formal 
methods in the railway context. Specifically, we first explain how we selected a subset of the available formal 
methods, and how we have used them for different purposes, namely requirements elicitation and 
simulation, and formal verification.  
 
It is worth highlighting that the process outlined is applied in the concept phase of the development process, 
in which early requirements are defined and preliminarily validated. It is outside the scope of this deliverable 
to present a full formal process from early requirements to implementation. Our goal is instead to highlight 
how the features of diverse tools can be exploited for different purposes.   

2.1 Formal methods selection 

In this section we present how we have leveraged the information from the previous deliverables, namely 
D4.1 and D4.2, to select the appropriate formal methods to use in our context. Specifically, we justify why we 
have chosen Simulink-Stateflow for requirements elicitation and consolidation, and why we have selected 
UML as intermediate representation and ProB for formal verification. In the following, we first outline the most 
relevant information from previous deliverables, and then we motivate our choices.  

2.1.1 Main Output from Previous Deliverables 

In this section, we list the main output from the previous deliverable that we considered to support the 
selection of formal methods for our specific context.  
 
In D4.1, we performed a literature survey on formal methods applications to railway problems, 
complemented with a review of projects, a questionnaire with practitioners and a preliminary tool evaluation. 
One of the main output from D4.1, also published in [20] and [21], is the dominance of the B method and 
associated supporting tools (Rodin environment, Atelier B, ProB) in the railway context.  
 
In D4.2, we performed a tool trial, by modelling a preliminary specification of the moving-block system with 
fourteen formal tools, selected based on the survey from D4.1. Furthermore, we performed a usability test for 
the eight selected tools. Despite the dominance of the B method in literature and practice, D4.2 has shown 
that each method and associated tool is appropriate for different development contexts. Specifically, one 
of the main conclusions from D4.2 was as follows:  
 

 Simulink and SCADE are appropriate for both early prototyping and detailed design towards code 
generation, other tools need to be used when aiming at formal verification.  

 UMC is appropriate for initial prototyping, when one wants to adopt a design based on UML state 
machines to facilitate communication with different stakeholders, but wants also verification 
capabilities as the ones provided by UMC.  

 Uppaal is appropriate when one needs to focus on the verification quantitative, real-time properties 
and probabilistic aspects. 

 NuSMV and SPIN are appropriate when the system, or composition of systems, has a large state 
space, and one needs to verify temporal logic properties.  

 Atelier B and ProB are the right choice for top-down development (i.e., from initial design to code) of 
single systems, and have somewhat complementary verification capabilities, with Atelier B 
supporting invariants checking, and ProB supporting model checking. 

 
Other tools, although not widely used in railways, such as CADP and FDR4, have been also experimented in 
the context of the project and demonstrated their appropriateness for the modelling and verification in the 
context of large scale, systems of systems. 
Finally, another output from D4.2, concerning usability of formal tools, as evaluated by railway practitioners 
in the context of the project, is that tools that offer graphical simulation capabilities such as Simulink, 
SCADE, ProB and Uppaal are considered more usable, and easy to understand by practitioners.  

2.1.2 Choice of Formal Methods based on the Development Context 

As mentioned, the current context is the concept phase of the development. In this phase, requirements for 
the moving-block system and the ATO need to be (1) elicited from stakeholders and documentation, (2) 
preliminary assessed with formal verification. 
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Therefore, we have chosen Simulink (and its package for state machines modelling, named Stateflow) as a 
means to support the requirements elicitation task of this phase. Although also SCADE would have been 
an appropriate choice according to the conclusions reported above, we selected Simulink since, from our 
tool usability evaluation presented in D4.2, the tool was considered the most usable by the participants 
(System Usability (SUS) Score: 76 over 100). Since in the early phase of elicitation it is crucial that all the 
involved stakeholders, namely formal methods experts and railway experts, understand the language used 
for modelling, Simulink was considered as a suitable choice for our project.  
 
Concerning formal verification of the requirements, i.e., verification of qualitative properties related to 
conditions and expected actions, we have selected ProB as the main tool given (a) the dominance of this 
tool in the railway context, as outlined by D4.1, and (b) it evaluation in terms of usability as shown in D4.2 
(SUS Score: 62 over 100, ranked third in terms of usability right after Simulink and SCADE).  

2.2 Formal Methods Application Process 

In this section we provide an overview of the application of the formal process, based on the selected formal 
methods and tools. The output of the process in terms of models is further detailed in Sect. 3 and 4.  
 
Figure 1 outlines the adopted formal process. The starting point of the process is a set of input documents 
about the systems to be developed (External Documents). Specifically, in our context, we leveraged the 
preliminary requirements of the moving-block system developed in D4.2, and the requirements for the ATO 
system available from the Shift2Rail X2Rail-1 deliverable D4.1 - ATO over ETCS GoA2 Specification [26]. 
These documents were used as a source to draft the first early requirements for the moving-block and ATO 
systems (Requirements Drafting). The produced requirements, expressed in natural language and 
complemented with informal models, were then represented and simulated by means of Simulink-Stateflow 
(Semi-formal Modelling and Simulation with Simulink-Stateflow). This activity allowed to further elicit, 
refine and improve the drafted requirements towards a stable requirements document.  
 
The produced Simulink-Stateflow model together with the produced requirements were used as a starting 
point for formal verification. To enable verification, the requirements expressed through the model were first 
represented into an intermediate format, namely UML Statecharts (Semi-formal Modelling with UML 
Statecharts). The goal was to have an intermediate model expressed in a format from which different, 
comparable formal models could be potentially derived. We have chosen to use UML Statecharts as UML is 
the most common language for representation of systems in railways, as shown by the results in D4.1. From 
the UML Statecharts model, a formal ProB model was derived (Formal Modelling with ProB). Qualitative 
formal verification was then performed on this model, based on the requirements defined earlier. The 
verification allows to assess the requirements and possibly improve them (Formal Verification with ProB). 
The UML model can also be used as a starting point to derive other models, and practice formal methods 
diversity, by comparing the results obtained with other tools. 
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Figure 1 Overview of the adopted formal process 

 

2.2.1 Requirements Elicitation and Simulation  

In this section we outline the process followed to provide the models for the moving-block and the ATO, and 
to define the final set of requirements for the two components, including systems integration elements.  
 
Moving-block: the moving-block requirements were preliminarily defined as part of D4.2. During the current 
task of ASTRail, the preliminary requirements were further refined and simulated by means of Simulink-
Stateflow. Specifically, representative formal methods experts from CNR developed the Simulink-Stateflow 
model based on the requirements reported in D4.2. Whenever a requirement was considered inconsistent, 
incomplete, or unclear, based on the modelling and simulation activities, reported back the problem to the 
railway domain experts from SIRTI. The interaction was aided by the graphical models presented to the 
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experts from SIRTI, who took care of updating and modifying the original requirements, based on the 
reported problems. At the end of these iterations, a novel requirements document was produced for the 
moving-block system. The document is reported in Annex A – System Requirements – Part 1, Moving Block.  
 
ATO: the initial ATO requirements come from the Shift2Rail X2Rail-1 deliverable D4.1 - ATO over ETCS 
GoA2 Specification [26]. Differently from the moving-block requirements, these are very detailed, and a 
complete model of them was considered out of the scope of the current project. Therefore, in this case, the 
railway experts from SIRTI selected a subset of the requirements that could be suitable to produce a model 
to be integrated with the moving-block model. These initial requirements were modelled, simulated and 
refined with the same approach used for the moving-block system, i.e., by means of multiple iterations and 
discussion between CNR and SIRTI. The document is reported in Annex A – System Requirements – Part 2, 
ATO.  
 
Integrated System: following the definition of the requirements for moving-block and ATO, an integrated 
Simulink-Stateflow model was produced by CNR. This model was used as a baseline to define the final 
requirements concerning the interaction between ATO and moving-block. These final requirements, 
developed by SIRTI, are reported in Annex A – System Requirements – Part 3, Integrated System. 

2.2.2 Mapping to Formal Languages 

In this section we outline how the original model and requirements for the Integrated System were mapped 
into the ProB input language, named ProB, to enable verification. This activity involved modellers from CNR 
and representative of SIRTI, to adjust the requirements previously produced. 
 
For the mapping towards EventB, a first modelling by means of the UML language was performed by CNR. 
This modelling activity took into account the requirements produced, and reported in Annex A – System 
Requirements, together with the integrated Simulink model (Annex A – System Requirements – Part 3, 
Integrated System). The modelling abstracted away from quantitative aspects that were not relevant for the 
foreseen type of formal verification. After the UML representation, an EventB model was defined as a faithful 
mapping of the UML model, to enable formal verification. The mapping activity, together with the UML model 
and EventB model, is reported in Section 4 together with the formal verification activity introduced in the next 
section.  
 
It is worth mentioning that the model produced in UML, and translated into EventB, is not a faithful translation 
of the original Simulink-Stateflow model. Indeed, the goal of this model is to enable the analysis of relevant 
requirements aspects, and not to verify the original Simulink-Stateflow design, which was oriented towards 
the elicitation of the requirements. This opportunistic and non-systematic approach to modelling and 
verification is considered appropriate for this concept phase, to clarify whether the elicited the requirements 
are reasonable. 

2.2.3 Formal Verification 

In this section we outline the process followed verify the components from a quantitative and qualitative point 
of view. This verification activity was oriented to showcase the process, to demonstrate that the system 
specification produced, i.e., the requirements and the Simulink-Stateflow model, is verifiable, as originally 
planned in the DoW. The formal verification was performed by means of the ProB tool. To this end, part of 
the requirements reported in Annex A – System Requirements were considered and translated into linear 
temporal logic (LTL) formulas. The translation process, results and comments are reported in Section 4.3. 
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3 Moving Block and ATO modelling 

In this section we provide a description of the moving block and ATO Simulink models developed, based on 
the process described in Sect.2.2.1. We first describe some basic principles of the Simulink and Stateflow 
languages, which are useful to understand the rest of the section. Then, we present each model individually, 
and we describe the final, integrated model, pinpointing the adjustments needed to complete the integration. 
At the end of the section, we discuss observations throughout the process of requirements elicitation and 
simulation. 

3.1 Simulink and Stateflow Languages 

Simulink is a commercial model based development tool, distributed by Mathworks, that allows the user to 
graphically draw diagrams of the system modelled in the form of input-output blocks. The blocks can be 
further refined in the form of hierarchical state machines through the tool Stateflow, included in Simulink. 
Simulink comes with several packages, also for code generation from the models. For the current models, 
we used Simulink 2017b. Below, we present some basic concepts about the Simulink and Stateflow 
languages, useful to interpret the models presented in the following sections. For more details, we refer to 
the extensive Simulink documentation [2] 
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Figure 2 Simulink and Stateflow basic concepts 

 

 Simulink Blocks: a sample Simulink diagram is represented in Figure 2 (top). The basic elements 
of Simulink are the blocks, which are components that take some input and produce some output. 
Each component in Simulink, including elements with several input and output variables, is 
considered a block. Blocks can communicate with direct links, or through labels. Labels with the 
same name are associated to the same variables or messages exchanged between blocks. In the 
Simulink diagrams that we will consider in this deliverable, the main blocks are sub-systems blocks, 
i.e., complex blocks with several input and output variables. To observe the status of the different 
variables during the simulation, one can use specific scope blocks.  

 Stateflow Statecharts: subsystems can have different forms, and can include several blocks. In our 
context, each sub-system is a Stateflow statechart (or Chart, in Stateflow dialect). Figure 2 (bottom) 
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represents a sample statechart. The statechart inherits input and output from the associated sub-
system block. Furthermore, it is composed by a set of hierarchical states. The decomposition of 
states can be parallel (dashed lines, PARALLEL_1 and PARALLEL_2) or mutually exclusive (solid 
line, for example OFF, ON). Parallel states are actually executed in a sequential order, and the order 
is visually specified on the chart itself (top-right corner of each parallel state).   

 Conditions and Actions: Conditions and actions can be used in the transitions from mutually 
exclusive states. Conditions are expressed in squared brackets, and actions are expressed in curly 
brackets. Conditions are normally associated to variables. However, they can also refer to the 
reception of messages. In this case they do not make use of square brackets.  

 Internal Actions: Actions can be defined also within the states. There are three types of actions: 
entry actions (en), which are executed only once when the system enters the specific state; during 
actions (du), which are executed at each simulation step; exit action (ex), which are executed when 
the system exists the state. 

 Functions: functions are graphical flowcharts, with conditions and actions analogous to those used 
for transitions between states. Functions can be called within actions in states, in transitions, and in 
functions themselves. The main difference between a function and a statechart with mutually 
exclusive states is that a function is entirely executed within one simulation step, while at each 
simulation step only one state in a certain hierarchy can be active in a statechart. This is similar to 
the difference that we have between a C function with nested if-then-else statements, and a C 
function with a switch case statement. The former is analogous to Stateflow functions. The latter is 
analogous to Stateflow statecharts with mutually exclusive states.  

3.2 Moving Block 

3.2.1 Moving Block Overview 

The components of the moving block system considered are depicted in Figure 3. The train carries the 
Location Unit (LU) and OBU (On-board Unit) components, while the RBC (Radio-block Centre) is a trackside 
component. The LU receives the train’s location from GNSS satellites, sends this location (and the train’s 
integrity) to the OBU, which, in turn, sends the location to the RBC. Upon receiving a train’s location, the 
RBC sends a Movement Authority (MA) to the OBU (together with speed restrictions and route 
configurations), indicating the space the train can safely travel based on the safety distance with preceding 
trains. The RBC computes the MA by communicating with neighbouring RBCs and by exploiting its 
knowledge of the positions of switches and other trains (head and tail position) by communicating with a 
Route Management System (RMS). In our context, we abstract from an RMS and communication among 
neighbouring RBCs: we consider one train to communicate with one RBC, based on a seamless handover 
when the train moves from one RBC supervision area to an adjacent one, as regulated by its Functional 
Interface Specification [1]. Next to these physical components, there are two temporal constraints for the 
OBU to respect: the location is continuously updated every 5 seconds, whereas the MA must be 
continuously updated within 10 seconds. If the OBU does not receive an MA within 10 seconds from the last 
MA, the OBU is required to force the train to brake 
. 

 

Figure 3 Overview of the Moving-block system 
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3.2.2 Moving-block Model Architecture 

Figure 4 reports the architecture of the model, which includes four main Simulink blocks representing the 
interacting subsystems, namely OBU, LU, RBC, and Train. Each block communicates with the other blocks 
by means of input/output messages. For example, the label named location is one of the outputs of the LU, 
and it is input to the OBU block. This indicates a virtual channel by which a message is exchanged between 
LU and OBU, including the current train location. Similarly, location_to_RBC is one of the outputs of the 
OBU block, also serving as input to the RBC block: the OBU location, received from the LU, is passed to the 
RBC, which, in turn, can compute the MA and send it to the OBU. The OBU is also in charge of activating 
the brake, and the brake’s status can be visualised in the BRAKE_COMMAND scope element. Similarly, 
other scope elements are used to visualise a TIMER, indicating the time from the last received MA (2.4 
seconds in Figure 4), and SPACE_TO_EOA, which is the space from the current position to the end of the 
MA (996.4 meters). Following the requirements, failure inputs (OBU_FAIL, RBC_FAIL, and LU_FAIL) are 
associated to each block to simulate external events that may trigger system failures.  
 
In the following sections we describe the behaviour of the different components of the model, namely OBU, 
LU, RBC and Train. 
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Figure 4 Architecture of the Moving-block Simulink Model 
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3.2.3 Behaviour of the Moving-block System: OBU Component 

Figure 5 reports a high-level view of the behaviour of the OBU component. The model has two main parallel 
states: MESSAGE_QUEUE_MANAGER and OBU_MAIN. 
 
MESSAGE_QUEUE_MANAGER, which appears in all the developed Simulink models, handles the queue 
of received messages. Specifically, at each clock cycle the queue is emptied, and only the last message 
received is read and processed. The internal part of the state is not reported in the picture, as this parallel 
state has solely an ancillary role for the model. 
 
OBU_MAIN represents the main behavioural block of the OBU is composed of a statechart of two states, 
RUN and BRAKE. The system passes from the normal state RUN to the BRAKE state whenever the timer 
set to receive a movement authority (OBU_out_timer) exceeds 10 seconds, or there is a failure (OBU_fail 
== 1) or the train is moving and the current space limit is exceeded, i.e., the MA has been violated. The 
system can return to the RUN state only upon reset (OBU_reset == 1). 
 
The RUN state is itself composed of parallel states that handle the different functions of the OBU. 
Specifically, four states are considered, and described in the following. 
 

 GENERATE_LOCATION_REQUEST (Figure 6). Every 500 milliseconds (see condition after(500, 
ms)) a location request message is sent to the LU. 

 SEND_LOCATION_TO_RBC (Figure 7). At every cycle, the sub-state SEND_LOC_TO_RBC 
controls whether a new location is received from the LU (function check_new_location). Then, 
every 5 seconds (see condition after(5, sec)) a position report including the current location is sent 
to the RBC. This happens only if the location received is not older than 1 second (function 
check_location_fresh). In case an alarm is received from the LU, the statechart goes to the state 
POSITION_ERROR. From this state, no update is sent to the RBC. As a consequence, no MA will 
be received, and the system will eventually brake thanks to the 10 seconds timeout 
(OBU_out_timer > 10 in Figure 5). 

 RECEIVE_MA (Figure 8). If a new MA is received from the RBC (OBU_REC_MA_flg == 1), the 
current MA value is updated, and an ACK message is sent to the RBC. 

 COMPUTE_BRAKING_CURVE (Figure 9). At every cycle, the space to the end of authority is 
computed based on the current MA value (MA_value), the location in which the MA was received 
(MA_reference), and the current location (l_current_location). The space to the end of authority is 
represented by the variable OBU_out_current_space_limit. This represents a form of braking 
curve in the current instant, expressed in terms of space. The actual computation of the braking 
curve in terms of speed, and taking into account the train weight and other parameters that depend 
on the line, is not considered in the current model, as its main focus is on the interaction between 
the different components and not on a faithful implementation of all the details of the control system. 
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Figure 5 Behaviour of the OBU component: High-level view 

 

 

Figure 6 Behaviour of the OBU Component: GENERATE_LOCATION_REQUEST State 
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Figure 7 Behaviour of the OBU Component: SEND_LOCATION_TO_RBC State 

 

 

Figure 8 Behaviour of the OBU Component: RECEIVE_MA State 
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Figure 9 Behaviour of the OBU Component: COMPUTE_BRAKING_CURVE State 

 

3.2.4 Behaviour of the Moving-block System: LU Component 

Figure 10 represents the behaviour of the LU component. Besides the support state 
MESSAGE_QUEUE_MANAGER, which handles the message queue, and was already described in Section 
3.2.3, we have a main state called LU_MAIN. This is composed of two sub-states: SEND_LOC and 
LU_FAIL. The former sends a position report message including the current location of the train, every time 
a request is received from the OBU (LU_REC_location_reques_flg == 1). Whenever a failure occurs, the 
LU goes into the LU_FAIL state, and raises an alarm, which is received by the OBU (out_alarm == 1). 
 

 

Figure 10 Behaviour of the LU Component 

 

3.2.5 Behaviour of the Moving-block System: RBC Component 

Figure 11 represents the main behaviour of the RBC system (here, we do not report the 
MESSAGE_QUEUE_MANAGER state, for ease of visualisation). The system has three states, namely: 
SEND_MA_TO_OBU, WAIT_ACK and FAIL.  
 
In the state SEND_MA_TO_OBU, whenever a new location is received (RBC_REC_location_flg == 1) and 
no failure occurred, a message called RBC_SEND_MA to be sent to the OBU is composed. Such message 
includes the MA value for the OBU, which is computed by means of the set_current_MA_value function. 
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This function, reported at the bottom of the figure, takes into account the current location of the train, the 
previous MA value sent, as well as the previous train position (OBU_current_location, previous_MA, 
previous_train_pos). If the current location of the train does not appear to violate the old MA, a new MA 
value is sent, always equal to 1000 meters, for the sake of simplicity.  Instead, if the train appears to have 
violated the MA, a message is sent to the OBU including an MA value equal to 0, so that the train is forced to 
brake. 
 
After sending the message to the OBU, the RBC goes into the WAIT_ACK state. If an ACK is received 
(MA_ACK_from_OBU_flg == 1), the RBC goes back to the initial state and waits for another position report 
from the OBU. If an ACK message is not received, the RBC remains in the WAIT_ACK state, and sends 
again the message after one second from the previous one (see function check_resend_MA). This is 
repeated for three times maximum. Then, if no ACK is received from the OBU, the system goes back to the 
initial state (see transition l_count_MA_sent >= 3). 
 

 

Figure 11 Behaviour of the RBC Component 

 

3.2.6 Behaviour of the Moving-block System: Train Component 

Figure 12 reports a simple statechart that represents the train behaviour, and it was introduced for simulation 
purposes, as the train is not strictly part of the moving-block system, but it belongs to the controlled 
environment. Hence, the one presented is not a faithful train model, but rather a model that enables the 
whole moving-block system to be simulated, with variations of speed and space, based on user’s input and 
on the brake activated by the OBU (variable in_brake). From the architecture view (Figure 4), the user can 
select the current speed of the train, and set the value for the in_speed variable, coming from the SPEED 
parameter (set to 30 in Figure 4). The statechart includes two states: TRAIN_STANDING and 
TRAIN_MOVING. In the second state, the location of the train (variable out_space) is computed based on 
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the selected speed and the location of the train when the train was standing (out_space_old). The constant 
parameter 0.05 is used simply to adjust the simulation and has not physical meaning.  
 

 

Figure 12 Behaviour of the Train Component 

 

3.3 ATO 

3.3.1 ATO Overview 

Figure 13 depicts the automatic train operation system (ATO) and the contextual elements of the 
environment with which the ATO system interacts. Specifically, we have a train DRIVER, the ETCS On-
board Unit (called OBU, in the following), which is the on-board automatic train protection (ATP) system, and 
the TRAIN.  
 
The OBU interacts with the ATO to send information about certain external conditions, configuration data, as 
well as the values of the MA received from the RBC. In our simplified context, the MA values represent also 
the missions of the ATO. In a more realistic context, missions and MA would be separated.  
 
The DRIVER is in charge of starting the automatic driving mode of the ATO. In this mode, the ATO 
accelerates the train until a certain target speed, and then brakes the train sufficiently in advance before the 
end of the MA received from the OBU. We will see that in the integrated model, presented in Section 3.4 all 
accelerate and brake commands will pass through the OBU. However, at this stage, it is assumed that the 
ATO has full control of the train.  
 

 

Figure 13 Overview of the ATO in its context 
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3.3.2 ATO Model Architecture 

Figure 14 represents a high-level view of the ATO component (light grey block) in its environment. The 
environment is composed of three components: 
 

 DRIVER (cyan block), which starts the ATO system (label POWER_ON), commands the automatic 
driving function (label DRIVE), and activates the train brake lever (label TBL). These commands are 
set by the user, and forwarded to the ATO.  

 OBU (Stub) (green block), which is a simplified version of the OBU considered in the moving-block 
system from Section 3.2, and limited to those functionalities that are relevant for the ATO, namely 
sending the movement authority (label MA), setting the status of the external conditions that allow 
the ATO to change its internal states (ATO_COND, ETCS_COND), and sending data configuration 
messages (DATA) when requested by the ATO at start-up (DATA_REQ). 

 TRAIN (red block), which is again a representation of the train dynamics, although slightly more 
complex with respect to the one used for the moving-block system and presented in Section 3.2.6. 
Indeed, the block takes as input the acceleration and braking commands coming from the ATO 
(ACCELERATE, BRAKE, full_service_brake), and changes Speed and Space accordingly. Two 
parameters (INC_CONST_SPEED, INC_CONST_SPACE) are used as input to enable a realistic 
simulation.  

 
The ATO component takes input from the different elements of the environment and produces output, mainly 
towards the TRAIN component. Besides the input to the ATO already mentioned above, the ATO has also 
two external input variables, which are in_EXT_CONST_START_BRAKE, a parameter to decide when the 
system shall start braking with respect to the end of the MA (currently arbitrarily set to 0.4), and 
in_EXT_fault, which simply injects a failure in the ATO system.  
 

 

Figure 14 Architecture of the ATO Model 

 
In the following section, we describe the internal behaviour of the ATO block, including also some details of 
the TRAIN block that are relevant to understand the ATO behaviour.  
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The DRIVER and OBU components of the environment are used only for simulation purposes, to enable 
debugging and simulation of the ATO behaviour, and therefore their internal behaviour is not reported here. 

3.3.3 ATO Behaviour: Operating Modes 

Figure 15 reports the main statechart of the ATO named ATO_Operating_Modes, which controls the 
changes of ATO operating modes, based on external conditions (as for the other models, also in this case 
we have a MESSAGE_QUEUE_MANAGER block, but it is not reported in the figure). The statechart has 
three main states, namely NO_POWER_NP (representing the initial status of the system when it is not 
activated yet by the driver), POWER_ON (state of activation) and FAULT_FA (state of fault due to external 
conditions).  
 
In the POWER_ON_STATE, the ATO system starts from the configuration state (ATO_CONFIG_CO), and 
requests the data to the OBU. When the data is received (l_msg_data_flg == 1), the system goes to 
ATO_Not_Available_NA. If the operational conditions are fulfilled, the system goes to ATO_Available_AV. 
Note that the operational conditions are fulfilled when both the ATO and ETCS conditions coming from the 
OBU (ATO_COND, ETCS_COND already mentioned in Figure 14) are fulfilled, and this is controlled by the 
check_op_conditions function in Figure 15. From the ATO_Available_AV state the system goes to the 
ATO_Ready_RE state, if the engagement conditions checked by the function check_eng_conditions are 
also fulfilled.  
 
From the ATO_Ready_RE state, the system goes to the ATO_Engaged_EN state upon external command 
coming from the DRIVER block. This external command identified by the variable l_DRIVE_msg_flg, which 
is a local variable linked to the DRIVE label from Figure 14. The internal part of the ATO_Engaged_EN state, 
which is the main state of the ATO and is concerned with the automatic driving of the train, will be described 
in Section 3.3.4.  
 
From the ATO_Engaged_EN state, the system can move to three states: back to the ATO_Available_AV 
when its mission is finished (l_end_of_control_cycle == 1); back to the ATO_Not_Available_NA, in case 
ETCS conditions are not fulfilled anymore; to the ATO_Disengaged_DE state if only the ATO conditions are 
lost, but the ETCS conditions are still fulfilled. In case ATO conditions are restored within 5 seconds, the 
system goes back to the ATO_Engaged_EN state, otherwise the system starts the full service brake going to 
the ATO_FSB state. When the train is standing (in_train_moving == 0), the system goes back to 
ATO_Not_Available_NA. This state is also reached if the driver activates the TBL, hence taking charge of 
braking the train.  
 
Note that the ATO system does not activate the brake in case ETCS conditions are lost, as the train control 
should be performed by the OBU in this case.  
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Figure 15 Statechart representing the Operating Modes of the ATO  
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3.3.4 ATO Behaviour: Speed Control and Train 

In this section we describe how the ATO system controls the train speed, based on the MA messages 
received from the OBU.  
 
Figure 16 reports the internal behaviour of the engaged state of the ATO, called ATO_Engaged_EN. Instead, 
Figure 17 reports the simple model of the train, which is controlled by the ATO. 
 
The statechart ATO_Engaged_EN has two main states, UPDATE_MA and DRIVE_TRAIN. The former takes 
care of unpacking new MA messages coming from the OBU. The latter is in charge of commanding 
acceleration (variable out_acceleration) and brake (out_brake) based on the space to the end of the MA 
(out_space_to_EOA) which is continuously computed by the function get_current_space_limit, analogous 
to the one already described in Section 3.2.3, and included in the OBU of the moving-block system. The 
DRIVE_TRAIN statechart has four exclusive states: NO_ACCELERATION, in which the train does not 
accelerate; YES_ACCELERATION, which is active until the target speed is reached; BRAKE, which is 
activated if the space to the end of the MA is lower than a certain rate set by the input parameter 
CONST_START_BRAKE; STANDING, which is the final state, reached when the mission is finished, the 
train is standing, and no new MA is received.     
 
The states in the ATO_Engaged_EN statechart have some corresponding states in the statechart that 
represents the train behaviour in Figure 17. This statechart includes the states TRAIN_STOPPED, 
TRAIN_MOVING, TRAIN_CONSTANT_SPEED and TRAIN_BRAKING, which have an intuitive role. As the 
model of the train is a simplified version of the actual dynamic of a train, the space and the speed are 
increased constantly according to the input parameters INC_CONST_SPEED and INC_COST_SPACE 
whenever the train is moving. When simulating the model, these parameters shall be adjusted to enable a 
realistic simulation: they are currently set to 0.001 and 0.0001, but different values maybe set if the 
simulation is too slow or too fast (this depends on several factors, including the characteristics of the PC 
used to run the simulation). 
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Figure 16 Statechart representing the internal behaviour of the ATO Engaged State 
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Figure 17 Statechart representing the Train model for the ATO 
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Figure 18 Multiple MA received and corresponding speed and space 

 
To understand the interaction between the different components that appear in Figure 14, and especially the 
ATO, the OBU (Stub) and the TRAIN, it is useful to look at the scenario reported in Figure 18. The figure 
shows the space crossed by the train, its speed, and the variations of the variable out_space_to_EOA 
indicating the space remaining to the end of the MA. In the scenario, four MA messages are received, with a 
constant value of 1000 meters. At each iteration, the train accelerates until the speed of 80 Km/h is reached, 
keeps its speed constant and then starts braking when approaching the end of the MA. If a new MA is 
received, the train starts accelerating again.  
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Figure 19 Brake and acceleration commands in relation to the train speed 

 
To better appreciate the variation of speed, in relation to acceleration and brake, it is useful to look at Figure 
19, which is associated to the same scenario with the reception of multiple MA messages described above. 
In the figure, we see that the acceleration command is active until the target speed of 80 Km/h is reached, 
and the train starts braking after a while to avoid violation of the MA. This process is repeated for four times, 
i.e., anytime a new MA message is received. At the end, no new MA is received, and the train reaches 0 
speed (in Figure 16 this activates the variable l_end_of_control_cycle). To activate again the automatic 
driving mode, and enter the ATO_Engaged_EN state, a new MA must be received, and the DRIVER block 
needs to send another DRIVE message to the ATO system (see Figure 14).  

3.4 Integrated Model 

The moving-block system model and the ATO model described in the previous paragraphs were developed 
independently, and then integrated in a single model. While the initial models maintained their overall nature 
and structure, adjustments were performed to enable a coherent simulation. In the following, we describe the 
architecture of the integrated model, and we present scenarios of its behaviour in a typical, successful case, 
and in case of violation of the MA by the ATO. We do not discuss again the details of the behaviour of the 
different blocks, as these were already described in the previous sections.  

3.4.1 Integrated Model Architecture 

Figure 20 and Figure 21 report the two parts that compose the overall architecture of the model that 
integrates moving-block system components and ATO. The DRIVER and TRAIN blocks come from the 
environment of the ATO model. The ATO block is architecturally equivalent to the original one. The RBC and 
LU come from the moving-block model. The RBC has been adapted, in that it now includes an additional 
constant as input, named DEC_CONST_MA. Such constant value is used to constantly decrease the MA 
value sent to the OBU during the simulation. The value is decreased every time a new MA is requested. This 
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was necessary in order to have a realistic simulation in which the MA value changes at each iteration and it 
is not constantly set to 1000, as in the initial model.   
 
The OBU block is substantially the same as the original one described in Section 3.2.3, with some additional 
input (DATA_REQ, full_serv_brake_to_OBU, etc.)  that come from the ATO model. Indeed, the OBU is the 
only component that has a direct control of the TRAIN. All the commands from the ATO (accelerate, braking) 
are forwarded to the OBU, which in turn forwards them to the TRAIN component. With this architectural 
solution, the OBU has full control of the train movement.  
 
The OBU also has an additional input named BRAKE_SPACE. This parameter indicates the number of 
meters (100, in the figure) before the end of the MA that the system should consider to start emergency 
braking. This happens only when the ATO fails to control the train, and does not brake sufficiently in 
advance. Such a scenario can be triggered by setting to -1 the input parameter of the ATO named  
IN_EXT_CONST_START_BRAKE, as in Figure 20. If the user wishes to trigger a normal scenario, in which 
the ATO brakes before the OBU, then the parameter shall be set to values such as 0.4, as in Figure 14. 
These scenarios will be discussed in the following sections, in which we describe the behaviour of the 
integrated model. 
 
 

 

Figure 20 Architecture of the model that integrates Moving-block system and ATO (Part 1) 
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Figure 21 Architecture of the model that integrates Moving-block system and ATO (Part 2) 

 

3.4.2 Integrated Model Behaviour 

Figure 22 and Figure 23 represent the main variables of the considered integrated model, in a normal 
scenario. In the scenario, the ATO drives the train based on the MA produced by the RBC and forwarded by 
the OBU, and the OBU does not activate the emergency braking. Specifically, Figure 22 shows the value of 
the signal space_to_EOA as computed by the OBU, which varies in relation to the train movement and to 
the new MA value received from the RBC, which decreases constantly each time the OBU sends a position 
report. The ATO accelerates until a maximum speed value, and some space before the end of the 
movement authority, it starts braking. Then, when a new MA is received, the system starts moving again, 
after the DRIVER has allowed that, by triggering the signal in_DRIVE in Figure 20. 
Figure 23 focuses on the speed, accelerate and brake variables for the same scenario.  
 
Figure 24 shows the behaviour of the system in case the ATO does not stop the train as expected, and the 
OBU is forced to brake. The MA values included in the messages from the RBC (pink lines) decrease until 
the OBU starts braking, so that the train is stopped before the end of the MA. 
 



 

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block 
Validation 

 

Deliverable nr. 

Deliverable Title 

Version 

D4.3 

Validation Report 

1.3 - 30/08/2019 

Page 33 of 70 

 

 

Figure 22 Normal behaviour of the ATO in the integrated model 

 

Figure 23 Normal behaviour of the ATO in relation to acceleration, brake and speed 
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Figure 24 Case of MA violation by the ATO 

 

3.5 Requirements Elicitation and Simulation with Simulink: Observations  

This section is dedicated to discuss the observations through the usage of Simulink-Stateflow for early 
requirements elicitation and simulation in the context of ASTRail.  
 

 Immediate visual feedback on system behaviour: when modelling through Simulink-Stateflow, the 
user can simulate the requirements, and have an immediate feedback of the system behaviour. This 
is not possible with a static diagram. Such feedback allows the user to increase their confidence on 
the correctness of the requirements, but also to identify incomplete requirements. A typical case of 
incomplete requirements occurs when one observes the simulation flipping between neighbouring 
states: this may occur because the conditions to remain in a certain state are not well defined. In 
other cases this may occur because there are variations of the input variables that are too frequent, 
leading to frequent switches between states. A case of incomplete, or too generic, requirements 
emerge when there is a the need to take some practical decision when modelling the system. 
Sometimes, the decisions were not necessarily guided by the requirements, which tend to abstract 
away from concrete behaviours. By asking the domain expert for clarifications, it was possible to 
further refine the requirements.  

 

 Ease of interpretation for domain experts: in our context, the models were developed by formal 
methods experts, and were agreed by the domain expert. After an explanation of the principles of the 
Simulink-Stateflow language, and using the images of the developed Simulink-Stateflow diagrams as 
references, the domain expert was able to pinpoint undesired behaviour and defects in the model. At 
the same time, the domain expert could more easily visualise problems with the requirements that 
were used as a source to define the model, and take corrective actions. 

 

 Simulation time depends on multiple factors: the model and its parameters have been set to execute 
a simulation in a reasonable amount of time, and observe the train movement, acceleration and 
speed with some degree of realism. The goal was to have a feeling of the overall behaviour, and not 
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to find the correct values of each parameter. However, the simulation time may have very relevant 
variations, also using the same parameters’ values. These time variations are related to the 
processing time of the simulation, and may depend on several factors, including the size of the 
simulated model, and the technical capabilities of the PC. The reader will notice that in Figure 14 the 
parameters for the train INC_CONST_SPEED and INC_CONST_SPACE, which are used to 
increase speed and space of the train, are set to 0.001 and 0.0001, respectively. In Figure 21, where 
the integrated model is presented, these parameters are set to 0.1 and 0.01. This increase in the 
parameter was driven by the fact that, since the model was larger, the previous parameters would be 
too low to have a realistic change of the values of space and speed. Overall, when using Simulink-
Stateflow for the purpose of a realistic, early simulation, these aspects need to be taken into 
account. 

 

 Nondeterminism not supported: the Stateflow language does not support nondeterministic choices. 
This implies that the user has to define all the input and associated output, without leaving space for 
nondeterministic behaviour. On the one hand, this leads to a more faithful representation of the 
actual code that will run on the real system, which will be deterministic. On the other hand, this 
leaves less space to abstract away from deterministic behaviours that are not decided during the 
early stages of development, therefore leading to a more complex, but also more restricted model. 

 

 Not a faithful model of reality: while the user is constrained to take some choices to let the simulation 
run, some of the choices taken are unavoidably a simplification of reality. For example, in Figure 11, 
the RBC always sends a MA with a value of 1000 meters. Although this allows the user to have an 
acceptable simulation as shown in Figure 18, this is not what would happen in reality, as the value of 
the MA may depend from the train position in relation to other trains. When integrating the moving-
block system with the ATO, another problem emerged: the MA value should be reduced in a 
progressive manner, in order to have the ATO brake the train (we recall that the ATO mission is 
equivalent to the MA in this model). To address this issue and have the simulation run presented in 
Figure 22, the RBC needed to be modified so that it would decrease the MA value each time an MA 
was sent. This is of course a simplification of reality, oriented to enable a coherent collective 
behaviour of the different components. This is acceptable at this stage of development, as our goal 
is to assess the logic of interaction. However, when more detailed models are defined, these issues 
need to be considered, and realistic choices need to be taken. 
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4 Qualitative verification 

In this section we provide a description of the qualitative/functional formal specification and verification 
process followed, based on the process described in Sect. 2.2.2. 
 
As said in Section 2, the initial step of the validation process has been the refinement of the initial moving 
block model, its extension with ATO modelling, and the animation of the composition with the Simulink-
Stateflow tool. The result of this step is a stable set of natural language as reported in Annex A – System 
Requirements. 
At this point, our interest is to define a formal model, consistent with respect to established requirements, 
upon which to verify the functional (behavioural) requirements of the system. 
 
Our choice is to pass from the initial requirements and initial Simulink model towards a preliminary 
behavioural semi-formal description of the system based on UML statecharts.  
Before tackling the issue of translating the design of the source specification language of a formal-verification 
tool, that could in principle be any of tools available at the state of art (e.g. CADP, ProB, SPIN), it is 
important to have a system design that is as clear as possible. 
The Simulink model might play with some success this role, but it has three main drawbacks: the first one is 
that it relies on a proprietary notation which only the commercial tool is able to animate (and partly verify), the 
second one are the strong assumptions made in the composition of concurrent, but independent, 
subsystems (which are sequentially ordered and executed synchronously one step at a time), and the third 
one is that the Simulink model is inherently deterministic therefore specific choices need to be taken, 
possibly leading to over specification, to support the system simulation. 
 
Our choice of using standard UML has been impacted by the fact that this notation has a public specification 
(OMG UML2.5 Specification)1, a rather clearly defined semantics when certain problematic aspects are not 
used, and the support of a rich set of design, transformation, animation and verification tools some of which 
are commercial only (e.g. IBM Rational Software Architect2, MagicDraw3, PTC Integrity Modeller4, Enterprise 
Architect5), while others free and open source (e.g. . OpenMBEE6), UML Designer7, UMC8, Papyrus UML9).  
Clearly also the standard UML choice is not immune from drawbacks, both in terms of tool support and 
specification language aspects, with which we will have to deal. 
 
In Section 4.1 we will show our reference UML description of the system, while in Section 4.2 we will 
describe the followed approach for translation the UML description into a real formal model based on the 
Event B notation and in Section 4.3 the present to verification process conducted with the tool ProB while in 
Section 4.4 we will present some conclusions and observations. 

4.1 The UML system description 

In this section, after a brief summary of the graphical elements used in the diagrams (subsection 4.1.1), we 
will hint the main characteristics of our UML modelling of the Moving Block system and the ATO system 
(subsection 4.1.2), before presenting the detailed UML models of the OBU (subsection 4.1.3), RBC 
(subsection 4.1.4), and ATO (subsection 4.1.5) system components. 

4.1.1 Briefs on the used UML statecharts notation 

In the following sections we will present a graphical representation of the OBU, RBC, ATO components of 
the system. Those graphical representations will make essentially use of the following symbols: 

       denoting the initial state of a composite sequential state. 

                                                
1 https://www.omg.org/spec/UML/2.5.1/PDF 
2 https://www.ibm.com/developerworks/downloads/r/architect/index.html 
3 https://www.nomagic.com/products/magicdraw 
4 www.ptc.com 
5 https://sparxsystems.com/products/ea 
6 http://www.openmbee.org 
7 http://www.umldesigner.org/ 
8 https://fmt.isti.cnr.it/umc 
9 https://www.eclipse.org/papyrus/ 
 

https://www.omg.org/spec/UML/2.5.1/PDF
https://www.ibm.com/developerworks/downloads/r/architect/index.html
https://www.nomagic.com/products/magicdraw
http://www.ptc.com/
https://sparxsystems.com/products/ea
http://www.openmbee.org/
http://www.umldesigner.org/
https://fmt.isti.cnr.it/umc
https://www.eclipse.org/papyrus/
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       denoting the exit point from a composite state (or submachine) 

 denoting a simple state of the model 

 denoting a composite state of the system separately expanded (i.e. a submachine). 

    denoting the information associated to a transition between states, where in particular: 
- The red identifier represents a unique label associated to the edge (used for the ProB translations) 
- The trigger part (on the left side of "/") denotes the event triggering the transition (highlighted in italic) and 
possible a guard condition. 
   In particular: 
    The trigger "tick" denotes a clock event signalling the passing of 500 ms. 
    The trigger "istep" denotes the execution of an internal step, not trigger by any external event. 
- Transitions without trigger (with trigger represented by "-") denote "UML completion transitions" and,  
     as required by the UML semantics, have a higher priority w.r.t all other triggered transitions. 
- The actions part (on the right side of "/") denotes the sequence of actions performed when the transition is  
     fired.   
- The action of sending a signal to another active component is highlighted using a bold case. 
- The GREEN IDENTIFIERS are used to denote the abstract events corresponding to the triggering of the  
      transition (useful for mapping the properties to be verified to the actual system evolutions). 
Notice that the red and green parts of this information are not part of the UML specification and have just an 
informative role (with no semantic effects). 
 
For example the diagram fragment illustrated in Figure 25 A statechart diagram fragment describes that 

when the state checkMSG is active, when the signal istep can be dispatched from the event pool, and 

when the guard LastMA != null is true, then the signal istep  can be removed from the pool and the 

object can move into the update_BC state, after sending to the RBC object the msgACK signal.  That system 

evolution, to which has been given the name o12_new_MA corresponds the to tree abstract events (maybe 

mentioned in the requirements) i.e. the fact of having received a new MA (NEW_MA),the fact of having sent 

the corresponding ACK (SEND_ACK), and the sending of the MA data to the ATO (NOTIFY_MA). 

 

 

Figure 25 A statechart diagram fragment 

 
We refer to the OMG UML2.5 Specification - Section 14 State Machines - for a more detailed and complete 
description of the semantics of UML statecharts and of the statecharts graphical notation. 

4.1.2 Some differences w.r.t Simulink/Stateflow modelling 

The semi-formal specification language used for this step, and the necessary choices to be performed in the 
modelling, inevitably introduce a specific language/tool flavour to the result. This is the reason for which the 
formal model resulting from this step is somewhat different from the Simulink model already developed 
during the requirements elicitation phase. 
 
Some examples between the two semi-formal methodologies of system design are the following: 
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- The Simulink model relies on internal timers to represent time-related aspects of the model, while 
our UML models relies on explicit "tick" signals arriving from the environment as a way to represent 
the same aspects.  

- In a Stateflow chart the transitions exiting from a state are numbered and their number represents 
the order in which they should evaluated for execution, while in UML there is no such numbering and 
any priority among the exiting transitions should be explicitly modelled by the conditions appearing in 
the transition guards.  

- In Stateflow a transition which has source in a composite state has a higher priority than any 
transition nested inside the composite state itself, while in UML the converse applies.  

- When a Stateflow model includes different statecharts representing concurrent entities, the possible 
evolutions of the system are obtained by letting each component to advance one step, in a  statically 
fixed order. The UML definition does not actually specify the behaviour of a system composed by 
several independent state machines. Only in the case of concurrent regions of the same parallel 
state the UML definition specifies that all the fireable parallel transitions should be fired in the same 
run-to-completion step in an unspecified order. In our UML model of the system we suppose that the 
state machines corresponding to the various system components (OBU, RBC, ATO) can evolve 
independently and asynchronously, being coordinated only through their exchanges of messages, or 
explicit - time modelling - "tick" signals. We moreover suppose that the event pools associated to 
each object are plain FIFO queues. 

4.1.3 Introduction to the Moving Block and ATO UML modelling 

The three main components of our system are the OBU, the RBC, and the ATO. In our case, we abstract 
from a separate modelling of the LU as an independent entity, and we consider it just an internal sub-activity 
of the OBU. When not necessary for the verification of the system requirements, the interactions of our main 
components with other external components of the system are abstracted without explicitly modelling the 
details of them. For example, when the OBU commands an emergency braking because of an ATP violation, 
we model this fact as an occurring abstract event ATP_BRAKE (the abstract events occurring as logical 
effect of a transition are highlighted in green) without actually modelling the sending of signal from the OBU 
the train component.   
 
Following the same abstraction principle, we do not model the precise data and messages being exchanged 
between OBU and the RBC (or OBU and ATO), like the actual train position data or the actual structure of 
the movement authority data. From our abstract point of view, it is sufficient to know that a new movement 
authority has been sent by the RBC and received by the OBU, or that a new Position Report has been sent 
by the OBU and received by the RBC.  
 
In the design of ATO we abstract from the actual values of the current movement authority, the current train 
position and speed, and therefore from the actual acceleration deceleration commands used to drive the 
train according to some driving strategy when in the Engaged or Disengaged states. Our model also does 
not take into consideration all the driving aspects related to the interactions with the Trackside component 
related, e.g. to the details of the possible train mission data. 
 
Finally, we model the OBU and RBC as concurrent, independent periodic activities that are activated with a 
period of 500 ms, and 500 ms is also the atomic step at which the ATO can perform a state transition. 
This means, for example, that the ATO receives any relevant data from the OBU no more than once 
between from one step and the next. No assumptions are made on the possible way in which the OBU, 
RBC, ATO cycles may overlap, i.e. any interleaving of their internal activities is possible. 
 
Since we are using for the modelling only Standard UML notations (i.e. not using any specific UML-RT or 
SysML profiles) we abstract from a real-time modelling of time and we relate all the temporal system 
properties the equivalent number of the component cycles. For example, since the OBU cycle is of 500 ms, 
the requirement of not sending a new Position Report before 5 seconds from the last one is translated into 
the not sending of a new Position Report before 10 OBU cycle have been completed. Similarly, the 
requirement of stopping the train if no MA is received within 7 seconds is transformed into the modelling of 
the train stopping if no MA is received before 14 OBU cycles have been completed. 

4.1.4 OBU 

Figure 26 shows the high-level structure of the UML OBU state machine. 
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The OBU behaviour is that of a cycle that is triggered by a tick signal that arrives every 500 ms. 
At each cycle, three main sub activities are performed in sequence:  
 
1) the computation of the current train position  
2) the (possible) sending of the position of RBC, and  
3) the handling of (possibly arrived) messages and update of the Braking Curve (with possible brake 

activation in case of ATP violation or MA timeout). 
 
If the cycle last more than 500ms a fatal error occurs and the train stops. 
 

 

Figure 26 OBU State Machine 

 
The computation of a new train position starts with a Request being sent to the Location Unit (LU). The 
Location Unit replies either with a new position (notified to ATO), or with the notification of the failure to 
compute the current position. Figure 27 show the expansion of the Compute_Position stub present in Figure 
26. The sending of istep signal to the object itself (the OBU) is a necessary trick to avoid the use of transition 
without trigger (i.e. completion transitions) inside the Send_PR submachine (see Figure 28).  
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Figure 27 The Compute_Position submachine 

 
Figure 28 shows the activity that must be performed for deciding whether a new Position Report (PR) has to 
be sent to RBC. The sending occurs only if a "recent position" of the train is available, and 5 seconds are 
passed from the last sending of a Position Report.  A "recent position" is a train position computed either in 
this cycle or in the previous one (i.e. not older that 1 second). Figure 28 show the expansion of the Send_PR 
stub present in Figure 26. 
 

 

Figure 28 The Send_PR submachine 

 
After having possibly sent a new PR, the OBU activity proceeds with the elaboration of the arrived 
messages, as shown by Figure 29. Correctly arrived Movement Authorities (MA), if any, are received, and 
notified to ATO (o15_end_cycle). If no  Authority is arrived and the 7 seconds timeout is expired train 
braking is activated (o13_MA_timeout). If a new Movement Authority is arrived, an ACK msg is sent to RBC 
(o12_new_MA) and the received MA is forwarded to ATO. If the MA timeout has not expired (whether or not 
a new MA has just arrived) the Breaking Curve is updated and this activity might trigger an emergency 
braking in the case of an ATP violation (o16_ATP_violation). If a ZeroMA has just been received the 
activation of the brakes is always performed. When braking, the loss of the ETCS and ATO conditions is 
notified to ATO. 
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Figure 29 show the expansion of the Handle_Msgs stub present in Figure 26. 
 
 

 

Figure 29 The Handle_Msgs submachine 

 
The "any:bool" notation used in ATO.NotifyATO(any:bool) signalling indicates that any nondeterministic 
true/false value might be sent as ATO_Condition. 

4.1.5 RBC 

The RBC behaves as a cycle that is triggered by a tick signal that arrives every 500 ms. If the whole RBC 
cycle lasts more than 500ms a fatal error occurs and the RBC shuts down. 
 
As shown in Figure 30, at each cycle four main sub activities are performed. The first activity deals with the 
handling of all the arrived messages (PR and ACK). If a Position Report is arrived the next step is to 
compute and send a new Moving Authority. If no Position Reports are arrived, but there are still old MA that 
might have to be resent the next step is to handle the possible resending. If there are no MA to compute or 
resend we complete the cycle. 
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Figure 30 The RBC State Machine 

 
In the Receiving phase (see Figure 31) all the incoming messages (msgACK, msgPR) are acquired, and the 
next step is selected depending on them. The reception of new Position Report triggers the computation of a 
new MA, the reception of an ACK disables further sending of old MA. The possible loss or damage of a 
message is modelled by the nondeterministic possibility of discarding a just arrived message. 
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Figure 31 The Receiving submachine 

 
The computation and sending of a new Moving Authority (see Figure 32) begins with a check on the validity 
of the received Position Report. If the check Fails a ZeroMA is sent instead of a NewMA. 
 

 

Figure 32 The Compute_MA and Send_MA submachines 

 
The resending of a Moving Authority (see Figure 33) occurs only for at most n times (n=3) at intervals of x 
seconds (x =1), i.e.  every two cycles, for three times. 
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Figure 33 The resend_MA submachine 

 

4.1.6 ATO 

The statechart structure of the ATO component reflects rather precisely the structure already described in 
Figure 15. Briefly, we remember that after power-up the ATO asks for, and waits from, some configuration 
data from the OBU. Once configured, it moves into the Not_Available state until all its Operational conditions 
are satisfied (etcs_conditions, ato_conditions). When this happens the ATO passes in the Available state in 
which it waits for the availability of a sufficient Moving Authority and the confirmation on the status of the train 
doors before moving to the Ready state. In the Ready state the activation driver "drive_cmd" command is 
waited before starting the actual engagement of the ATO and its control of the train motion. 
 
From the Engaged State, the system returns to the Not_Available state if the etcs_conditions are lost, and to 
the Disengaged state is just the ato_conditions are lost.  From the Engaged State, if the operational 
conditions still remain valid, the system returns to the Available state if the train normally stops having 
reached the end of the current Moving Authority. ATO can remain in the Disengaged state for at most 5 
seconds (in the ato_conditions do not become valid again) before activating the full service brake, or the 
ATO can (before the 5 seconds expiration) directly return to the Not_Available state if the driver commands 
the TBL. 
 
In our model the ATO system (see Figure 34) is modelled as composed by two concurrent regions ATO_Ops 
and Main_Control, the first modelling the desired operational behaviour of the ATO as described above, and 
the second one modelling the acquisition of signals and data from the external environment. 
 
In our model we make the assumption that ATO state transition occur at the same frequency of the OBU and 
RBC cycle, i.e. once every 500 ms.  The passing of the 5 seconds delay in the Disengaged state is therefore 
modelled by the progress of 10 ATO steps. 
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Figure 34 The ATO State Machine 
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We can see that the behavior of the ATO is affected by several signals arriving not only from the OBU, but 
also from the Train and the Driver. We suppose that both the train and driver may send signals to the ATO 
with a period that is no shorter than the 500 ms of the rest of the system. 
 
From this point of view, it is useful/necessary to give at least a minimal description of these other 
components of the environment in order to build a complete, closed and executable model of the full system. 
 
The modelled driver (see Figure 35) executes just one sequence of power-on/power-off cycles w.r.t the ATO. 
A similar assumption has been made for OBU and RBC, that once Stopped or Shutdown, remain in that 
state. At any time, before powering off the ATO (but no more than once every 500 ms) may send a signal to 
ATO notifying the change of status of the TBL or the issuing of a DRIVE command (after power-on). 
 

 

Figure 35 The Driver State Machine 

 
The modelled train (see Figure 36)can be in a stopped or moving state, and when stopped can have the 
doors open or closed. Each time the status of the train changes a notification is sent to ATO (no more than 
once every 500 ms). 
 

 

Figure 36 The Train State Machine 

 

4.2 The EventB/ProB modelling 

The basic element of an EventB model is a state machine. A state machine has a local state and defines a 
set of operations that can be triggered from the environment to perform transformations of this local state. 
The state transformation performed by an operation can be nondeterministic, and the machine operations 
may be enabled only under certain state-dependent conditions. A state machine can be hierarchically 
structured in submachines, but no two machines can call each an operation of the other. 
 
The overall structure of a ProB state machine (as used in our modelling) is shown in Figure 37: 
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Figure 37 The structure of a ProbB state machine 

 
A typical structure of the definition of an operation is as shown in Figure 38: 
 

 

Figure 38 Structure of a ProB operation definition 

 
In our case we have at least three system components that communicate in a bidirectional way: 
 

    OBU <--> RBC  and   OBU <--> ATO 
 
We cannot model these components as stand-alone ProB machines, and we are forced, instead, to merge 
all our components into a single ProB state machine. In the UML model, each object is implicitly associated 
with its own events queue where all incoming signals are enqueued, and from where they are dispatched at 
each run-to-completion step of the UML state machine. In our ProB model we have to model explicitly the 
presence of these queues (one for each UML component) in the local state of the ProB machine, and the 
corresponding dispatching operations. 
 
Our UML -> ProB translation idea is to associate each edge in the UML model as a possible ProB operation 
supported by the EventB machine, which is enabled precisely under the same conditions of the UML model, 
and with precisely the same effects. To increase the readability of the ProB model, the unique identifier 
associated in UML to an edge becomes in ProB the name of the operation modelling the same evolution. 
While the full ProB models can be retrieved from [25], here we show just a few examples of such 
translations. 
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Let us consider the case shown in Figure 39 of UML State Machine evolution taken from the model of the 
OBU behaviour: 
 

 

Figure 39 An OBU completion transition 

 
Supposing that we will have in our ProB machine the set of initial definitions shown Figure 40: 
 

 

Figure 40 Initial part  of ProB machine definition 

 
Then, the list of operations will include the definition of the o3_position_ok operation as shown in Figure 41: 
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Figure 41 The o3_position_ok Operation 

 
As a second example, in the case of the OBU State Machine evolution shown in Figure 42: 
 

 

Figure 42 A triggered OBU transition 

 
the translation of this transition will be described by the operation shown in Figure 43: 
 

 

Figure 43 The o13_MA_timeout Operation 

 
Some UML aspects are more complex to model inside a ProB machine. For example, in the case of an UML 
transition activated by an event possibly preceded in the object event queue by another deferred (but not 
enabled for dispatching) event, some additional complexity in needed for the definition of the conditions and 
transformations performed by the corresponding ProB operation. 
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4.3 The EventB/ProB verification 

Once the full model of the integrated ATO-OBU-RBC system is modelled in ProB, the observation and 
monitoring of its evolutions become quite easy and friendly. The Figure 44 shows the way in which (one of) 
the ProB GUI allows to monitor and animate the system evolutions. 

 

Figure 44 The ProB simulation GUI 

 
We are mainly interested with the LTL verification approach because this is the most useful for the 
expression of temporal event-based behavioural properties. 
 
It is worth noticing that the LTL logic supported by ProB allows the specification not only of basic state 

predicates involving the values of the machine local variables (e.g.  {OBUSTATE /= STOPPED}), but also 

the specification of properties referring the operation names triggering the system evolutions  (e.g. 

Values of the State Machine variables 

at the current state
Possible evolutions from 

the current state

Prob model

Sequence of steps performed

to reach the current state

Navigation buttons 

for moving in the history
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[o1_startcycle]). ProB supports a rich set of  temporal operators, inclusing the classical X, F, G, U, W, 

R, that can be arbitrarily composed (for more detail see10). 
 
Here we only hint a few examples that reflect most of our usages: 
 
G  (<subformula1> => <subformula2> )  

Starting from the curent state of the path, whenver <subformula1> holds, also <subformula2> holds. 

 

F  (<subformula>)  

Starting from the curent state of the path, eventually <subformula1> holds. 
 

<subformula1> U <subformula2> 

Starting from the curent state of the path, <subformula1> holds until <subformula2> eventually holds in 

the future. 
 

<subformula1> W <subformula2> 

Starting from the curent state of the path, <subformula1> holds until <subformula2> possibly holds in 

the future (but if <subformula2> never holds in the path, it is acceptable that <subformula1> holds 

forever). 
 

X  <subformula>  

Starting from the curent state of the path, <subformula1> must immediately hold after one step. 

 
When verifying a property that is internal to a subsystem, e.g. one of the "Moving Block System 
Requirements" described in Annex A – System Requirements, it would be overkilling to attempt its 
verification in the full integrated system including the actual ATO, when the presence of such subsystem is 
actually not relevant. 
 
It is instead convenient to the prove these properties taking into account a reduced subsystem in which 
some components, if possible, are removed or replaced by a smaller, and more abstract models. 
 
For example, while proving the Moving Block Requirements we might simply omit the presence of the ATO, 
DRIVER and TRAIN components, and when proving properties of the ATO component we might simply omit 
the presence of RBC and replace the OBU system with a simpler abstract model describing its abstract 
behaviour. These simplifications actually allow to make the verification feasible reducing the magnitude of 
the number of states to be analysed from billions of to a few hundreds of thousands (or just a few millions) 
states. 
 
Unfortunately, these "abstract replacement" of subsystems cannot be done automatically in the ProB/EventB 
setting but must be performed by hand, taking the responsibility to find the optimal choice in terms of state-
space reduction and preservation of the system properties of interest11.  

4.3.1 Moving Block verification 

The verification of the Moving Block  subsystem can be performed by just taking into account the OBU and 
RBC components. The resulting ProB state machine is the one described in the file "PROB-MB-alone-
v13.mch" (See [25]). 
 
We show here only some of verifications that can be performed to show how the functional requirements are 
actually reflected within our model, and possibly encoded and verified in terms of ProB LTL logics. 
It is beyond the purpose of this deliverable to show in detail how all the requirements stated in Annex A are 
handled by our modelling and verification. In the following we will show also a few examples of how some 
other requirements couldn't instead be formally proved on the current system, mostly because they may refer 

                                                
10 https://www3.hhu.de/stups/prob/index.php/LTL_Model_Checking 
11 We did not investigate in detail the Prob/ EventB machine refinement features, that might help to this 
purpose 
 

https://www3.hhu.de/stups/prob/index.php/LTL_Model_Checking
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to aspects intentionally not modelled or modelled in an abstract way. Then, we will focus on those 
requirements that can be proved, instead.  
 
Let us consider requirement SFT_01: 
 

 
 
We do not model the real binary content of messages, and we assume it to be just an abstract value like 
"NewMA", ZeroMA", NewPR", therefore we do not explicitly model peer authentication and message integrity 
evaluations. However, when a message arrives to OBU or RBC, we model the nondeterministic possibility of 
discarding it (abstract events MA_MSG_FAIL, ACK_MSG_FAIL, PR_MSG_FAIL). This abstract possibility 
of discarding an arrived message models the possibility of loss of messages, as well the implicit presence of 
a communication protocol that discards corrupted messages. In our model we do not consider delays in the 
message passing, and all messages arriving at a system component are stored into a FIFO queue (In UML 
this is the implicit event pool of the state machine, in ProB it is an explicit data structure). This guarantees 
the correct sequencing of them. 
 
Let  us now consider the requirement SFT_01: 
 

 
 
This is another example of requirement that cannot be validated in our abstract model. We do not explicitly 
model any breaking curve calculation since we have no data on which to perform such calculations (we do 
not even have any specification of the required precision and time margins). What we model is just the 

nondeterministic possibility, when OBU is in the "update_BC" state, of either activating the emergency 

brakes because of an ATO violation (ATP_BRAKE), or the possibility of normally completing the OBU cycle 
(OBU_CYCLE_CONCLUDED). Actually, this SFT_02 requirement does not explicitly prescribe the required 
OBU behaviour in case the breaking curve calculation reveals an ATP violation. Our interpretation is that in 
this case emergency braking must be activated. 
 
SFT_05 is another requirement that describes non-functional aspects that we cannot expect to verify in our 
setting. 
 

 
 
Let  us now consider the requirement SFT_03: 
 

 
 
For SFT_03 we can make the same considerations as for SFT_02. We do not model the details of the 
explicit MA computations, which depend on the current railway layout and traffic. 
 

 
 
We can however formalize and evaluate SFT_04, specifying in particular that: 
 
Whenever RBC receives a train position report (r4_receive_PRmsg) must compute the appropriate Moving 
Authority (r9_compute_NewMA, r10_compute_ZeroMA) before the beginning of the next 500 ms cycle 
(r1_start_cycle) or a fatal error occurs (r15_fatalerror). A possible formalization for this SFT_04 
requirement can be:  
 

[SFT_04] 
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G ( [r4_receive_PRmsg] =>  
    ( (not [r1_start_cycle]) U ( [r9_compute_NewMA] or  [r10_compute_ZeroMA] or [r15_fatalerror] ) ) ) 

 
Notice that the formalisation of the SFT_04 requirement must take into consideration also what stated by 
requirements  SFT_09 and CMA_01. 
 

 
 

 
 
With respect to CMA_01, in our model we do not have any real data about the train position nor about the 
current train MA. However, once RBC receives a PR, we model the nondeterministic possibility of either 
being the train position acceptable - and therefore computing a NewMA, or being the reported train position 
not acceptable - therefore sending to the train a ZeroMA (requesting emergency braking). This second effect 
is actually not explicitly mentioned in the Moving Block requirements and should therefore be considered a 
particular interpretation of the requirements done during the modelling phase. 
 
Let us now consider the requirement: 
 

 
 
This requirement, w.r.t. the OBU behaviour, should be interpreted that OBU should not send more than one 
PR or one ACK messages per cycle.  
 
In the case of OBU PR message, the formula that checks this requirement can be formalized as: 
 

[GEN_06a] 
 G ( [o7_sendPR] => X (not [o7_sendPR] W  [o1_startcycle] ) ) 

 
The shown formula reflects the precise encoding of the sentence:  "Whenever OBU sends a PR, no other PR 
are sent before the beginning of the next cycle". 
 
Several Moving Block System Requirements mention the concept of "machine cycle" in reference to the 
OBU and RBC behaviour. In our modelling we made the assumption that the machine cycle has a period of 
500 m, and that the period is the same for both OBU and RBC. However, is can happen that the two cycles 
overlap in time. 
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The properties guaranteed by our model are the following: 
 
1) OBU and RBC continuously repeat the same execution cycle until the cycling activity is aborted. 
 
In the case of OBU this property is formalized as: 
 

[GEN_02a] 
 G ([o1_startcycle] =>  
       X F ( [o1_startcycle] or [o18_stopped] ) ) 

 
2) Whenever OBU starts a new cycle, it cannot happen that OBU starts a further new cycle if in the 
meanwhile RBC does not start its new cycle (and vice-versa). 
 
This property is formalized as: 
 
 

[GEN_02b] 
 G ([o1_startcycle] =>  
       X ( (not [o1_startcycle]) U  
            ([o18_stopped] or [r1_start_cycle] or  [r15_fatalerror] or [r16_shutdown]) ) ) 

 
One the requirements that can easily translated into an LTL formula is SARBC_01: 
 

 
 
The corresponding formula is: 
 

[SARBC_01] 
G ( [o9_receive_MAmsg] => ( (not [o1_startcycle]) U  ([o12_new_MA] or [o17_fatalerror])  ) ) 

 
the formula precisely encodes the property: "Upon receiving a new MA, an ACK message must be sent to 
RBC before the beginning of the next cycle, or a fatal error occurs.", where the [o12_new_MA] transition 
corresponds to the sending to RBC of the ACK message. 
 
Most of the properties seen so far are rather directly reflected by the structure UML OBU statechart and their 
verification does not actually give deeper insights on the system, apart from (partially) validating the 
correctness of the formal specification. 
 
However, the following GEN_05 requirement: 
 

 
 
i.e.  "A train cannot receive an initial MA, if an initial PR has not been sent in advance" 

 
Involves the interactions between the OBU component and the RBC component, and cannot be checked by 
observing the structure of the OBU statechart alone. This property can be encoded as: 
 

[GEN_05] 
not ( (not [o7_sendPR]) U [o9_receive_MAmsg] ) 

 
I.e. It is not possible that a o9_receive_MAmsg operation occurs if we do not have a preceding o7_sendPR 
operation. 
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The evaluation of all the mentioned six formulas ([SFT_04] ,[GEN_06a], [GEN_02a], [GEN_02b], 
[SARBC_01],  [GEN_05]) can be performed with the command: 

 
>  probcli -model_check -ltlfile PROB-MB-alone-v13-properties.txt PROB-MB-alone-v13.mch 
 
The whole statespace of the MB model (361119 states) is computed in about 10 minutes, and the validity of 
all the formulas is verified in approximately one additional minute12. 

4.3.2 ATO verification 

The verification of the ATO properties can be performed without taking into account the RBC component, but 
it requires at least an abstract version of the OBU. An example of such state machine is described in the file 
"PROB-ATO-alone-v13.mch" (see [25]). 
In this model, we have used our full ATO definition, plus an abstract version of the environment composed 
by the TRAIN, the DRIVER, and an abstract version of OBU. 
 
We have already shown in Figure 35, Figure 33 the models of the TRAIN and DRIVER components, and 
here we suppose that the abstract (reduced) OBU component is as shown in Figure 45. 
 

 

Figure 45 Abstract (reduced) OBU State Machine 

 
I.e. Our abstract OBU is a cycling activity with the same period or the actual OBU. It can continue its cycling 
until it moves into a stopped state. While cycling, it replies to any configuration request from the ATO, and at 
each step may notify to ATO the train position and a new Moving Authority, while always notifies the ETCS 
conditions as true, and ATO conditions that can no deterministically have a true/false value. 
When moving into the stopped state, and when remaining in this state, OBU notifies to ATO the ETCS 
conditions as false, while the ATO conditions can still nondeterministic ally have a true/false value. 
 
With this environment, we can verify many of ATO requirements, like: 
 

 
 
Whose ProB LTL encoding becomes: 
 

[ATO_02] 
G (( [a26_power_off] or [a29_power_off] ) => X G {ATOSTATE = END_NOPOWER} ) 

 
 

                                                
12 Computations performed on Apple MacBook Air with 8G RAM 
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Let us now consider the requirement ATO_04: 
 

 
 
the correct translation of the above requirement is for example the following formula: 
 

[ATO_04] 
G ( {ATOSTATE = WAIT_CONFIG} =>  
     ( {ATOSTATE = WAIT_CONFIG} W ([a4_config_ok] or [a26_power_off] or [a27_ato_fault]) ) ) 

 
I.e. ATO remains in WAIT_CONFIG until it receives the configuation data, unless powered-off by the driver, 
or unless a fault occurs. Notice the use of the Weak Until logical operator (W) because the conditions on the 
right side of the until might in principle also never occur. In particular, it the train stops before providing the 
ATO configuration it will nevermore reply to the ATO configuration request (actually this is one of the 
interpretations of the requirements introduced in our model), and if the driver does not poweroff and no fault 
occur, ATO will remain in the WAIT_CONFIG state.  
 
The translation of the requirement ATO_07 follows the same line of ATO_08. 
 

 
 
The translation of  ATO_07 becomes: 
 

[ATO_07] 
 G ( {ATOSTATE = NOT_AVAILABLE} =>  
      ( {ATOSTATE = NOT_AVAILABLE} W  
        (  ( {etcs_conditions = TRUE} & {ato_conditions = TRUE} ) or 
           ( [a26_power_off] or [a27_ato_fault] ) ) ) ) 

 
Again, it is true that ATO remains in the NOT_AVAILABLE state, as long no poweroff of fault occur. 
 
If we consider noe the requirement ATO_08: 
 

 
 
Also in this case the implicit assumptions behind the above statement (i.e. provided that the operational 
conditions remain true, and no faults nor poweroff occur) must be made explicit in order to have a valid 
formula, that becomes: 
 

[ATO_08] 
G ( {ATOSTATE = AVAILABLE} =>  
        ( {ATOSTATE = AVAILABLE} W  
          ( ( { doors_closed = TRUE} & { first_MA_received =TRUE} & 
                {etcs_conditions = TRUE} & {ato_conditions = TRUE} ) 
             or [a8_op_conds_lost] or [a4_config_ok]  
             or [a26_power_off] or [a27_ato_fault] ) ) ) 

 
Beyond verifying the explicitly required properties described by the requirements (often directly reflected by 
the statechart structure), it is useful to analyse further properties, maybe not directly expressed by the 
requirements) that might however help in getting e deeper view of the system behaviour. 
 
Let us consider, for example, the property: 
 
"It cannot happen that the train doors are open when ATO has full_service_brake activated" 
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whose translation is the following formula: 
 
[FSB_OPEN] 
G ( {full_serv_brake = TRUE} => {doors_closed = TRUE} ) 
 
The verification of the above formula actually returns a FALSE result. This maybe unexpected result does 
not necessarily mean that the model is wrong, but maybe it can suggest the usefulness to further refine it. 
The above formula is FALSE because when in the Disengaged (within a 5 seconds delay), it is possible that 
that train actually stops, and that the doors open; after the expiration of the delay the ATO moves into FSB 
state and activates the full service brake, even if at the next cycle immediately exit the FSB state moving into 
the Not_Available state. 
 
It is also useful to verify properties on the modelled environment that has been wrapped around the ATO 
system, just to check its correspondence with the designer intentions. 
 
For example, a property of the TRAIN environment (directly reflected also by the statechart structure) is the 
one mention is requirement ATO_21 
 

 
 
The encoding of this property is the following: 
 

[TRAIN_DOORS] 
not [moving] W [closingdoors ]  
   & 
G (  [openingdoors ] => ( not [moving] W [closingdoors ] ) ) 

 
I.e.  initially (when the doors are open) the train cannot move until the doors close, and 
each time the door opens, they must close before the train moves. 
 
Also in the ATO case we will have requirements that are not verifiable in our model because of the our level 
of abstraction in the design.  E.g. 
 

 
 
In our design we do not model the details of brake and traction commands, nor the following of a specified 
Operational Speed Profile. 
 
The evaluation of the mentioned six formulas ([ATO_02], [ATO_04], [ATO_07], [ATO_08], 
[TRAIN_DOORS], [FSB_OPEN]) can be performed with the command: 
 
> probcli -model_check -ltlfile PROB-MB-alone-v13-properties.txt PROB-MB-alone-v13.mch 
 
The whole statespace of the MB model (170173  states) is computed in about 6 minutes, and the validity of 
all the formulas is verified in less than one minute13. 

4.3.3 Integrated Moving Block and ATO verification 

If we compose the full system by putting together all the OBU, RBC, ATO, TRAIN, DRIVER components, the 
resulting system (see the model PROB-MB+ATO-v13.mch in [25]) can be used for simulating specific 
scenarios of interest, but is too big (in the order of billions of states) for directly trying to apply LTL model 
checking techniques . 
 

                                                
13 Computations performed on Apple MacBook Air with 8G RAM 
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The only possibility for proving by LTL model checking some behavioural properties is to reduce and further 
abstract some components, by trimming those aspect not relevant for the verification of a given property. 
 
For example, some of the requirements in the ATO-MB Integrated System Section of Annex A deal with the 
passing of data from OBU to ATO.   In order to be able to verify these requirements we need to include the 
complete Moving Block (OBU + RBC), but not necessarily the full ATO and its environment.   For our 
purposes it is sufficient a reduced ATO that just includes the components needed to receive the data from 
OBU. A possible example of OBU-related reduced ATO is shown in Figure 46 
 

 

Figure 46 A reduced ATO for receiving OBU data 

 
The system composed by OBU, RBC and reduced ATO (see file PROB-MB+ATOobudata-v13.mch in [25]) is 
still of a manageable size (7054861  states) and allows to verify the OBU behaviour with respect to the 
passing of data to the ATO component. 
 
Let us consider for example the requirement ATOMB_01: 
 

 
 
The propagation to the ATO of the train position or the MA received from RBC can be described by a formula 
saying that, whenever a new position or MA msg is received, before the beginning of the next OBU cycle the 
data message has been delivered to ATO. I.e.: 
 

[ATOMB_06] 
G ( [o9_receive_MAmsg] =>  
         (  (not [o1_startcycle]) U   
           (  ( [o12_new_MA] & X {enqueued(atobuff,NotifyMA) = TRUE} ) or [o17_fatalerror])  ) ) ) 

 
If we consider instead the requirements ATOMB_07 .. ATOMB_09: 
 

 
 
There translation can be the following: 
 

[ATOMB_07_08_09] 
G ( ([o13_MA_timeout] or [o17_fatalerror] or [o16_ATP_violation])  
          => X ({OBUSTATE = STOPPED & enqueued(atobuff,NotifyETCSfalse) = TRUE}  ) 
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ProB can verify the two formulas formula in about 5 hours (mostly spent the in the state space generation).  
 
The requirements ATOMB_03, ATOMB_04, ATOMB_05 instead describe the possible ATO-driver 
interactions and can be verified on the same model used for the analysis of the internal ATO requirements 
(see file ATO-alone-v13.mch in [25]), which already includes both the ATO and DRIVER models. 
 

 
 
The property the something must have the possibility to happen can be verified in the LTL case by proving 
that the converse in not true. I.e. that it is not true that something does not never happen. 
The formulas corresponding to the above requirements are therefore the following: 
 

[ATOMB_03] 
( G  (not [driver_poweron] or not  X {enqueued(atobuff, poweron) = TRUE}) )  
 
[ATOMB_04] 
( G  (not [driver_poweroff] or not  X  {enqueued(atobuff, poweroff) = TRUE}) )        
 
[ATOMB_05] 
( G  (not [driver_DRIVEcmd] or not  X  {enqueued(atobuff, NotifyDRIVEcmd) = TRUE}) )  
 
 [ATOMB_06] 
( G  (not [driver_TBLon] or not  X  {enqueued(atobuff, NotifyTBLon) = TRUE}) )  
 
[ATOMB_06] 
( G  (not [driver_TBLoff] or not  X  {enqueued(atobuff, NotifyTBLoff) = TRUE}) ) 

 
The above formulas can be verified on a very small system composed by a reduced version of ATO and the 
DRIVER, and for each formula the counter example is found almost instantaneously. 

4.4 Observations 

4.4.1 Correctness of the system design 

The overall formal modelling and verification process requires a not trivial amount of time and effort. 
It is therefore reasonable to ask whether, in the end, we could trust the resulting design to be correct. 
 
If for "correct" we mean "something  that will surely not need to be fixed at a later time", then we can hardly 
guarantee this desire.  Indeed, we have found in our models small mistakes which needed to be fixed even 
after having built, animated, and verified the requirements on models. The problem is that the system 
requirements rarely describe completely the actually intended system behaviour (especially from the point of 
view of liveness properties).  
From this point of view the animation of the formal model, and the verification of further expected properties 
might help in increasing the confidence of the robustness of the design and the completeness of the 
requirements. 
 
If for "correct" we mean that the system simply "satisfies all its stated requirements" the answer can hopefully 
be positive (w.r.t. the set of actually verified requirements), provided that the whole verification process has 
been carried out without making mistakes.   And this leads us to the following points. 

4.4.2 Correctness of the ProB translation 

The first step of our verification process consists in the formalisation in terms of a ProB machine of the 
original UML design. We have two potentially weak points from this point of view. 
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The first one is related to the UML notation and its semantics, that might be misunderstood by the designer 
or by the person performing the translation. This is an issue related to the intrinsic ambiguities of UML that 
we will not discuss further. 
The second weak point is the possibility of having made mistakes during the translation process. 
In our case the translation performed is rather mechanical and not difficult to check (given the simple 
structure of our UML models), moreover the formal animation and verification of the ProB specification surely 
helps greatly in detecting possible translation mistakes (and indeed this happened many times in our 
activity). 
In principle, if we could mechanically save the LTS semantics of the UML design, and the LTS semantics of 
the ProB specification, we might also formally verify the correctness of the translation result. 
This approach has been experimented (in the case of the Moving Block model) using the UMC tool14 for 
saving the LTS semantics of the UML design, using the ProB functionalities to save the statespace and 
using CADP15 to verify the equivalence of the two models. This activity actually helped in discovering some 
initial mistakes during the first experimentations of the UML -> ProB translation. 

4.4.3 Correctness of the LTL formulas 

In our verification process we have translated most of the system requirements into LTL formulas and 
verified them on the resulting Prob model. However, the LTL encoding of a given property is another activity 
"at risk".  The meaning of the temporal logic formulas is not always easy to understand, even for people well 
experienced, and with a solid background on the subject.  The formulas resulting from our verification 
process have almost always been the final result of a sequence of trials and errors, where the errors were 
identified at each step either in the UML design, or in the ProB translation, or in the formula. 
ProB provides several verification/analysis methods that go beyond the verification of LTL or CTL formulas  
The possibility of encoding the same properties in several ways (e.g. using LTL versus CTL, using state-
based versus operation-based  properties) might allow to exploit a certain degree of diversity in encoding the 
properties that might be of help. 

4.4.4 Correctness of the ProB tool 

It would be desirable that the tool itself were certified and validated for a high lever of integrity. However 
requiring a SIL4 level of integrity is definitely overkilling (since we are not dealing with the final system 
validation and certification, but just its high level speciation). Even if we cannot exclude the presence of 
errors in the Prob verification engine, the maturity of the tool and its relatively wide use probably allow us to 
consider this aspect the smallest of the problems mentioned so far. 

4.4.5 Current limits of our approach 

Efficiency of validation 
Model checking with the internal engine of ProB is not as efficient as other famous model checkers. During 
the design/early prototyping phase (as opposed to final validation) a fast response (in the order of few 
minutes max) by the verification is particularly useful.   
This relative weakness is highly reduced by the fact that ProB directly supports several different verification 
methods16 like:  
 

- Consistency Checking 
- Constraint BasedChecking 
- Refinement Checking 
- LTL (and partially CTL) Model Checking 
- Symbolic Model Checking. 

 
ProB also supports interfaces and plugins for the verification using other external model checkers like 
LTSmin and TLC. Last, but not least, ProB allows the saving of the full state-space in an open textual format. 
It becomes therefore possible to translate the ProB state-space into a standard notation of Labelled 
Transition Systems (using the .aut format), which in turn enables explicit, on the fly model checking with 
further advanced model checking tools like CADP, or MCRL2. 

                                                
14 http://fmt.isti.cnr.it/umc 
15 http://cadp.inria.fr 
16 https://www3.hhu.de/stups/prob/index.php/User_Manual 
 

http://fmt.isti.cnr.it/umc
http://cadp.inria.fr/
https://www3.hhu.de/stups/prob/index.php/User_Manual
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Degree of competence required for mastering the tools 
In the case of Prob, the extreme  richness of the tool in some sense risks to fight back.  It allows so many 
different verification/ analysis approaches that it might become quite difficult to master the tool in all its 
aspects. 
 
Graphical Specification Language 
Currently ProB lacks of a graphical / user friendly syntax (aspect inherited by EventB) for its machines. 
Many silly design errors (e.g. wrong target states, typically result of copy&paste operations) would become 
immediately visible in a graphical view of the system design.  But on the contrary, graphical editing of a 
design is not always the most desirable approach for reasons of efficiency and documentation (a textual 
model representation is probably much more robust and easy to maintain).  From this point of view, the 
definition of specific UML-B profiles and the support of bidirectional automatic translations might provide a 
possible solution. Vice versa, if we start from a graphical layout, the manual translation of it into a textual 
representation can easily be source of errors. These kinds of errors are very likely to be discovered in the 
subsequent verification phase, but certainly contribute in making more complex and lengthy the verification 
process. 
 
Interacting state machines 
In ProB, if two system components need to interact in a bidirectional way, we are forced to merge them into 
a single EventB state machine. This is a limit inherited by the EventB methodology that is needed in order to 
guarantee the preservation of the system invariants, but that is somewhat in contrast with the principles of 
design for systems of systems. 
 
Abstractions / Minimizations /Refinements 
In our verification process we had to manually build our "abstract versions" of system fragments in order to 
keep the size of the system into a verifiable limit, depending on the kind of property we intended to verify.  
UML formal background still lacks of theoretical support for refinements / minimisations and compositional 
verification of interacting state machines. ProB relies on EventB theoretical background for the support of 
refinements but, unfortunately, we did not have enough time and effort to investigate this possibility in detail.  
The possibility of "driving" a ProB machine from a CSP process might reveal to be another useful approach. 
Using other process-algebra based approaches and tools (e.g. CADP, MCRL2, FDR) this property 
dependent minimization activity could be done in an almost automatic way by exploiting equivalences, 
minimizations and congruence. Surely this is a line of research that might lead to great improvements of the 
state of art.  
 
UML limits 
The main weak aspect of UML is probably the incompleteness of its definition for a system of systems 
design; many implementations defined aspects related to statemachine-statemachine interactions are just 
implementation defined. Moreover, the official specification of UML statemachines notoriously contains many 
ambiguities that hinder its widespread use as a basis for formal modelling and verification.  
Finally, the state or art of freely available tools for design, animation and verification of UML models is 
currently not satisfactory. In our case we used UML unaware tools for the design of the statcharts 
(Omnigraffle on MacOS), and a custom, academically developed tool (UMC) for animation and verification of 
the systems. UMC however, being an academic prototype, does not have the degree of maturity needed for 
use in an industrial environment.  
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5 Conclusions 

The current deliverable presents the results of the final task of WP4 of the ASTRail project concerned with 
the validation of the choices of formal tools for the development of railway systems, based on the formal 
specification of the Moving-block system integrated with Automated Driving Technologies (ATO, Automatic 
Train Operation). In the deliverable, we have first illustrated the proposed formal process to be applied in the 
concept phase of the system development. The formal process consists of (1) a requirements elicitation and 
simulation phase; (2) a phase of mapping towards formal languages; (3) a phase of formal verification. In the 
first phase, the Simulink-Stateflow tool was applied to model and simulate the requirements provided by the 
railway experts, in order to produce a stable requirements specification document, together with an 
executable Simulink-Stateflow model of the integrated system including Moving-block and ATO. In the 
second phase, the requirements specification document and the Simulink-Stateflow model were used as 
input to produce a UML model, which focused on relevant abstraction of the system, and enabled a 
translation into the Event B formal language. In the third phase, the requirements produced were translated 
into logic formulae to formally verify the Event B model by means of the ProB tool. Most of the requirements 
could be verified by means of the tool. The final requirements specification is reported in Annex A – System 
Requirements. Instead, the Simulink-Stateflow models, together with their documentation in HTML format is 
available at [25]. In the same repository, we report the Event B models resulting from the activity, while UML 
models are reported as figures in the current deliverable (see Section 4.1). 
 
The summarised process demonstrates the feasibility of using formal methods in the concept phase of the 
development, and demonstrates the suitability of the choices made throughout the ASTRail project. 
Specifically, we observed that modelling and simulating early requirements enables the discovery of 
incomplete or too generic requirements, and it is an appropriate approach to provide an initial refinement and 
consolidation of the requirements. The graphical language used by Simulink-Stateflow could be interpreted 
by the domain experts with limited guidance, and was therefore an appropriate means to communicate 
between formal methods experts and domain experts. The usage of UML enabled the definition of an 
abstract specification oriented to model nondeterministic behaviour, which could not be modelled with 
Simulink-Stateflow. Further, translating the UML model into Event B enabled the discovery of incorrectness 
in the original UML model. Similarly, the translation of requirements into temporal logic formulas, and their 
verification by means of the ProB tool enabled further reflections on the modelled system, and further 
adjustments towards the consolidation of the requirements.  
 
Other relevant aspects should be considered when applying the proposed process. The time required for 
modelling in the different languages is not negligible, and high expertise is required for managing the 
different languages and tools. Furthermore, concerning the formal modelling and verification activity with 
ProB, it is important to notice that some abstraction choices needed to be manually made to enable efficient 
formal verification. These choices require expertise in formal modelling and verification, and human 
judgment is highly important. Overall, the process is not entirely supported by tools for what concern the 
translation from one language to another, including the translation of the requirements into temporal logic 
formulas. These observations indicate that, although the choices made within ASTRail can be considered 
valid for the scope of the project, the introduction of formal modelling and verification techniques in the 
railway process is not a fully automated process, as diverse expertise are required and the role of the expert 
subjects involved is paramount. Furthermore, especially in the concept phase, as the one we are concerned 
in this deliverable, the application of formal methods cannot be considered as a guarantee that requirements 
will not change in the future, when further refinement occurs towards the implementation. However, we 
argue that the usage of formal methods, in different forms and for different purposed, i.e., formal modelling, 
simulation, verification, certainly increases the confidence of the specified system requirements, and 
provides an increased guarantee that unexpected behaviour will be limited in future development phases. 
 
Further investigations about benefits of the adoptions formal methods in the complete development process 
of high safety-integrity-level products, especially targeted to railway market, could be a natural way to exploit 
and extend the results obtained in this work. An effective verification and validation activity (as required by 
shared rules, standards and best practices in the automotive and railway industries), needed to obtain the 
required product certification, is a complex and articulated process that involves the entire development 
phase, from the requirements definition to the deployment of the product itself. This process usually requires 
a lot of effort when compared to the entire development cycle. The introduction of formal methods in the 
entire flow could lead to better performance of the development process while improving the overall quality of 
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the final product, even considering the maintenance phase. In this way, a cost benefit analysis, oriented to 
the entire life cycle cost of a product, could be addressed by further investigating the optimization role of 
formal methods, when put at the centre of the development process, considering the long-term scenario. 
 
  



 

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block 
Validation 

 

Deliverable nr. 

Deliverable Title 

Version 

D4.3 

Validation Report 

1.3 - 30/08/2019 

Page 64 of 70 

 

Acronyms 

 

Acronym Explanation 

ATO Automatic Train Operations 

LTL Linear Temporal Logic 

OBU On Board Unit 

RBC Radio Block Centre 

LU Location Unit 

MA Movement Authority 

PR Position Report 

MA_Req Movement Authority Request 

IP Information Point 

ACK Acknowledge 

LRBG Last Relevant Balise Group (IP) 

BC Braking Curve 

LR Location Request 

SMC Statistical Model Checker 
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Annex A – System Requirements 

X2Rail-1 D4.1 - ATO over ETCS GoA2 Specification [26] – inspired the following System Requirements. The 
ATO State Diagram in Figure A1 is a reworking of use cases taken from [26]. 
 

Moving Block System Requirements 
 

Req Num Description 

SFT_01 The communication protocol between RBC and OBU must guarantee peer authentication, 
message integrity and message sequencing. 

SFT_02 OBU braking curve calculation and train emergency brake must be performed with stated 
precision and time margins, able to guarantee the safety of the train. 

SFT_03 RBC must calculate the MA with a predetermined precision, able to guarantee the safety of the 
train . 

SFT_04 RBC must calculate the MA within a single machine cycle. 

SFT_05 The computation of the current train position must be performed with high Safety Integrity Level 
(SIL4). 

SFT_06 LU must compute the train position within a single machine cycle. 

SFT_07 If the LU is not able to provide the current position, a fatal error must be raised     . 

SFT_08 If OBU cannot complete the processing of all the messages received in one cycle, it shall rise a 
fatal error and stop the train. 

SFT_09 If RBC cannot complete the processing of all the messages received in one cycle, it shall rise a 
fatal error and shutdown. 

GEN_01 No pre-emption of any cycle is allowed for LU, OBU and RBC. Before processing new 
messages or events, the computation cycle shall always be concluded. 

GEN_02 OBU cycle and RBC cycle shall refer to a common time base; however, this does not imply that 
these cycles are synchronized. 

GEN_03 In case of multiple messages of the same type from the same sender, the least recent one shall 
be deleted. 

GEN_04 The MA always refers to the distance that the train is allowed to run, starting from the last IP. 

GEN_05 When a train initiates its trip for the first time, the OBU shall require a MA to the RBC. 

GEN_06 RBC and OBU send just one message per cycle. 

CL_01 When the LU receives a LR, LU shall compute the location without additional delay. 

SL_01 After computing the location, the LU shall send the location to OBU. 

GR_01 Every 500 ms OBU shall send a LR to LU. 

SR_01 The OBU sends the LR to the LU (anytime a PR is required, see GR_01) without additional 
delay. 

SLRBC_01 OBU shall send a PR to RBC every 5 s (regardless of passing over a balise).  

SLRBC_02 Any PR must contain a position not older than 1 s (older positions must be dropped),  based on 
internal clock .   

SLRBC_03 PR must contain timestamps, based on internal clock. 

RMA_01 When a MA is received, the connection timeout is reset. 

RMA_02 If OBU does not receive a new MA within 10 s from the reception of the last MA, the OBU shall 
stop the train. 
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RMA_03 Upon receiving a new MA, a new BC is computed by OBU. 

SARBC_01 Upon receiving a new MA, an ACK message must be sent to RBC. 

CMA_01 When RBC receives the PR, RBC shall check the reported position with respect to current train 
MA. 

CMA_02 RBC sends the MA only as a reply to a PR. 

CMA_03 RBC shall process in parallel messages coming from all the trains under its control. 

CMA_04 Only the PR with the most recent timestamp must be processed. 

SMA_01 After computing the MA, RBC shall send the MA to the OBU. 

SMA_02 If no ACK is received from RBC within 1 s, the MA is sent again, up to 3 times at regular 
intervals of ‘x’ s. 

 

ATO System Requirements 
 

Req Num Description 

ATO_01 The ATO-OB is switched on by the Driver 

ATO_02 The ATO-OB shall remain in NP State when it is switched off 

ATO_03 
When the ATO-OB enters CO State, the ATO-OB shall send a “Specific ATO Data Need” 
information to the ETCS-OB indicating whether it needs or not Specific ATO Data 

ATO_04 
The ATO-OB shall remain in CO until it has received the required ETCS Data and Specific ATO 
Data 

ATO_05 
ATO Operational Conditions are composed by ETCS-OB Conditions and ATO-OB Conditions 
and are mutually independent 

ATO_06 
Engagement Conditions are composed by Movement Authority availability and doors closed 
signal 

ATO_07 The ATO-OB shall remain in NA State until the “ATO Operational Conditions” are fulfilled 

ATO_08 The ATO-OB shall remain in AV State until the “ATO Engagement Conditions” are fulfilled 

ATO_09 The ATO-OB shall remain in RE State until the Driver enables automatic driving 

ATO_10 The ATO-OB shall engage only when the TBL is in neutral or traction position 

ATO_11 
In EG State, the ATO-OB is responsible for driving the train controlling brake and traction 
according to the computed ATO Operational Speed Profile 

ATO_12 
When the train in Self Driving mode stops, the system must not be able to control traction and 
brake and shall wait in a stable state for the Engagement Conditions are fulfilled again 

ATO_13 
When the Driver, during the Self Driving mode, commands the Train Braking Level, the system 
must end the automatic driving and wait for the Driver to engage the Self Driving mode again 

ATO_14 
The ATO-OB State shall change to DE State, if any of the “ATO Operational Conditions” but the 
“ETCS related” ones is lost while the ATO-OB is in EG State 

ATO_15 
During the first 5 seconds after the ATO State has changed to DE, the ATO-OB shall continue 
to follow the last computed ATO Operational Speed Profile with the limitation of not requesting 
traction 

ATO_16 
If the ATO-OB recovers the “ATO Operational Conditions” within the first 5 seconds after the 
ATO State has changed to DE, the ATO-OB State shall change to EG 

ATO_17 
If the ATO-OB does not recover the ATO Operational Conditions within the first 5 seconds after 
the ATO State has changed to DE, the ATO-OB shall apply the Full Service Brake (if it is not 
already applied) 
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ATO_18 
The ATO-OB shall enter the ATO Failure State in case of a fault that does not allow performing 
ATO functions 

ATO_19 From the Fault State, the system can only move to the not powered state 

ATO_20 The authorisation for the safe release of the doors is performed by an external safe system 

ATO_21 An external safe system shall ensure that the train cannot move when the doors are open 

 

ATO-MB Integrated System Requirements 
 

Req Num Description 

ATOMB_01 
OBU is required to send to ATO Train Position, MA, with no additional delay after a value 
change 

ATOMB_02 
OBU is required to send to ATO ETCS_Conditions and ATO Conditions at every execution 
cycle 

ATOMB_03 The driver must be able to power on/off the ATO-OB 

ATOMB_04 The driver must be able to set the auto-driving mode 

ATOMB_05 The driver must be able to use the TBL 

ATOMB_06 
OBU must forward to ATO-OB the MA as it is received from the RBC and with no further 
modification 

ATOMB_07 In case of Emergency Brake required by OBU, ETCS_Conditions are set to FALSE 

ATOMB_08 In case of OBU Fatal Error, ETCS_Conditions are set to FALSE 

ATOMB_09 In case of MA timeout, ETCS_Conditions are set to FALSE 

ATOMB_10 ETCS_Conditions and ATO Conditions are mutually independent 

ATOMB_11 
The Train must forward to the ATO-OB the Doors status information (opened/closed), the train 
stopped condition the speed and the distance travelled 

 

ATO State Diagram 
 



 

Satellite-based Signalling and Automation Systems on Railways along with formal Method ad Moving Block 
Validation 

 

Deliverable nr. 

Deliverable Title 

Version 

D4.3 

Validation Report 

1.3 - 30/08/2019 

Page 69 of 70 

 

 

Figure A1 ATO State Diagram 
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