
Defensive Programming for Smart Home Cybersecurity

Maria Teresa Rossi∗, Renan Greca∗†, Ludovico Iovino∗, Giorgio Giacinto‡ and Antonia Bertolino†

∗ Gran Sasso Science Institute – L’Aquila, Italy, Email: {firstname.lastname}@gssi.it

† ISTI - CNR – Pisa, Italy, Email: antonia.bertolino@isti.cnr.it

‡ University of Cagliari – Cagliari, Italy, Email: giacinto@diee.unica.it

Abstract—Cybersecurity has become a real issue in the
development of smart services in the smart home domain,
which is formed by a System of Systems where several smart
objects are connected to each other and to the Internet.
However, these connections expose the devices to possible
attackers inside or outside the network, who may exploit soft-
ware or hardware vulnerabilities to achieve malicious goals.
To alleviate this issue, the use of defensive programming
assertions can allow the behaviour of smart objects to be
monitored and checked for correctness. Furthermore, open
source intelligence tools, such as the Shodan search engine,
provide features that could be leveraged to detect potential
vulnerabilities. In this paper, we propose an approach for
the monitoring of Systems of Systems in the smart home
domain exploiting the defensive programming paradigm in
combination with Shodan APIs.

1. Introduction

Many complex tasks are today handled by Systems
of Systems (SoS), which are compositions of independent
systems that collaborate towards achieving a common
task [1], or mission. Such a mission goes beyond the goals
and capabilities of the individual systems, or constituents:
indeed the concept of SoS allows for the rapid develop-
ment of innovative and broad distributed systems in many
critical domains [2]. Examples may include: the commu-
nication and control of a smart city environment, the safe
and intelligent distribution of energy in smart grids, or
the immediate response and coordination of IT networks
in face of an emergency situation. All these and many
other situations rely on the collaboration among a variety
of hardware and software modules, and often humans as
well, to provide important services to citizens and society.
By allowing interconnected physical objects to sense the
environment, share data and act accordingly, the Internet
of Things (IoT) [3] plays a central role in the diffusion of
SoS. In this paper, we focus on IoT-enabled smart homes:
a facility, usually recently constructed or reformed, that is
equipped with special structured networking capabilities
enabling occupants to remotely control or program an ar-
ray of automated home electronic devices [4]. Considering
the context of smart homes, security is a crucial concern
in order to keep homeowners, as well as their property,
safe from intruders and to prevent unwanted behavior of

the connected devices and systems. Indeed, along with
enhancing our quality of life, smart homes also increase
our risk surface, in particular concerning cybersecurity.
If a single constituent system within an SoS is affected
by a vulnerability, this can serve as an entry point for
the whole network, thus putting the entire SoS at risk
of being compromised. Cybersecurity vulnerabilities can
have several root causes [5], such as: software, as bugs or
design flaws; hardware issues, such as faulty components
or sensitivity to certain kinds of interference; unneces-
sarily open networking ports; inadequate authentication
and insufficient access management mechanisms including
the use of default or weak passwords; improper patch
management; or insufficient audit mechanisms. These vul-
nerabilities can expose a system to attackers either by
allowing them access to the underlying hardware of a
specific device, or they can be leveraged to open the access
to other systems in the network through default chains
of trust. In other words, vulnerabilities create the risk of
having the system exposed to any remote attacker over
the Internet. As such, it is crucial that vulnerabilities are
detected by the system managers as early as possible and
measures are taken to properly address them and reduce
the risk of compromising the network. Within a smart
home environment the connection of all the devices into
a network can, on one hand, facilitate communication
and control; on the other hand, it can lead to security
issues [4]. There are two types of security threats [5],
[6]: i) passive, when the objective of the attack is only to
steal information from the system without affecting it; ii)
active, when the attack alters the normal functioning of the
system. Cyber-attacks are not a new concern to IoT [7],
but as IoT devices and connections become a prevalent
part of modern life, the safety and security of users must
be dealt with upmost importance. The usual CIA triad,
Confidentiality, Integrity, and Availability, can be used to
categorize IoT attacks. While attacks against availability
aim to disrupt the system, attacks against confidentiality
and integrity are more subtle, where the attacker breaches
the communication channel between two systems in an
attempt to intercept messages sent among them, and even-
tually tamper with them. These kind of attacks can be the
stepping stone for attacks with more severe consequences
that can bring the SoS in an unsafe state, and undermine
its availability. Attacks towards smart homes usually target
common devices such as smart refrigerators or other con-

nected electronic devices in order to change their expected
behaviour. Typically, attacks targeting IoT devices may
expose data in real-time with the intent of intercepting
communications between devices, allowing the attacker
to steal data or trigger malfunctions. For instance, smart
meters provide real-time data on electricity and gas usage,
enabling optimizations of energy consumption and distri-
bution, and empowering consumers to make intelligent
decisions about their energy usage. If smart meters are
used in the context of an SoS, e.g., by activating other
devices when the consumption is under a certain level,
an attack can contribute to an erroneous activation and
thus excessive or unnecessary energy consumption, as
minor damage. If this erroneous behaviour is detected
immediately, the user can take actions and correct the
behaviour of the affected devices. Moreover, in all cases
in which the possible erroneous behaviour of a device
has been openly disclosed, the device should be promptly
patched, or the triggering event should be blocked.

To avoid these types of security issues, we propose
an approach for monitoring the behavior of smart home
devices and timely detect potential vulnerabilities. The
proposed approach is based on defensive programming
combined with the adoption of open source intelligence
tools 1 on the interconnected devices through the use of
Shodan APIs 2.

2. Smart Consumption in Smart Homes

In the literature there are many definitions for the con-
cept of a Smart home [8]. Generally, a smart home is
a system including several appliances and services con-
nected in a network in such a way that they can be
monitored and managed. In Figure 1 a smart home case
study is represented through a high level architecture. A
set of connected things form the local network, and in
particular a smart meter monitors the energy production
and consumption of the building and, according to some
thresholds of energy produced or consumed, various smart
objects in the smart home system could be activated or
deactivated. Usually commercial smart meter monitors
offer also APIs, in order to provide customization ca-
pabilities, and build third party applications interacting
with the meter’s data. In this example, the smart meter
offers an API for sensing electrical production with solar
panels and power consumption in real time of the whole
house. In this context, we can have a software system
developed with customized source code (Third-Party App)
that continuously reads the smart meter API available
from a local IP address and controls all the smart objects
connected to the LAN. The main application can be seen
as an intelligent energy consumption scenario, that is, if
the solar panels are producing more than a certain amount
of energy and the current energy consumption is very low,
the software can decide to activate an energy intensive
smart device, such as a washing machine.

If we consider an exemplary application that senses
energy supply/demand and activates devices accordingly,
the response returned by the smart meter API can be sim-

1. https://osintframework.com
2. https://www.shodan.io

Figure 1. Architecture of the presented case study.

plified as in Listing 13. Usually smart appliances provide
data in common interchange formats, e.g., JSON, XML,
so other applications can easily interact. REST API are
provided in these cases, whereby this paradigm offers
an application program interface (API) that uses HTTP
requests to GET, PUT, POST and DELETE data. The first
attribute of the API’s JSON response of the smart meter is
the result of the GET call, in which two important values
are reported: the house’s consumption of energy in kW (in
this case 2.0) and the instant electricity production of the
solar panels (in this moment 0). This would characterize a
moment in which the solar panels are not producing, e.g.,
at night or cloudy day and the consumption is up to 2.0
KW, for instance activating a machine machine can range
from 500 watt up to 1300 watt (1.3Kw). Additionally, the
timestamp and the electricity price could be retrieved, but
these are unnecessary for this case study. In this setting,
we consider a simple Java application reading the smart
meter API in order to make decisions about the activation
of smart devices.

Listing 1. Sample GET response from the the smart meter’s API.
{

" e l e c t r i c i t y " : {
" consuming " : {

" a c t u a l " : {
" r e a d i n g " : 2 . 0 ,
" u n i t " : "kW"

} ,
} ,
" r e c e i v e d " : {

" a c t u a l " : {
" r e a d i n g " : 0 ,
" u n i t " : "kW"

} ,
}

} ,
" gas " : {

" r e a d i n g " : 0 . 5 ,
" u n i t " : "m3"

}
}

The reported application is a simplified version of a
complex application that also considers the daily history
of electricity production/consumption and matches the
information with a weather station, in order to guarantee

3. This is a simplification of how an API for smart meter can be
implemented, inspired by a commercial product: OWL Intuition PV.

that the production of solar energy will be sufficient
for the needed amount of time. For sake of simplicity
we assume that the sensing and activating methods are
part of a scheduled routine that also detects other useful
information, but Listing 2 only contains a snippet of code
doing the simple task we are discussing.

Consider this snippet as an example of third-party code
that works with the IoT devices. It continuously calls the
smart meter API URL and stores the resulting JSON in
the smartmeter variable. Then this application checks
if the energy available is more than 5 kW and, if so, it
instantiates a device as a new Thing which is activated
according to the priority list; otherwise, it continues to
monitor the API until this condition is matched.

Listing 2. Example of Third Party app
whi le (t rue) {

URL a p i =
new URL(" h t t p s : / / 1 9 2 . 1 6 8 . 1 . 1 2 / "+

" smarthome / me te r / g e t ") ;
Thing s m a r t m e t e r = new Thing () ;
s m a r t m e t e r . s e t I p A d d r e s s (" 1 9 2 . 1 6 8 . 1 . 1 2 ") ;
S t r i n g c o n t e n t =

M y F i l e U t i l s . u r l T o S t r i n g (ap i , " u t f−8") ;
JSONObject t o J s o n O b j e c t =

new JSONObject (c o n t e n t) ;
JSONObject s m a r t m e t e r =

t o J s o n O b j e c t . g e t (" e l e c t r i c i t y ") ;
Double consumpt ion =

s m a r t m e t e r . g e t (" consuming "))
. g e t (" a c t u a l "))
. g e t (" r e a d i n g ") ;

Double r e c e i v e d = . . . ;
Double d e l t a = 5 . 0 ;
i f (r e c e i v e d − consumpt ion >= d e l t a) {

Thing t = new Thing () ;
t . a c t i v a t e () ;
. . .

}
}

If the smart meter has exposed vulnerabilities, it can
be the target of malicious attacks which could affect the
reading shown in the API response. Optimistically, this
could result in the undesired activation or deactivation
of devices, affecting the electricity consumption of the
smart home. However, such an attack could be escalated to
an even worse situation, causing incidents such as power
outages or even a voltage overload.

3. Detecting Vulnerabilities in 3rd Party
Apps

In IoT-enabled SoS, smart objects are usually con-
nected to sensors, which collect information about the
environment, and actuators, which perform actions ac-
cording to the collected information. If one such smart
object is subject to a vulnerability, it could be exploited
as an entry point and expose the entire SoS to malicious
interference. One way of protecting smart objects from
attackers is by using tools to automatically and timely
detect vulnerable devices. One such tool is Shodan, which
provides a dashboard and APIs listing devices currently
publicly exposed over IP to anyone on the Internet. An
example of a Shodan entry can be a vulnerability publicly
available showing how to execute a command injection to
a Smart Camera connected over IP. This would mean that
if the user recognise this device as part of its network, he

/ she should take immediately countermeasures to deal
with this issue. Shodan can be used to inspect if one
of the systems in the network, subject of our study, has
a potential vulnerability, by checking if it is exposing a
public interface to the Internet. It is important to observe
that, in a SoS context, the API’s purpose is to detect
devices that have services publicly exposed to the Internet,
along with details about these services. Once it is known
that a device is reachable by Shodan, further analysis must
be performed to determine whether or not a vulnerability
exists, so it can finally be patched if needed.

A constant monitoring using Shodan’s APIs will help
an SoS to adapt and recalculate in case a vulnerability is
exposed by one of its constituent systems. The Shodan
API provides several features that could be valuable to
detect potential vulnerabilities in a smart environment,
such as: IP lookup, host search, IP crawl, automatic alert
in a given list of IP addresses.

4. Defensive Programming against SoS Vul-
nerabilities

The approach we propose to deal with the case study
presented in section 2 and its potential vulnerabilities is to
use a well-known programming paradigm called Defensive
programming [9]. According to such paradigm, develop-
ers must assume that any possible vulnerability will be
exploited and thus apply good practices to develop code
that is secure against attacks. One such practice consists
in preserving code correct execution by using assertions.
The idea is to add assertions in the code so to check if
the code is executing correctly and produced values are
within expectations. As known, an assertion is in fact an
expression that must be evaluated true if the program is
running correctly; if not, defensive programming requires
that the execution be terminated. Defensive programming
also considers how the program can be stopped securely.
By combining this paradigm with the functionalities of
a vulnerability monitoring systems like Shodan, we can
handle SoS vulnerabilities in multiple scenarios. In the
case study represented in Figure 1, considering assertions
in the development of third party applications may help to
check if the interactions among devices involves a Thing
that appears in the Shodan directory, as vulnerable. If
we find that even one of the smart objects is exposed to
vulnerabilities the program will notify the system manager
and / or alter its behaviour. Of course this is applicable to
the smart thing software itself, even if it results easier to be
managed with respect to third party apps, making this in-
terleaving connections more complex. As such, defensive
programming can be a good practice in the development of
third-party applications for SoS but it is not a silver bullet,
nor the unique solution. For instance, the code reported
in listing 2, in particular every occurrence of the concept
Thing, should be surrounded by an assertion checking if
this device appears as exposed on the Shodan repository.
To provide a sample of this approach, we simulated the
Shodan API response locally and the result is reported in
Listing 3. We had to simulate the response because the
Shodan database is (fortunately) not densely populated,
and we would not like to expose a real vulnerability of
a third-party device for our experiment. This result is the

JSON response of the REST call /shodan/host/ip,
checking if the IP indicated as parameter appears in the
list of exposed devices.

Listing 3. Sample GET response from Shodan’s API.
{
"region_code": null,
"ip": "192.168.1.12",
"country_name": "Italy", "hostnames": [],
"data": [
{
"product": "Smart Meter Device of the GSSI",
"os": null,
"timestamp": "2014-01-12T18:25:41",
"isp": "Telecom"

}
]

}

This result highlights that the smart meter used in
the application, connected then with the required ip, is
exposed and might be affected by a vulnerability, so it is
important to alert the manager of the smart home.

The code reported in Listing 2 could be easily ex-
tended with the defensive strategy we propose and, in
particular, the API call for getting the electrical informa-
tion from the smart meter should be refined as reported
in Listing 4.

Listing 4. Defensive Programming Example
t r y {

Shodan shodan = new Shodan (key) ;
i f (r e c e i v e d − consumpt ion >= d e l t a) {

a s s e r t
shodan . c h e c k I f D e v i c e I s V u l n e r a b l e (

s m a r t m e t e r . g e t I p _ a d d r e s s ()
) :
" Device seems t o be v u l n e r a b l e " ;

Thing t = new Thing () ;
t . a c t i v a t e () ;

}
} catch (A s s e r t i o n E r r o r e r r o r) {

/ / Outpu t e x p e c t e d A s s e r t i o n E r r o r s .
System . e r r . p r i n t l n (
" The a p p l i c a t i o n w i l l be s t o p p e d ") ;
/ / h e r e t h e d e v e l o p e r can c u s t o m i z e t h e
/ / a c t i o n s t o be u n d e r t a k e n
re turn ;

}

This very simple code, refined in the perspective of de-
fensive programming, prevents the activation of the device
controlled by parameters of the smart meter in case the
smart meter appears in the Shodan repository.

Figure 2. Log of the running application

The code reported in Listing 4 should replace the af-
fected part of the code in Listing 2. The main point deserv-
ing attention is the assertion in which the shodan library

with the checkIfDeviceIsVulnerable method to
check if the device is listed in the Shodan repository. If
the assertion fails, the exception will be treated and the
program will be stopped. This behaviour can be further
customized to better manage the flow of activation or
notification to the developer.

The log reported in Figure 2 reports two flows of
execution of the code. Figure 2 a) reports the monitoring
in which a new device is activated when there is sufficient
electricity available. In Figure 2 b) the condition is not
matched, so when the event is triggered the assertion
fails, warning the system administration of a potential
vulnerability and halting the application. This log simply
shows the different flows in the cases where the assertion
passes or fails. In the a) part, the log shows that the
device, not being listed in the Shodan repository, triggers
the activation of another device from the priority list.
In the option b) the device is actually listed during the
monitoring phase and then an alert (highlighted in red)
is raised to warn the system administrator to resolve the
issue. Of course this example has been tested in a local
environment with an Eclipse installation to simulate the
home environment, the API and the flow. The action un-
dertaken when the application is discovered as vulnerable
is limited to a console print out. We plan to simulate this
in a real scenario with sensing devices and a real case
study. It worth noting that while this paper uses Shodan
as the repository of the vulnerabilities, the approach we
propose is general enough to be extended to other sources.
More in general, Open Source Intelligence (OSINT) refers
to the collection of information from public sources to
gather data of publicly available information sources about
individuals and business intelligence purposes. Based on
it this approach can be extended to add other sources in
order to gather more information about exploits or other
info about our devices vulnerabilities.

5. Relevant Application Scenarios

Beyond the simple case discussed in the previous section,
we foresee several other possible scenarios in which de-
fensive programming combined with OSINT application
can support SoS cybersecurity. In this section we briefly
discuss some of such possible scenarios.

Assertions Actions The used assertion simply stops
the program to avoid possible unwanted behaviour without
planning a possible action of resolution. For this reason,
a notification mechanism could be introduced to avoid
stopping the program’s execution and react accordingly
and manually on the affected code. This point can be
further automated with self adaptation plans.

Self-adaptation Self-adaptive software checks its own
behaviour and evolves autonomously when the evaluation
indicates that it is not possible to accomplish what the
software is intended to do [10]. Self adapting may be a
positive strategy if the Shodan library reveals that one of
the device results as affected by vulnerabilities. Instead
of stopping execution, the program can self-adapt its
behaviour with a reconfiguration plan. For instance, if
the assertion fails the program could try to continue to
coordinate the activation of other devices without relying
on the affected device. An adaptation plan could be a
lookup for other smart meters connected to the network or

use historical data to make informed decisions (AI could
be the cutting edge technology).

Online Testing Our approach can be leveraged for
promoting the application of proactive online testing activ-
ities, for the purposes of security assessment [11]. Online
testing consists of continuing the execution of test cases on
the system in production, and is recently gaining attention,
motivated by the continuous evolution and complexity
of modern pervasive systems. This is especially true in
dynamic contexts such as smart homes, and more in
general for any SoS. We envisage a potential application of
an online testing strategy that by periodically checking the
inserted assertions (i.e., considering a test suite aiming at
covering the included assertions), would allow to timely
detect, and react against, possible vulnerabilities, before
these are experienced by the SoS end-users. Alternatively,
we could instead inject security attacks on purpose, sim-
ilarly to Netflix Chaos Monkey concept [12], so to test if
the system is ready to react to attacks.

Security Testability It is well known since the early
90’s that proper placement of assertions improves a pro-
gram’s testability [13]. By including ad hoc assertions for
dealing with potential vulnerabilities, we are improving
the potential of disclosing possible attacks and hence
naturally increase a system testability for security. Of
course, such statement is strictly dependent on the quality
of the assertion themselves, therefore it is important in
future work to study the effectiveness and extent of the
assertions we produce, and where we embed them.

6. Related Works

In the literature, the issue of security in smart city
systems is already a hot topic and different approaches to
solve it have been proposed. With regard to the smart city
domain, in [14] the authors discuss various privacy and
security solutions, recommendations, and standards for
smart cities and their services. The challenges highlighted
here are given by the exploitation of ICT to offer high
quality smart city services to the people. Consequently,
IoT contexts present several security, privacy and ethi-
cal challenges as exposed in [15]. The issues presented
here are due to the complexity of IoT systems and the
heterogeneity of their components. The authors highlight
also the security issues related to the connections between
IoT objects. Thus, they propose a threat model for all the
smart city areas, including smart home. Moreover, in [16]
the authors present the results of a security assessment of
IoT devices extending a public dataset of Shodan queries.
From this study, they extracted query terms used to access
to a class of IoT devices, showing how easy is to detect
vulnerabilities in IoT devices. These queries can serve
as a starting point for further application of Shodan in
cybesecurity applications. Focusing on the smart home
context, in [17] is described the context of smart buildings
in which there is the need of managing the overflowing
of energy generation and it is raised up the need of the
integration of cybersecurity testing. In particular, here they
highlight the importance of knowing what type of attack
is happening to be able to implement a digital forensic
readiness. In [18] are exposed the risks of having cloud-
based IoT technologies in the different smart city contexts.
In particular, for the smart buildings context they propose

a robust Intrusion Detection System (IDS) based on ma-
chine learning algorithms that detects any abnormality in
the traffic of data in the cloud. [19] proposes an approach
that calculate threat factors based on different features
(e.g., system architecture, networks, operating systems,
database schemas, encryption techniques, security poli-
cies, business operations, and corporate data). The calcu-
lated factors are responsible for telling how a smart city
system can face cyber-threats in terms of robustness. The
work in [20] proposes an architecture for Smart Homes
that facilitates security analysis of the IoT systems in the
house, giving a global view of the devices and networks
composing the smart home. This approach wants to sketch
the different systems of a smart home system in order to
know what can be the crucial vulnerabilities. In [21], the
authors highlight the challenges of preserving the security
of SoS domains due to their characteristics (e.g., oper-
ational independence of constituent systems, absence of
central authority). Here, one of the main security challenge
is to manage cascading attacks, thus, the authors propose
a DSML to represent SoS security architecture enabling
the discovery, analysis and resolution of cascading attacks.
With regard to the defensive programming paradigm, in
the literature we can find how its exploitation can be used
to deal with cyber-security issues. In [22] a defensive
programming approach is exposed to a sensor architecture
in order to identify sensor malfunctions upon their occur-
rence. This continuous checking approach is implemented
as a model containing a set of rules that promptly alerts
about a malfunction and contributes in diagnosing the
problem. Regarding the IoT context, in [23] the authors
expose security and privacy issues in the deployment of
smart camera sensors. Here, it is explained how can be
exploited the defensive programming paradigm to ensure
trustworthiness in a smart camera sensors network. In [24]
an iterative process for security management in systems
characterised by an high inter-connectivity (e.g. Smart
Grids) is proposed. Here, four security layers are imple-
mented aiming to increase the security of decentralized
control algorithms for critical infrastructures. In the first
of these layers, some recommended best practices can
be found, including defensive programming, to help in
preserving from defeats the infrastructure single nodes
in order to prevent infections of the other nodes in the
infrastructure. Another approach for cybersecurity in a
smart city environment is trust management [25], in which
devices store information about each other and maintain
a level of trust based on past interactions. This approach
can help identify faulty or misbehaving members of the
network, although it doesn’t stop an external attacker from
taking control of a previously trusted, but vulnerable,
device.

7. Conclusions

Cybersecurity is a real issue in the development of
smart services in the smart home domain. Different smart
objects communicate automatically and autonomously in-
creasing their exposure to vulnerabilities that can affect
the entire SoS. This ripple effect can endanger everyday
life activities including operations that can even include
safety issues. In this paper we introduced an approach for
the continuous monitoring of SoS that combines defensive

programming techniques with the usage of Shodan APIs.
We illustrated a possible application of the approach in
a smart home environment that can of course be ex-
tended to more complex scenarios and domains, e.g.,
smart cities. For this case study, the presented approach
would avoid failures that could lead to energy wastage,
appliances breakdowns or disclosure of personal data. In
the smart city domain there are other contexts in which
this approach could be applied. More in general, whenever
we have a SoS implying the collaboration among differ-
ent smart objects connected to a network, the approach
can help timely detect potentially exposed vulnerabili-
ties. For instance, in a smart mobility environment in
which the traffic is monitored and managed using IoT
sensors connected in a network, we can use the same
approach of checking their IP addresses. Moreover, in
this context vulnerabilities exposure could produce en-
vironmental issues in terms of air pollution. Nowadays
several researchers advocate a paradigm of security-by-
design [26], according to which a system must be built
to be secure since its very inception. In the case of SoS,
such a paradigm appears hardly applicable, because of the
inherent dynamism and autonomic nature of such systems.
We see our proposal of adopting defensive programming
and of leveraging OSINT technology as a preliminary
attempt to get closer to secure-by-design SoS. This work
is directed to SoS developers and researchers, and we
hope can provide guidelines or inspiration to be taken
under consideration. In future work, we aim at developing
a complete framework for more applications and further
case studies. Moreover we plan to investigate model based
design and development for secure systems. Using Model
Driven Engineering (MDE) helps to shift the focus from
code-centric techniques to code generation. In this context
it would be interesting to investigate whether designing
systems with models may support the automation of some
steps. For instance we could investigate the automatic
generation of assertions in our applications with specific
protected code areas that can be further customized by
developers.

References

[1] M. W. Maier, “Architecting principles for systems-of-systems,”
Systems Engineering, vol. 1, no. 4, pp. 267–284, 1998.

[2] C. B. Nielsen, P. G. Larsen, J. Fitzgerald, J. Woodcock, and J. Pe-
leska, “Systems of systems engineering: basic concepts, model-
based techniques, and research directions,” ACM Computing Sur-
veys, vol. 48, no. 2, pp. 1–41, 2015.

[3] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of things: A survey on enabling technolo-
gies, protocols, and applications,” IEEE Communications Surveys
Tutorials, vol. 17, no. 4, pp. 2347–2376, 2015.

[4] R. J. Robles, T.-h. Kim, D. Cook, and S. Das, “A review on security
in smart home development,” International Journal of Advanced
Science and Technology, vol. 15, 2010.

[5] N. Neshenko, E. Bou-Harb, J. Crichigno, G. Kaddoum, and
N. Ghani, “Demystifying iot security: An exhaustive survey on
iot vulnerabilities and a first empirical look on internet-scale iot
exploitations,” IEEE Communications Surveys Tutorials, vol. 21,
no. 3, pp. 2702–2733, 2019.

[6] N. Komninos, E. Philippou, and A. Pitsillides, “Survey in smart
grid and smart home security: Issues, challenges and countermea-
sures,” IEEE Communications Surveys Tutorials, vol. 16, no. 4, pp.
1933–1954, 2014.

[7] M. Abomhara et al., “Cyber security and the internet of things:
vulnerabilities, threats, intruders and attacks,” Journal of Cyber
Security and Mobility, vol. 4, no. 1, pp. 65–88, 2015.

[8] Li Jiang, Da-You Liu, and Bo Yang, “Smart home research,” in
Proceedings of 2004 International Conference on Machine Learn-
ing and Cybernetics (IEEE Cat. No.04EX826), vol. 2, 2004, pp.
659–663.

[9] J. K. Teto, R. Bearden, and D. C.-T. Lo, “The impact of defensive
programming on i/o cybersecurity attacks,” in Proceedings of the
SouthEast Conference, 2017, pp. 102–111.

[10] R. Laddaga, “Creating robust software through self-adaptation,”
IEEE Intelligent Systems, vol. 14, no. 3, pp. 26–29, 1999.

[11] A. Bertolino, G. De Angelis, S. Kellomaki, and A. Polini, “En-
hancing service federation trustworthiness through online testing,”
Computer, vol. 45, no. 1, pp. 66–72, 2011.

[12] C. Bennett and A. Tseitlin, “Chaos monkey released into the wild,”
Netflix Tech Blog, vol. 30, 2012.

[13] J. M. Voas and K. W. Miller, “Software testability: The new
verification,” IEEE software, vol. 12, no. 3, pp. 17–28, 1995.

[14] R. Khatoun and S. Zeadally, “Cybersecurity and privacy solutions
in smart cities,” IEEE Communications Magazine, vol. 55, no. 3,
pp. 51–59, 2017.

[15] A. Seeam, O. S. Ogbeh, S. Guness, and X. Bellekens, “Threat mod-
eling and security issues for the internet of things,” in 2019 Con-
ference on Next Generation Computing Applications (NextComp),
2019, pp. 1–8.

[16] A. Albataineh and I. Alsmadi, “Iot and the risk of internet expo-
sure: Risk assessment using shodan queries,” in 2019 IEEE 20th
WoWMoM International Symposium, 2019, pp. 1–5.

[17] E. Bajramovic, K. Waedt, A. Ciriello, and D. Gupta, “Forensic
readiness of smart buildings: Preconditions for subsequent cyber-
security tests,” in 2016 IEEE International Smart Cities Conference
(ISC2), Sep. 2016, pp. 1–6.

[18] N. Sengupta, “Designing cyber security system for smart cities,”
in Smart Cities Symposium 2018, April 2018, pp. 1–6.

[19] P. Wang, A. Ali, and W. Kelly, “Data security and threat modeling
for smart city infrastructure,” in 2015 International Conference
on Cyber Security of Smart Cities, Industrial Control System and
Communications (SSIC), Aug 2015, pp. 1–6.

[20] K. Ghirardello, C. Maple, D. Ng, and P. Kearney, “Cyber security
of smart homes: Development of a reference architecture for attack
surface analysis,” in Living in the Internet of Things: Cybersecurity
of the IoT - 2018, March 2018, pp. 1–10.

[21] J. El Hachem, Z. Y. Pang, V. Chiprianov, A. Babar, and P. An-
iorte, “Model driven software security architecture of systems-of-
systems,” in 2016 23rd Asia-Pacific Software Engineering Confer-
ence (APSEC), 2016, pp. 89–96.

[22] A. Carteron, C. Consel, and N. Volanschi, “Improving the Reliabil-
ity of Pervasive Computing Applications By Continuous Checking
of Sensor Readings,” in IEEE International Conference on Ubiq-
uitous Intelligence and Computing, Toulouse, France, Jul. 2016.

[23] M. Loughlin and A. Adnane, “Privacy and trust in smart camera
sensor networks,” in 2015 10th International Conference on Avail-
ability, Reliability and Security, Aug 2015, pp. 244–248.

[24] M. Stübs, “Towards emergent security in low-latency smart grids
with distributed control,” in 2018 IEEE International Conference
on Communications, Control, and Computing Technologies for
Smart Grids (SmartGridComm), Oct 2018, pp. 1–6.

[25] M. L. Loper and B. Swenson, “Machine to machine trust in smart
cities,” in 2017 IEEE 37th International Conference on Distributed
Computing Systems (ICDCS), 2017, pp. 1887–1889.

[26] J. Geismann, C. Gerking, and E. Bodden, “Towards ensuring se-
curity by design in cyber-physical systems engineering processes,”
in Proceedings of the 2018 International Conference on Software
and System Process, 2018, pp. 123–127.

