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Abstract

Wearable sensing devices can provide high-resolution data useful to characterise

and identify complex human behaviours. Sensing human social interactions

through wearable devices represents one of the emerging field in mobile social

sensing, considering their impact on different user categories and on different

social contexts. However, it is important to limit the collection and use of sen-

sitive information characterising individual users and their social interactions

in order to maintain the user compliance. For this reason, we decided to focus

mainly on physical proximity and, specifically, on the analysis of BLE wireless

signals commonly used by commercial mobile devices. In this work, we present

the SocializeME framework designed to collect proximity information and to

detect social interactions through heterogeneous personal mobile devices. We

also present the results of an experimental data collection campaign conducted

with real users, highlighting technical limitations and performances in terms

of quality of RSS, packet loss, and channel symmetry, and how they are in-

fluenced by different configurations of the user’s body and the position of the

personal device. Specifically, we obtained a dataset with more than 820.000

Bluetooth signals (BLE beacons) collected, with a total monitoring of over 11

hours. The dataset collected reproduces 4 different configurations by mixing
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two user posture’s layouts (standing and sitting) and different positions of the

receiver device (in hand, in the front pocket and in the back pocket). The large

number of experiments in those different configurations, well cover the com-

mon way of holding a mobile device, and the layout of a dyad involved in a

social interaction. We also present the results obtained by SME-D algorithm,

designed to automatically detect social interactions based on the collected wire-

less signals, which obtained an overall accuracy of 81.56% and F-score 84.7%.

The collected and labelled dataset is also released to the mobile social sensing

community in order to evaluate and compare new algorithms.

Keywords: Social Interactions; Human Proximity; Bluetooth Low Energy;

Wearable sensors.

1. Introduction

Human social interactions represent complex behaviour to be described, and

they cannot be easily connected with sensing data, even though we are currently

able to collect a huge amount of data from our personal and mobile devices.

Most of the works in the literature rely on video signals and processing, from5

which identifying specific conditions of social interactions. However, users are

even more skeptical of being continuously monitored, especially in terms of video

recording, generating thus not spontaneous behaviour and resulting in biased

information. More recent works focus on the use of sensing data derived from

wearable sensors, but also in this case they often need customised hardware to10

be worn in specific conditions to optimise the wireless signal performances. In

addition, there are very few datasets available in the community to test and

evaluate detection algorithms in this field.

Since we consider proximity and face-to-face meetings as fundamental in-

formation to detect social interactions, we propose a mobile framework, called15

SocializeME, based on the use of commercial devices (i.e., smartphones), and

designed to collect and to analyse data from wireless BLE signals, commonly

emitted by wearable devices. We conducted an experimental campaign by in-
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volving several students from a high school to test our framework and to execute

specific interaction experiments in order to collect the wireless data and the20

appropriate labels related to the different interaction phases: non-interaction,

approaching, interaction. Tests have been designed to reproduce heterogeneous

situations typical of human interactions by using commercial devices. We anal-

ysed the collected data with particular attention to the differences in the emitted

signals, in terms of frequency and RSS, generated by the different configurations25

and uses of the mobile device (e.g., standing face-to-face with smartphone in one

hand, standing with the phone in the front/back pocket, sitting, etc.). The main

goal is the emulation of real-life scenarios and the collection of realistic data.

Specifically, we study the wireless channel both in terms of quality and symme-

try. As a first step, we focus on the RSS variations during the different stages of30

a social interaction. In addition, we show how RSS is attenuated depending on

the position of the receiving device, which is witnessed also by the beacon loss

rate resulting from the experiments. Finally, we present the performance of the

SocializeME Detector (SME-D) algorithm, originally presented in [1]. SME-D

is designed to automatically classify interactions or non-interactions according35

to some features of beacon’s RSS. In particular, we measure the performance of

SME-D in terms of Accuracy and F-Score metrics with different tests.

Our experience provides some important lessons, both in terms of the realis-

tic usage of commercial mobile devices for social interaction monitoring and the

characteristics of the BLE wireless signals in realistic scenarios. The encountered40

technical limitations, together with a detailed description of the experiments

and the collected dataset, represents an important contribution for the entire

community aiming at defining and evaluating new algorithms for human social

interactions from mobile sensing. Furthermore, we argue that the technologies

we adopted for collecting our dataset, enables the possibility of modelling and45

predicting social gatherings among people with high temporal resolution, which

is a crucial asset for managing the epidemic diffusion of diseases in the modern

society such as the recent COVID-19 pandemic.

The paper is organised as follows. Section 2 describes the related works
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on the automatic detection of social interaction through sensing units. We50

also review the existing datasets specifically collected for this purpose. Section

3 describes the SocializeME mobile framework in terms of selected wearable

devices and the mobile application running on commercial smartphones. Section

4 describes the experimental campaign and the data analysis, in terms of quality

and symmetry of the BLE channel. Section 5 presents the main features of55

SME-D algorithm, and its performances in different configurations.

2. Related Works

The study of human social interactions is traditionally approached with ques-

tionnaires and diaries [2, 3] periodically compiled by monitored subjects. Such

tools represented for a long time an essential source of information, however60

they require the explicit user intervention, which can impact on the accuracy

of the experiment and the period of involvement of voluntary people. In order

to overcome this limitation, sometimes an external observer has been involved

to track the subjects and take note of the time, people involved in the meeting,

and the type of social interaction (e.g. occasional, recurrent, or intimate inter-65

action). This approach introduces an additional possible bias to the collected

data, both related to the involvement of additional persons and on the natural

way people interact, perceiving the presence of external subjects.

With the introduction of mobile sensing technologies, the previous approach

can be further improved. Researchers are now investigating how objective mea-70

sures derived from the available technologies are able to provide information

on the user social interactions in the physical world. As a first step, we can

distinguish between the available technologies, the type of collected data and

the processing required to extract meaningful information.

Video recording and wireless signal analysis are the most used technologies75

for this purpose, they can be associated with the recognition of the physical

activity or the emotions. The target is to define the appropriate processing to

detect when and how strong people are engaged in a face-to-face interaction.

4



In addition, embedding the sensing technologies in mobile and wearable devices

(i.e., smartphones and smart watches) allows the collection of huge amount80

of data, reducing the obtrusiveness and improving the quality of the collected

dataset. However, it is important to focus on the user compliance in participat-

ing in the monitoring, especially related to the collection of this personal and

sensitive information.

The video-based techniques [4] are widely adopted in this area. They exploit85

the analysis of frames derived from fixed or mobile cameras deployed in the

environment. However, the interactions can only be tracked in the monitored

physical area and people can feel observed, thus not moving and interacting in

a natural way. Authors of [5] propose a system based on camera recordings

from a first-person video. Specifically, an actor records videos with a camera90

capturing scenes from his point of view. Authors analyze the collected video

clips during a one-day social event, with the goal of classifying the interactions

in 3 categories: dialogues, discussion, and monologue. The analysis is based on

location and orientation of the involved people with respect to the recording

person, in order to detect if they were interacting or not. The work presented in95

[6] is also based on video recordings from a surveillance system. Authors adopt

a technique based on the motion features of the recorded subjects with the goal

of detecting if two subjects are close enough to interact, introducing the concept

of proxemic [7]. Similarly, a more recent work focuses on the recognition of the

social interactions based on the pictures captured by a worn camera [8]. The100

authors adopt cameras based on a low frame rate in order to capture long-lasting

recording sessions.

Datasets collected in the previous works are not publicly available, also due

to privacy concerns. In fact, it is not possible to anonymize this type of data

without loosing their significance, and generally users are really skeptical of105

being visually recorded during their daily activities for monitoring purposes,

generating data that are often biased by a not natural behaviour. However,

several works in the literature rely on this sensitive information, like SALSA

[9], which collected an audio-visual dataset combined with sensing information
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obtained by Sociometric badge2 [10, 11, 12]. The badge is a wearable device110

equipped with a microphone, an accelerometer and an infrared and Bluetooth

sensor. The microphone is used to assess the talkativeness of subjects in noisy

condition, with the goal of inferring if subjects are speaking or not. The ac-

celerometer provides an indication about the subjects’ movements, while in-

frared and Bluetooth are used to detect proximity among the subjects. The115

experiment conducted by SALSA collects data during an indoor social event in

which 16 subjects are recorded for 60 minutes. Moreover, in order to share the

dataset, the authors provide annotations to the captured scenes. The annota-

tions describe, for each subject, the position, and the orientation of head and

body with a time resolution of 0.3 Hz. In addition, the monitored subjects were120

asked to fill in a questionnaire before joining the experiment. The questionnaire

allows the authors to define a profile of the subjects in terms of 5 personal traits:

Extraversion, Agreeableness, Conscientiousness, Emotional Stability, and Cre-

ativity. As a result, the SALSA dataset provides sensing information collected

during the experiment and a description of the involved subjects.125

From the collected data the authors were able to infer users’ proximity based

on the IR signals, talkativeness through the audio signal of the microphone, and

body motion through the accelerometer data. This type of data are useful to

reveal complex dynamics of human interactions with a fine-grained time scale,

however the users need to wear the proposed device and accept to be visually130

and audio recorded.

The authors of [13] exploit audio and video signals in order to detect groups

of conversing people. More specifically, 12 wireless microphones were deployed

among the participants and 3 cameras recorded the scene. Participants worn a

sensor pack around the neck composed by: a triaxial accelerometer, a proximity135

sensor, and an indoor positioning device. An interesting aspect of this work

consists in the detailed questions that the authors aim to respond: who is

speaking and who are the people involved. Authors aim also to understand the

2https://hd.media.mit.edu/badges/information.html
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quality of the social interaction, by detecting if people are enjoying themselves

in crowded scenarios. The authors collected data from 32 volunteer students140

from different universities. Authors annotated the dataset by analysing the

video recordings and detecting the F-Formations [14].

In order to define a less invasive system, which does not require video and

audio signals, a different approach has been proposed in the literature, consist-

ing in inferring the existence of an interaction between a pair of subjects by only145

detecting their co-location. The term co-location represents the co-presence of

two or more people in the same place at the same time. As discussed in [15]

co-location can be used as a proxy to reveal a face-to-face meeting. As a key-

observation, the more people lie in proximity, the more likely they are involved

in meaningful social interactions. Works based on the co-location analysis have150

flourished in the recent years, thanks to the diffusion of wireless interfaces such

as WiFi Direct, Bluetooth Low Energy and legacy Bluetooth, as well as the

upcoming LTE Direct technology. All these interfaces are pervasive in our mo-

bile devices (smartphones, smartwatches, wristband and small pocket devices),

making much easier and cheaper to setup a long-lasting data collection cam-155

paign. The technique often used to infer an interaction from the co-location

consists in broadcasting wireless signals to a relative short distance. Therefore,

only devices in the nearby can hear them. In turn, such signals are collected

and analyzed in order to infer when a pair of devices is close enough to assume

that their owners are involved in a social interaction. Of course, such technique160

might lead to false positive and negative answers but, on the long-term, the

analysis provides valid and reliable results.

Authors of [16] represents one of the pioneering work in this field, exploiting

the Bluetooth scans of Nokia 6600 devices in order to discover devices in the

nearby with a time resolution of 5 minutes. The dataset comprised 75 students,165

and the authors analyzed proximity, the visited locations, and a pattern of

encounters among volunteers on a daily basis. The dataset collected offers a

first outlook to study dynamics of the social interactions, however we argue

that the approach followed cannot be applied for large-scale deployments, since
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all the volunteers use the same device model.170

A more recent work is represented by SocioPattern3 research platform, which

provides several datasets gathered during various social events. SocioPattern

has been adopted in several remarkable works addressing the goal of dynamics’

analysis of the social interactions in a natural context[17, 18, 19]. The platform

consists on customised wearable badges based on RFID sensors emitting a signal175

in a range of 1 to 1.5 meters. Badges are worn by people, while receivers are

installed in the environment (generally on the ceiling) in order to collect and

store the acquired data. The SocioPattern platform represents a state-of-the-art

solution for the purpose of understanding dynamics of the social interactions in

crowded areas.180

Finally, the Copenhagen Networks Study [20, 21] is another interesting

project aimed at studying the social interactions of people by means of data

collected with a mobile app for smartphone. The application captures mul-

tiple signals, including WiFi scans, locations and Bluetooth scans. The data

collection campaigns (SensibleDTU 2012 and 2013) involve a high number of185

volunteers. The organizers distributed the smartphones to the users therefore,

differently from our experience, they did not face with the extreme heterogene-

ity of device manufacturing. Social ties are identified with Bluetooth, WiFI and

other channels. Concerning Bluetooth, the organizers of the Copenhagen Net-

works Study adopted Bluetooth scan in order to discover devices in proximity.190

We consider that such technology offers an interesting approach, however the

power of emission of the Bluetooth scan can not be configured in order to limit

the devices seen in proximity. Furthermore, the frequency of emission of Blue-

tooth scans is also limited. Bluetooth beacons, differently, allow to tune both

of the parameters (power and frequency) giving rise to a even more accuracy of195

devices detected.

Table 1 presents a summary of the technologies and systems presented in

the literature and described above, highlighting the main advantages and draw-

3http://www.sociopatterns.org/
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Table 1: Comparison of Technologies used for detecting social interactions.

Technology References Pros & Cons

Audio-Video Recordings [4, 5, 6, 8]

+ camera can detect multiple subjects

+ camera can record gestures, proximity, talkativeness

- tuning of the camera

- subjects might feel uncomfortable with the system and

collected data can be biased by non natural behaviour

Wireless signal analysis

+ interactions are inferred by detecting proximity

between subjects

[12, 15, 17] - interactions tracked only in the monitored area

[18, 19, 20, 22] - subjects generally have to wear a customised device

Mixed Solutions

- subjects generally wear a customised device

[9, 13, 20, 21] - multiple sensing units

[10, 11, 16] + interactions are inferred by detecting

multiple sociological markers

backs.

All the presented works focus on physical social interactions, while in the200

last few years researchers also investigated this social phenomenon associated

with the cyber world, and especially to the virtual interactions though Online

Social Networks (OSN). In this case, data collected from OSNs (i.e. Facebook,

Twitter) are used to build up the ego-network of one or more users in order to

identify his/her contact graph, and to evaluate the correlation among virtual and205

physical social interactions [23] . OSN data are also used to estimate the trust of

the users we are in contact with in order to define trustable communications [24]

or to select users with which exchange contents or transactions. However, even

in this case it is fundamental to identify physical social interactions and to define

unobtrusive systems able to automatically detect them. For this reason, in this210

paper we present a system designed to monitor and detect social interactions

through commercial mobile devices, and in particular smartphones and low cost

BLE tags, and a wide dataset collected during several experimental campaigns

involving young students. Specifically the system, called SocializeME, consists
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of an Android mobile app that receives beacon messages sent by wearable BLE215

tags in proximity. All the collected data are sent to a remote server where the

wireless signals are analysed in order to identify the features that characterise

social interactions among two or more users, depending also on their posture

and the position of the receiving device. The main advantage of SocializeME

with respect to the previous solutions is represented by the use of commercial220

mobile and wearable devices, widely adopted and not designed specifically for

the presented goal, and the different configuration settings that can be used.

However, even if the use of commercial devices increases the acceptability of a

sensing campaign, they can also introduce some technical limitations, making

even more challenging the overall goal. To this aim, we will also present the225

technical limitations derived from our real world experience, the characteristics

of the wireless signal and how the posture of the subjects and position of the

devices can dramatically influence the quality of the data and the symmetry

of the radio channel. Finally, we present a description of the available dataset,

which can be used to reproduce our results and for further investigation by the230

research community.

3. BLE Beacons and Commercial Mobile Devices: the SocializeMe

framework

As previously introduced, we designed a mobile solution aimed at collecting

data related to proximity of personal mobile devices in order to infer face-to-235

face interactions among their users. The target users of the research project are

young students of a high school specialised in computer science, which have been

directly involved in the design and testing of the proposed solution before partic-

ipating in the experiment. This activity has been carried out in the framework

of SocializeME project, which provides the same name to the proposed software240

framework.

The goal of the project is to design software and analytic tools able to detect

face-to-face interactions without adopting customised hardware, and to provide
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the users with a non-invasive technological solution, both in terms of hard-

ware and software interactions. In fact, we mainly rely on commercial smart-245

phones, continuously used especially by the younger categories. In this section

we present the technical aspects of SocializeME solution, including the techni-

cal limitations we encountered during its development, which arose important

real-world challenges for its deployment for a large-scale experimentation.

As a first step, we identified Bluetooth technology and its Low Energy evolu-250

tion as the ideal communication paradigm on which implementing a mobile app

aimed at collecting information about other users and devices in proximity. In

fact, one of the main Bluetooth Low Energy (BLE) functionalities is the adver-

tising procedure. It allows mobile devices to broadcast information to announce

themselves and define their intentions. Specifically, BLE defines a single packet255

format for both advertising and data transmissions composed of four elements:

preamble (1 octet), access address (4 octets), Protocol Data Unit – PDU (2-257

octets), and Cyclic Redundancy Check – CRC (3 octets). PDU contains a 16-bit

header and a variable size payload. The header contains the packet type (i.e.,

advertising or data packet) and the length of the payload. A mobile app can260

specify the content of the advertising payload to announce a service running on

the device and the device itself through a unique identifier. Advertising pack-

ets are periodically broadcasted on each advertising channel. The time interval

between sent packets is composed of a fixed part and a random delay to avoid

collisions. Devices can receive advertising packets only when they are in a scan265

phase.

Considering these characteristics, we decided to develop the first version of

SocializeME App as a mobile app aimed at advertising the presence of the local

device and its user to the other devices in proximity (i.e.,in the range of few me-

ters) and to store the information of the received advertising packets from third270

parties. The app should have worked both in foreground and in background,

with a minimum interaction with the final user. However, only Android devices

supports advertising and scan modes in background, while iOS automatically

interrupt advertising and scanning operations while the app moves to back-
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ground. Therefore, we decided to focus only on Android, but also in this case275

we identified some minimum technical requirements: the minimum version of

Android OS (5.0), and the presence of a BLE physical interface based on Blue-

tooth standard 4.0, at least.

(a) The SocializeME app for

collecting beacons.

(b) The BLE tags used for

emitting beacons.

Figure 1: Hardware and software setting of the SocializeME project.

Since the app collects personal data of the user, it is designed in accordance

with the GDPR and the user register only after the acceptance of the privacy280

statement. From the technical point of view, the app broadcasts the advertising

packet with a certain frequency and transmission power. These two parameters

are not configurable by the application with a numerical value, but only through

predefined variables (i.e., high, medium, low and ultra low transmission power;

high, balanced and low frequency). Each device type and model has its own285

settings for these threshold values, and the application has no control on these

parameters, which highly affect the app performances.

We ran a set of preliminary experiments with some volunteer students to

evaluate the performances of the system, and we encountered several issues: (i)

most of the commercial devices do not support advertising mode even satisfying290

the basic technological requirements (this feature is referred to as peripheral
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mode); (ii) advertising and scan operations have a big impact on the device

power consumption. As far as device heterogeneity is concerned, we tested

more than 15 different devices and 42% of them did not support the minimum

application requirements. A detailed list of tested device is presented in [1].295

To avoid these limitations, we decided to modify the reference architecture

from a dedicated mobile app, to a wider system including a set of commercial

BLE Tags produced by Global Tag4 aimed only at transmitting the advertising

packets to announce the presence of a user, while the mobile app is dedicated

to maintain the scan phase active and to collect the received advertisements. In300

Figure 1a we present a screenshot of the app, which presents a user interface

defined as a monitoring tool of the app itself (i.e., Receiver ID, number of

received beacons, start and end time of the encounter), and a picture of the

tags, which are not invasive and can be easily worn as bracelets. In addition,

they are low cost devices, easy-to-configure and fully compliant with Bluetooth305

v4 protocol stack. They support both the Eddystone and iBeacon beaconing

protocol, and the advertisement rate and the transmission power can be tuned,

ranging from 1 Hz to 10 Hz and from -23 dBm to 4 dBm, respectively. The tag

configuration is managed through a specific software used to pair a tag with the

user device.310

It is important to highlight that the mobile app has been installed directly

on the users’ mobile devices after they signed an informed consent, according

to the current GDPR in terms of privacy and management of personal data.

In addition, the app requires to configure the tags before the first use, to make

the system able to distinguish between the tag worn by the local users, and315

those available in proximity. Finally, all the collected data are stored on a

remote server for offline analysis. For all these reasons the app cannot be re-

leased publicly, but all the presented results can be verified and are completely

reproducible by analysing the associated dataset [25].

4http://www.global-tag.com
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3.1. Technical limitations320

During the development and testing of SocializeME app, we encountered

some technical issues mainly related to the continuous monitoring requirement

and how the user interacts with the device. Specifically, to maintain continu-

ously active BLE scan mode is not completely automatic. Originally, Android

apps had the ability to use the “wakelock” procedure to prevent the phone325

from going into a power-saving deep sleep mode. However, since several apps

exploited this mechanism to be continuously active, highly impacting on the

battery lifetime, Android 6 introduced a new mode called Doze, which reduces

the use of CPU and the network access to those apps using a wakelock mech-

anism in case the phone is in idle state, stationary and not connected to the330

power. In case of Android 7.0 version, this condition has been further restricted,

not considering the stationary condition, therefore the phone can enter the doze

mode even if the phone is idle while moving together with the user. This condi-

tion highly impacts on SocializeME performances in terms of received beacons

and detection of social interactions. To reduce the impact of this limitation,335

SocializeME app has been updated as a foreground service, maintaining an icon

in the status bar, so that the user is aware of the running service.However,

this update didn’t solve the problem completely. Even though the app was not

affected by doze mode, BLE scans stopped after a period of 20 min of the back-

ground running. This time has been estimated with several stress tests executed340

in laboratory before the app release. In these cases the experiment has been set

up to maintain the app active for 12 hours, receiving beacons from an increasing

number of tags. In the heaviest case, we had a smartphone on a table and 25

tags configured to send beacons with a frequency of 5Hz and -6dBm power. In

five tests with the same configuration the app stopped receiving beacons after345

20 minutes. Therefore, we assumed that the operating system implemented a

control on the usage of BLE interface to avoid an interface overload. In fact, by

implementing a periodic software reset of the BLE interface, indicatively every

30 min, SocializeMe App was able to maintain scan operations active and re-

ceive beacon messages indefinitely. In addition, we also made additional stress350
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test configuring the beacons with 2Hz frequency and -6dBm power and there

was no interruption but we experienced some inactive periods in the experi-

ments, and consequently the loss of advertising packets. Therefore, considering

the high school environment as the reference for our solution, we expect to have

a not negligible packet loss while maintaining the ability to detect face-to-face355

meeting. In order to support this assumption, we present the results obtained

by a specific set of experiments, enriched with the ground truth provided by the

involved users. In this way, we will be able to analyse the obtained dataset and

the accuracy of possibile detection algorithms.

4. Experimental analysis360

In this section we present the experimental sessions we conducted in order

to analyse the impact of the users’ configuration, with respect to their mobile

devices, on the signal quality and, consequently, on the correct detection of

face-to-face interactions in a realistic context.

• number of involved subjects;365

• posture of the subjects: Standing (ST) or Sitting (SI);

• position of the receiving device with respect to the user body: Hand (H),

Front Pocket (FP) and Back Pocket (BP);

• layout of the involved subjects: dyad, trio, foursome, and group of five.

During a test, the subjects mimic a face-to-face interaction characterized by370

three stages differentiated by the physical distance between the participants [7]:

Non interaction (3 to 3.5 meters), Approaching (3 to 2.5 meters) and Interaction

(2.5 to 1 meter).

Table 2 provides an overview of the experiments. The table reports the

identifier of each session, the number of volunteers, the number of different375

smartphones models, the number of collected beacons and the overall duration

of the session’s tests. The number of collected beacons is obtained as the sum
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Table 2: Experiments overview.

Session #Volunteers Smartphone Models #Beacons Duration [min]

1 8 4 53375 111

2 9 6 87467 114

3 10 4 205152 111

4 8 5 198603 130

5 8 3 247776 130

6 6 4 27886 73

Total - - 820259 669

of all the beacons received by all the smartphones during each of the session’s

tests. Differently, the duration column provides the average time spent by the

volunteers in order to complete a specific session. For example, the 8 volunteers380

of Session 1 gathered 53.375 beacons with 4 different types of smartphones. The

4 pairs of volunteers completed the tests with an average time of 111 minutes.

We can note that the sessions differ remarkably in two aspects: (i) the

number of collected beacons, and the duration of the session. Such differences

are mainly caused by the number of volunteers participating in the experiments.385

As expected, the lower the volunteers, the lower the number of the collected

beacons and the session’s duration. As a general result, we can say that we

obtained a dataset with more than 820.000 beacons collected over 11 hours of

monitoring.

The experiments have been designed to reproduce some meaningful combina-390

tions of posture and position of the receiver, as reported in Table 3. In summary,

we tested 4 different configurations (C1 - C4), by mixing two posture’s layouts,

standing (ST) or sitting (SI), different positions of the receiver device (FP, BP

and H) as detailed previously. Such variations of the physical configurations of

the experiments well cover the common way of holding a mobile device, and the395

layout of the dyad involved in a social interaction.
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Table 3: Experimental configurations and the reference sessions.

Configuration Posture Position of Receiver Sessions/Tests

C1 ST FP

S1/1

S2/1

S3/1

S4/1

S5/1,2,3,4

S6/1.3

C2 ST BP

S1/3

S2/3

S3/3

S4/2

S5/1,2,3

S6/1,2

C3 ST H

S4/3

S5/1,3,4

S6/2,3

C4 SI FP

S1/2

S2/2

S3/2

S4/2
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4.1. Wireless communication performances

In order to analyse the system performances, we firstly analyse the charac-

teristics of BLE wireless communication in terms of the RSS distribution during

the sessions and the beacon loss rate. We identify these two parameters as an400

evaluation of the wireless communication performances aimed at identifying so-

cial interactions.

In fact, it is well-known in the literature that most of the wireless commu-

nication channels are influenced by several factors: the distance between the

emitter and the receiver, the presence of obstacles in between, as well as the405

material of the obstacles, the surrounding environment (i.e., indoor or outdoor)

but also the presence of humans in the line of sight between the emitter and

the receiver [26, 27]. BLE beacons are characterised by similar conditions and,

being related to smaller distances, they can be highly influenced by the posture

and the position of the receiver with respect to the user’s body. As a meaning-410

ful example, we show the RSS values recorded by 3 different receivers in three

configurations (see Table 3): C1 = (ST, FP), C2 = (ST, BP) and C3 = (ST,

H), as shown in Figure 2. For each of the three configurations, Figure 2 shows

o*3

o+1

* +2

Figure 2: RSS variation with 3 configurations: C3, C1 and C2.

on the left the time series of the RSS values, and on the right the distribution of
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the RSS values during the Interaction and Non interaction stages as box plots.415

The blue line shows the ground-truth, namely the time intervals during which

the subjects are actually engaged in a social interaction.

Configuration C3 shows an evident pattern of the RSS values during the

Interaction and Non Interaction stages. In this case, the receiver is hold in

hand (H) on the same line of sight of the emitter, therefore the RSS values420

well reflect time periods of Interaction with respect to time periods of Non

Interaction. In particular, during the Interaction stage the RSS median value

is -74 dbm, the 75th percentile is -68 dbm and the 25th percentile is -79 dbm.

While, during the Non Interaction stage, the median value is -84 dbm, the 75th

percentile is -78 dbm and the 25th percentile is -90 dbm.425

The situation is slightly different in case of configuration C1, in which the

receiver is positioned in the front pocket (FP). The RSS values give rise to a

soft, but still present pattern: during the Interaction stage the RSS values tend

to increase, while during the Non Interaction stage such values decrease. In

particular, during the Interaction stage the RSS median value is -92 dbm, the430

75th percentile is -88 dbm and a 25th percentile is -96 dbm. During the Non

Interaction stage, we recorded lower values of such statistics, specifically the

median value is -95 dbm, the 75th percentile is -91 dbm and the 25th percentile

is -99 dbm. Therefore, a first qualitatively observation is that positioning a

receiver in the FP causes an attenuation of the RSS values both during the435

Interaction and Non Interaction stages. This is also clear from the two box

plots of C1 in Figure 2 which show very similar values of the median during

Interaction and Non Interaction stages (-91 dbm vs -95 dbm with a δ = −3

dbm).

Similar considerations also apply for configuration C2 in which the receiver440

is put in the back pocket (BP). In this case, the body attenuation produces even

lower RSS values. The interaction pattern is still present (increase of the RSS

values during Interaction and decrease of the RSS values during Non Interaction

stages) but with lower statistical values with respect to C1. In particular, during

the Interaction stage the RSS median value is -93 dbm, the 75th percentile is -88445
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dbm and the 25th percentile is -97 dbm. During the Non Interaction stage, we

recorded lower values of such statistics, specifically the median value is -99 dbm,

the 75th percentile is -95 dbm and the 25th percentile is -103 dbm. Configuration

C2 differs from C1 as the box plots show a median of the Interaction and Non

Interaction of respectively -93 dbm vs -99 dbm with a difference of δ = −6 dbm.450

The consideration given so far are based on a select dyad of one of the

experiments, in order to highlight the distinguishing features of the RSS. We

now extend our analysis to all the beacons collected and in particular, we analyze

the RSS distributions for each of the 4 configurations described in Table 3: C1

to C4. The goal is to show quantitatively how the RSS distributions are affected455

by the combination of the posture and the position of the receiver. Figure 3

shows the probability density function of the RSS values in the 4 configurations

divided by the 3 stages: Interaction, Approaching and Non Interaction. We

further present in Figure 4 the RSS distribution as box plots with median (mid

line), 25th and 75th percentile, max and min RSS.460

For each of the 12 distributions in Figure 3, we report the median (µ) and the

standard deviation (σ) of the received beacons. As a general trend, we observe

that the mean value µ of the signal strength reduces moving from Interaction,

Approaching to the Non Interaction stages. In fact, the distance between emit-

ters and receivers increases that, in turn, reflects on the signal strength of the465

beacons. We also provide a trend of the distribution by computing the KDE

(Kernel Density Estimator) reported as a blue line on each distribution.

We observe that C3 configuration provides the highest µ values. This repre-

sents the best case since all the tests are executed with the devices hold in hand

and no barriers between the emitter and the receiver, resulting with higher RSS470

values. Concerning the Interaction stage, we observe that C3 (ST, H) and C1

(ST, FP) provide better results with respect to the other two configurations.

Specifically, in C3 µ = −69 and σ = 10.05, while in C2 µ = −78 and σ = 11.92.

Differently, the signal strength of the received beacons remarkably reduces with

configurations C4 and C2. Concerning C4 (SI, FP), we can observe that the475

sitting position slightly degrades the signal strength. With such configuration,
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Figure 3: Probability density function of the RSS values.

we measure µ = −82 and σ = 12.29, 13 dbm lower than C3 values. The worst

case is C2 (ST, BP). In this case, the tests are executed with devices put in the

back pocket demonstrating that the body attenuation highly degrades the signal

strength. In fact, in this configuration we measure µ = −89 and σ = 10.27, 20480

dbm lower than that of C3.

The Approaching stage provides generally mid values between Interaction

and Non Interaction stages as shown by µ values. Also in this stage, C3 tests

represent the best case, while C1 tests are the worst one. Moreover, we observe

that the shape of the distributions across all the configurations is generally485
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Figure 4: Box Plot of the RSS values with 4 configurations and 3 stages.

more irregular than the other stages. The RSS distributions show spikes in

correspondence to several RSS values, which are intrinsic in the Approaching

movement of the users and the devices.

The Non Interaction stage shows a more evident effect of the body attenua-

tion. As a general trend, we note that µ values are lower than those measured490

during the Approaching and Interaction stages. Also in this stage, C3 represents

the best case, while C1 confirms the worst configuration. As a further confir-

mation, we observe that during the Interaction stage of C2, the mean µ = −89

dbm, which is still lower than that obtained in C3 during the Non Interaction
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stage (µ = −85 dbm). Therefore, in C2 even if two devices are 1 meter distant495

(Interaction stage), the mean value of the RSS is lower than that of C3 in which

the devices are hold in hand at about 3 meters distance.
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Figure 5: Beacon loss rate for all the sessions.
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Another important parameter of our experimental analysis is represented by

the beacon loss rate experienced in the different configurations. We focus on the

Interaction stage of all the configurations since it represents the best opportunity500

for the receivers to collect beacons from their partners. Differently, during the

Approaching and Non Interaction stages, we expect to receive a minor number

of beacons due to the increased distance and the minor RSS values. The beacon

loss rate is computed for each user and for each completed test. For example,

test 1 of S1 is organized as pairs, e.g. user 1 vs user 2. Each device emits505

beacons with a frequency of 5 Hz, and the Interaction stage lasts for 5 minutes.

Therefore user 1 will receive beacons only from user 2 for 5 minutes. The beacon

loss rate for user 1 in test 1 is given by x/1500 where x is the number of received

beacons from user 1, and 1500 is the number of expected beacons for 5 minutes

at 5 Hz.510

Figure 5 shows the beacon loss rate as a set of distinct bar plots. The figure

shows, for each of the 6 experimental sessions (S1 to S6), the users involved and

the beacon loss rate measured by their devices. We report the beacon loss rate

for each of the tests performed by the users with the goal of showing significant

differences among the tests. Sessions S1, S2, S3 and S6 are composed by 3 tests515

each, while Sessions S4 and S5 by 4 tests

The sessions involve different device models and different number of users.

Details of the beacon loss rate divided by device models and number of users

are reported in Appendix Appendix A.

It is worth noting that the beacon loss analysis does not aim to rank the520

performance of the device models we experienced, rather it aims to highlight the

heterogeneity of the devices in a real-world experiment, and how it impacts on

the final results. Unfortunately this represents a limitation for the deployment

of a large scale experimentation with commercial mobile devices. In fact, the

beacon loss rate can be due to multiple reasons such as:525

• the different versions of the OS;

• energy saving apps that can shutdown the Bluetooth interface or kill high-
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computational apps used for our tests;

• the posture of the user and the receiver position;

• any environmental interference.530

The combination of such factors can decrease, even remarkably, the overall

beacon loss rate. In our case, we experienced values ranging from a minimum

of 60.53% to a maximum of 95.45%. We found some device models performing

better during some tests with respect to the others. As an example, the Nexus 6

based on Android 7.0, generally, provides beacon loss rate in the range between535

60% and 80%, while Huawei P9 Lite or Samsung Galaxy S experience about

90%.

4.2. Symmetry of the Channel

We finally analyze the symmetry of the channel. This analysis focuses on

measuring the differences between the RSS mutually estimated by a pair of540

devices. The goal is to measure how much the RSS values estimated by a

devices’ pair are similar during the Interaction stage. Similarly to the previous

analysis, we focus on the Interaction stage, since the Approaching and Non

Interaction stages are supposed to provide non comparable results. As a general

example, the symmetry between user 1 and user 2 is given by the absolute value545

of the difference of the RSS values estimated by user1’s device with respect

to user2’s device. The lower the difference, the higher their symmetry during

the Interaction stage. The process we followed for measuring the symmetry is

reported in Figure 6. Given a pair of devices, the first step is to slice the time

Figure 6: Re-sampling process of raw signals.

25



series of the RSS recorded by the pair at regular intervals. The second step,550

is to synchronize the time series, so that the RSS values are synchronized with

respect to the time. Synchronization is obtained by aligning the RSS samples

temporally, e.g. given the RSS sample (time, dbm): (10.3s,−64dBm), it is

synchronized to: (10,−64). After the synchronization step, the time series of

the device pair match with respect to the time. The third step is to interpolate555

any missing RSS sample and finally to build their differences. The interpolation

estimates a RSS value by considering the previous existing samples; in our

case we applied a linear interpolation by exploiting the previous RSS sample in

order to estimate the value of the missing ones. The interpolation process is

required since every device might record a different number of RSS values (as560

discussed with the beacon loss rate analysis). Finally, once the time series are

both synchronized and interpolated, we measure their symmetry by computing

the absolute value of the differences of the RSS values.

We measure the symmetry of the channel by considering all the possible

combinations of configurations that we tested, in particular we distinguish be-565

tween homogeneous symmetry: C1−C1, C2−C2, C3−C3, C4−C4 with respect

to heterogeneous symmetry: C1 − C2, C1 − C3 , C2 − C3. In the first case, we

measure the symmetry only between subjects with the same posture and posi-

tion of the receiver. For example, hand to hand, front pocket to front pocket

or back pocket to back pocket. In the second case, we measure the symmetry570

between subjects with different postures and holding the device not symmet-

rically. The results concerning the symmetry are given as a distribution. In

particular, we measure the symmetry for all the possible pairs of devices with

homogeneous and heterogeneous combinations, as shown in Figure 7. The figure

reports, for each combination of a configuration, a violin plot which combines575

the box plot with the KDE density estimation in order to better visualize the

distribution’s trend. On the left side of Figure 7, we report the homogeneous

combinations (subjects with the same configurations), while on the right side

we report the heterogeneous ones (subjects with different configurations). Each

violin shows the median (the white dot), the 25th and 75th percentile (lower and580
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upper bound of the inner box) of the distribution. The symmetry is generally

higher with the homogeneous combinations with respect to the heterogeneous

combinations, as shown by the median values and by the fat shape of the vi-

olins. In these cases, the median value of the symmetry ranges in the interval

[5−10] dbm, meaning that the RSS values recorded mutually by a pair of device585

differ at most by 10 dbm. However, we observe a high number of outliers in

the homogeneous combinations, as shown by the sharp whiskers whose values

are above —80— dbm. We further investigated such aspect and we found that

one of the devices that we tested estimates the RSS of the beacons with higher

values with respect to any other device but we are not able to clearly identify590

the cause except for the fact that it is the only one running version 5 of Android

OS. Differently, with the heterogeneous combinations, the violin plots are more

stretched, meaning that the symmetry is lower with respect to the homogeneous

combinations. The symmetry ranges in a wider interval with respect to the ho-

mogeneous combinations, in particular [5− 30] dbm. Therefore, the RSS values595

of a devices’ pair can differ by 30 dbm. As expected, subjects with different

configuration can result with divergent RSS values collected by their devices. A

meaningful example is given by the combination C2 −C3 in which one device is

hold in BP and the other device is hold in H. In this case, the symmetry is the

lowest we experienced during all our tests and the violin plot is stretched in a600

wide interval with a median value of approximately 20 dBm.

5. Detecting Social Interactions with SME-D Algorithm

As a first work towards the automatic detection of social interactions from

commercial mobile devices and, in particular, through SocializeME framework,

we designed an algorithm based on the analysis of the beacon messages collected605

in our experimental campaign. Specifically, we used the beacon loss rate and

the RSS value experienced by each pair of users involved in an interaction as

the main parameters of our algorithm called SocializeME Detector (SME-D).

The algorithm has been originally proposed in [1] and we report here only its
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Figure 7: Symmetry of the channel with different configurations.

main characteristics and the preliminary results. We are currently working on610

possible enhancements. SME-D analyses the time series of beacon messages

received by each dyad by using a sliding time-window of predefined duration

(∆up), and in that window it evaluates the following conditions to identify the

starting time of a social interaction (i.e., opening conditions):

• to receive at least p% of the expected beacons;615

• the RSS of the received beacons is greater or equal to a threshold value

Trss

We consider that a social interaction is starting in that time window if the two

conditions are verified at least in one of the two directions of the dyad. Then,

we assume that the interaction is active until the closing condition is detected:620

the time interval between the last received beacon with RSS ≥ Trss is greater

than or equal to ∆down.

We evaluated SME-D performances in terms of accuracy and F-score when
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applied to the experimental sessions obtained in C1, C2 and C3 configurations

and for different values of p and Trss. This has been possible due to the ground-625

truth provided by the students while performing all the tests.

For each configuration we analysed the SME-D performances for p values

equals to 3%, 7%, 11%, 19% and Trss in the range [−90,−70]dbm. Values out-

side these ranges negatively affect the algorithm performances. In C1 and C2

configurations the accuracy increases as Trss increases to reach the maximum630

value for −82 dbm for C1 and −84 dbm for C2, for all p values indicated above.

Then the accuracy decreases. The situation is different in C3 (ST-BP) since the

body attenuation highly affect the overall performances. In this case there is no

local maximum, but both accuracy and F-score decreases as Trss increases.

Figure 8: Performance of SME-D algorithm in terms of Accuracy and F-Score.

Since we cannot assume a priori the configuration of the users and their de-635

vices, to provide a more realistic analysis of the proposed algorithm we combined

the results of all the configurations and we obtained a general trend similar to

that obtained in C1 and C2 configurations. Specifically, SME-D obtains the best

performances with p = 3% and Trss = −84dbm. In Figure 8 we present the ac-

curacy and F-score values obtained with this setting in the three configurations640

and the general one. Moreover, table 4 provides a summary of the evaluation
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Table 4: Summary of the performance of SME-D in Session S3.

Test 1 Test 2 Test 3 All Tests

Accuracy [%] 85.32 87.19 72.21 81.56

F-Score [%] 88.54 89.28 75.67 84.7

metrics of SME-D. In particular, SME-D presents an overall accuracy of 81.56%

and F-score 84.7%, which are promising results. To further evaluate SME-D in

real scenarios, we should be able to collect large-scale traces in real conditions,

which is not completely feasible at the moment considering the technical issues645

we encountered in the experimental campaign. However, the collected dataset,

presented and detailed in [25], can be useful to evaluate possible enhancements

of the proposed solution and to compare them with other algorithms proposed

for the same purpose.

6. Conclusions650

Social interactions represent a complex phenomena to be captured and stud-

ied with traditional methods, such as diaries and self-reported questionnaires.

We exploit mobile sensing technologies, and specifically BLE beacon messages,

to collect proximity information and detect face-to-face interactions in real-life

scenarios. To this purpose, we conducted an experimental campaign involving655

students of a high school to use SocializeME framework on their personal mo-

bile devices while emulating interactions in specific configurations. The students

provided also the ground-truth of each experiment, including technical limita-

tions and errors. This allowed us to identify limitations and challenges in using

BLE messages as proximity and interaction information, and to define a dataset660

[25] to be available for the community. The experiments reproduce interactions

by varying the posture of the subjects as well as the way they hold the device.

We analyzed the quality of the wireless signals in terms of RSS distribution and

beacon loss rate. We also studied the symmetry of the channel as a measure of
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similarity among the RSS mutually estimated by the involved devices.665

The experience we gained in this study lead us to derive some considera-

tions. Firstly, we adopted commercial mobile devices to collect BLE beacons

in order to demonstrate their effectiveness for a future massive collection cam-

paign. Such choice represents a challenging task since we experienced very

different behaviors of the heterogeneous devices, which cannot be controlled670

but only mitigated, especially in terms of beacon loss rate. In addition, even

though BLE is commonly adopted in all commercial devices, several of them do

not support the advertising mode, not allowing the smartphone to send its own

beacons, but only to be used as a receiver of BLE emitting tags.

Even though BLE tags are low-cost devices and highly configurable, we ex-675

pect in the future that the advertisement mode will be homogeneously adopted

in the commercial devices, and that the reduced signal quality, due to the emit-

ter position, could be supported by additional information derived from the

embedded sensing devices.

Finally, the user’s posture and the position of the mobile device are two680

crucial factors in the system performances. They have been often ignored by

the current literature by proposing customised hardware to be worn in the

optimal position for the signal acquisition. However, they represent important

characteristics of the collected data, especially to define the detection algorithm,

as shown in the evaluation of the SME-D algorithm.685

Appendix A. Details of the Experimental Sessions

We report on this appendix all the sessions’ details. In particular, we report

for each of the 6 sessions the IDs of the users, the device models, the version

of the Android OS and the loss rate of each of the session’s tests. We finally

report in this appendix the box plots of the RSS values with 4 configurations:690

C1 to C4 and 3 stages: Interaction, Approaching and Non Interaction.
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Table A.5: Session 1

Group ID User ID Device Model
Android Loss Rate [%]

Version Test 1 Test 2 Test 3

1
15 Samsung Galaxy S7 7.0 90.47 89.93 92.77

36 Nexus 6 7.0 64.77 63.78 67.76

2
23 Nexus 6 7.0 65.25 66.72 70.13

26 LG G4 6.0 65.66 71.34 72.33

3
20 Huawei P9 Lite 6.0 81.69 81.39 88.11

22 Nexus 6 7.0 70.43 71.63 74.47

4
41 Nexus 6 7.0 60.53 60.53 63.26

42 Nexus 6 7.0 71.78 76.18 75.04

Table A.6: Session 2

Group ID User ID Device Model
Android Loss Rate [%]

Version Test 1 Test 2 Test 3

1

4 Honor 8 7.0 90.17 89.34 85.12

23 Nexus 6 7.0 70.99 69.27 67.48

26 LG G4 6.0 62.89 67.82 73.35

2

44 Nexus 6 7.0 65.03 65.49 69.05

45 Samsung Galaxy S5 6.0.1 90.92 91.71 92.95

47 Samsung Galaxy J3 5.1.1 77.68 79.65 86.73

3

10 Nexus 6 7.0 74.59 69.64 72.32

28 Nexus 6 7.0 74.86 70.82 72.29

46 Huawei P9 Lite 7.0 82.51 83.18 84.87
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Table A.7: Session 3

Group ID User ID Device Model
Android Loss Rate [%]

Version Test 1 Test 2 Test 3

1

23 Nexus 6 7.0 75.50 75.52 80.54

26 LG G4 6.0 82.15 82.31 81.60

46 Huawei P9 Lite 7.0 85.30 85.75 85.35

49 Nexus 6 7.0 77.38 74.60 80.94

50 Nexus 6 7.0 68.37 71.33 70.71

2

22 Nexus 6 7.0 72.07 70.84 75.34

27 Nexus 6 6.0 82.17 69.74 82.38

29 Nexus 6 7.0 82.52 71.95 83.43

48 Samsung Galaxy S5 6.0.1 95.30 93.78 95.45

51 Huawei P9 Lite 7.0 78.25 77.48 94.33

Table A.8: Session 4

Group ID User ID Device Model
Android Loss Rate [%]

Version Test 1 Test 2 Test 3 Test 4

1

4 Honor 8 7.1 78.96 70.88 71.64 76.75

23 Nexus 6 7.0 78.17 72.88 73.41 75.21

52 Samsung Galaxy S8 7.0 92.22 92.97 94.25 92.43

53 Nexus 6 7.0 76.69 69.18 71.51 72.24

2

15 Samsung Galaxy S7 7.0 92.16 92.06 91.82 77.51

17 Samsung Galaxy S7 Edge 7.0 91.66 91.89 92.23 78.78

27 Nexus 6 7.0 70.05 73.84 69.62 69.00

28 Nexus 6 7.0 69.09 72.99 74.62 71.14
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Table A.9: Session 5

Group ID User ID Device Model
Android Loss Rate [%]

Version Test 1 Test 2 Test 3 Test 4

1

4 Nexus 6 7.0 68.42 69.80 65.65 73.68

23 Nexus 6 7.0 65.30 67.90 70.08 69.68

26 LG G4 6.0 65.72 68.07 82.27 75.68

53 Nexus 6 7.0 71.48 69.32 72.80 69.86

2

10 OnePlus 5 8.0 67.77 81.93 87.46 70.33

22 Nexus 6 7.0 66.21 71.34 64.54 69.67

28 Nexus 6 7.0 64.31 63.85 68.16 66.98

29 Nexus 6 7.0 67.97 73.64 69.86 73.61

Table A.10: Session 6

Group ID User ID Device Model
Android Loss Rate [%]

Version Test 1 Test 2 Test 3

1
3 Nexus 6 7.0 63.77 64.11 96.80

4 Honor 8 7.1 72.50 97.86 71.63

2
15 Samsung Galaxy S7 7.0 92.27 92.25 83.88

29 Nexus 6 7.0 66.69 92.25 65.13

3
10 OnePlus 5 8.0 68.52 67.61 69.55

28 Nexus 6 7.0 66.47 97.50 88.33
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