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Abstract6

Finite element model updating of a structure made of linear elastic mate-7

rials is based on the solution of a minimization problem. The goal is to8

find some unknown parameters of the finite element model (elastic moduli,9

mass densities, constraints and boundary conditions) that minimize an ob-10

jective function which evaluates the discrepancy between experimental and11

numerical dynamic properties. The objective function depends nonlinearly12

on the parameters and may have multiple local minimum points. This pa-13

per presents a numerical method able to find a global minimum point and14

assess its reliability. The numerical method has been tested on two simu-15

lated examples – a masonry tower and a domed temple – and validated via16

a generic genetic algorithm and a global sensitivity analysis tool. A real case17

study monitored under operational conditions has also been addressed, and18

the structure’s experimental modal properties have been used in the model19

updating procedure to estimate the mechanical properties of its constituent20

materials.21
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optimization, sensitivity, masonry constructions23

1. Introduction24

Finite element (FE) model updating is an essential component of numer-25

ical simulations in structural engineering [1], [2], [3]. It aims to calibrate the26

FE model of a structure in order to match numerical results with those ob-27

tained via experimental vibration tests. The calibration allows determining28

unknown structure’s characteristics, such as material properties, constraints,29

and boundary conditions. While the main advantage of such calibration is30

an updated FE model that can be used to obtain more reliable predictions31

regarding the dynamic behaviour of the structure, a further important ap-32

plication of model updating is damage detection [4], [5], [6].33

FE model updating consists of solving a constrained minimum problem,34

the objective function being the distance between experimental and numer-35

ical quantities, such as the structure’s natural frequencies and mode shapes36

[2]. Numerical modal properties depend on some unknown parameters, which37

may suffer from a high degree of uncertainty mainly connected to the lack38

of information about both the structure’s constituent materials and the in-39

teractions among its structural elements. In order to reduce the number of40

unknown parameters and make the minimum problem more manageable, it41

is possible to resort to sensitivity analysis [7], [8], [9], [10], [11], which allows42

assessing the influence of the parameters on the modal properties in order to43

exclude the less influential parameters from the model updating process.44
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Although application of FE model updating to historic masonry buildings45

is relatively recent, the literature on the subject is plentiful, [12], [13], [14],46

[15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29],47

[30], [31], [32], and focused on case studies of historical interest for which a48

vibration-based model updating is conducted. Preliminary FE models are49

calibrated using the modal properties determined through system identifi-50

cation techniques. In the majority of the papers cited above the FE modal51

analysis is conducted using commercial codes, and the model updating pro-52

cedure is implemented separately.53

Many papers have adopted a trial and error approach (see, for example,54

[19], [15]), in which a manual fine-tuning procedure is used for FE model55

updating. Such an approach is impractical when the number of free parame-56

ters or the size of the model is large, in which case recourse to an automated57

model updating becomes more advantageous.58

The minimum problem stemming from FE model updating, whose ob-59

jective function may have multiple local minima, can be solved via local or60

global minimisation procedures [33]. The former may be based on trust-61

region schemes [34], while the latter rely on both deterministic and stochas-62

tic approaches, which encompass genetic, simulated annealing and particle63

swarm algorithms.64

A deterministic approach to the optimisation using multi-start methods65

to avoid local minima has been proposed in [32]. In this work the global66

minimum point is selected from among several local minima calculated using67
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different starting points chosen via the Latin Hypercube Sampling (LHS)68

method [35].69

A similar approach is adopted in [4] and [36], where the global optimiza-70

tion technique ”Coupled Local Minimizers”, based on pairwise state synchro-71

nization constraints, turns out to be more efficient than the multi-start local72

methods which rely on independent runs.73

As far as sensitivity analysis is concerned, several parameter selection74

methods are available for choosing the unknown parameters that should be75

considered in the FE model updating. Most are based on the matrix of lo-76

cal sensitivities, whose entries usually contain the partial derivatives of the77

numerical frequencies calculated at a fixed parameter vector [10]. Local sen-78

sitivity analysis (LSA) can only provide information about the behaviour of79

the frequencies in a neighbourhood of the given parameter vector and is thus80

unable to provide any insight into the most relevant parameters influenc-81

ing the frequencies. On the other hand, global sensitivity analysis (GSA) [7]82

provides a global measure of the dependence of the frequencies on the param-83

eters and represents a preliminary step in the model updating process, when84

the number and influence of the parameters are uncertain. Before tackling85

the optimization problem, it is worth mentioning, by way of example, the86

GSA applications described in [20] and [32]. In particular, in [20] the results87

of a global sensitivity analysis based on the elementary effect (EE) method88

are compared with the results of a local sensitivity analysis, showing that the89

former performs better than the latter in model updating of the church of S.90
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Maria del Suffragio in L’Aquila (Italy). Instead, in [32] an average sensitivity91

matrix is calculated via the LHS method, which is subsequently adopted to92

calibrate the Brivio bridge, a historic concrete structure in Lombardy, Italy.93

A numerical method for solving the nonlinear least squares problem in-94

volved in model updating has been proposed in [37] and [38]. The algo-95

rithm, based on the construction of local parametric reduced-order models96

embedded in a trust-region scheme, was implemented in NOSA-ITACA, a97

noncommercial FE code developed by the authors [39], [40]. Similar ap-98

proaches are described in [41] and [32], where the numerical tools expressly99

developed for model updating are linked to commercial finite element codes100

used as a black-box within the framework of an iterative process. In par-101

ticular, [41] presents the MATLAB tool PARIS for automated FE model102

updating. PARIS is a research freeware code linked to the commercial soft-103

ware SAP2000, which has been applied to full-scale structures for damage104

detection purposes. The MATLAB procedure presented in [32] relies instead105

on ABAQUS and its efficiency is tested on a historic concrete bridge. Un-106

like the numerical procedures available in the literature, the algorithm for107

solving the constrained minimum problem presented in [37] and [38] takes108

advantage of the fact that the NOSA-ITACA source code is at the authors’109

disposal. This allows exploiting the structure of the stiffness and mass ma-110

trices and the fact that only a few of the smallest eigenvalues have to be111

calculated. To compute these accurately, the natural choice is a (inverse)112

Lanczos method. When a parametric model is given, the Lanczos projec-113
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tion can be interpreted as a parameter dependent model reduction, whereby114

only the relevant part of the spectrum is matched. The Lanczos projection,115

combined with a trust-region method, allows matching the experimental fre-116

quencies with those predicted by the parametric model. This new procedure117

reduces the overall computation time of the numerical process and turns out118

to have excellent performance when compared to general-purpose optimizers.119

In addition, as the procedure described in [37] and [38] allows calculating the120

singular value decomposition of the Jacobian of the residual function (the121

difference between experimental and numerical dynamic properties) at the122

minimum point, it makes it possible to assess the reliability of the parameters123

calculated and their sensitivity to noisy experimental dynamic properties.124

In this paper, the numerical method proposed in [37] and [38] to solve the125

constrained minimum problem encountered in FE model updating is modified126

in order to calculate a global minimum point of the objective function in127

the feasible set. This work is based on a deterministic approach, unlike the128

relatively recent large body of literature focused on stochastic model updating129

[42], [11], which aims to take into account and assess the uncertainties in both130

experimental data and numerical models as well.131

Section 2 recalls the formulation of the optimization problem related to132

FE model updating. Then the global optimization method integrated into133

NOSA-ITACA is described, and some issues related to the reliability of the134

recovered solution are presented and discussed. In particular, once the op-135

timal parameter vector has been calculated, two quantities are introduced,136
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which involve the partial derivatives of the numerical frequencies with re-137

spect to the parameters and provide a measure of how trustworthy the single138

parameter is. Section 3 is devoted to testing the numerical method on two139

simulated examples: a masonry tower and a domed temple, which highlight140

the capabilities and features of the global optimization algorithm proposed in141

Section 2. For the sake of comparison, we also ran a global optimizer based142

on a genetic algorithm available in MATLAB. Such comparisons highlighted143

the excellent performance of the proposed method in terms of both compu-144

tation time and number of evaluations of the objective function. Section 4145

presents a real case study, the Matilde donjon in Livorno. This historic tower,146

which is part of the Fortezza Vecchia (Old Medici Fortress), was subjected147

to ambient vibration tests under operational conditions and its experimental148

dynamic properties used in the model updating procedure.149

2. The numerical method150

The algorithms described in this section and used to perform FE model151

updating through a global optimization procedure are implemented in the152

NOSA-ITACA code (www.nosaitaca.it). NOSA-ITACA code is free software153

developed in house by ISTI-CNR to disseminate the use of mathematical154

models and numerical tools in the field of Cultural Heritage [40]. NOSA-155

ITACA combines NOSA (the FE solver) with the graphic platform SALOME156

(www.salome-platform.org) suitably modified and used to manage the pre157

and post-processing operations. The code was developed to study the static158
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and dynamic behaviour of masonry structures [43], [44]. To this end, it159

has been equipped with the constitutive equation of masonry-like materials,160

which models masonry as an isotropic nonlinear elastic material with zero or161

weak tensile strength and infinite or bounded compressive strength [45], [46].162

In recent years, the code has been updated by adding several features which163

now enable it to perform modal analysis [47], [48], [49], [50], linear perturba-164

tion analysis [51], [52], [53] and model updating [37], [38], [54]. The following165

subsection 2.1 presents the FE model calibration as a minimum problem166

and recalls the algorithm for model updating implemented in NOSA–ITACA167

described in [37] and [38] (to which the reader is referred for a detailed de-168

scription). The new features implemented in the code are explained in detail169

in subsections 2.2, 2.3 and 2.4.170

2.1. Finite element model updating as a minimization problem171

The term model updating refers to a procedure aimed at calibrating a FE172

model in order to match the experimental and numerical dynamic properties173

(frequencies and mode shapes) of a structure. It is naturally defined as an174

inverse problem obtained from modal analysis, which in turn relies on the175

solution of the generalized eigenvalue problem176

Ku = ω2Mu, (1)

where K and M ∈ Rn×n are respectively the stiffness and mass matrices of177

the structure discretized into finite elements, with n the total number of de-178
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grees of freedom. Both K and M are usually sparse and banded, symmetric179

and positive definite. The eigenvalue ω2
i is linked to the structure’s frequency180

fi by the relation fi = ωi/(2π), and the eigenvector u(i) represents the cor-181

responding mode shape. The model updating problem can be formulated as182

an optimization problem by assuming that the stiffness and mass matrices,183

K and M, are functions of the parameter vector x containing the unknown184

characteristics of the structure (mechanical properties, mass densities, etc.),185

K = K(x), M = M(x), x ∈ Ω. (2)

The set Ω of valid choices for the parameters is a p-dimensional box of186

Rp
187

Ω = [a1, b1]× [a2, b2]...× [ap, bp], (3)

for certain values ai < bi for i=1....p. By taking (2) into account, equation188

(1) becomes189

K(x)u(x) = ω(x)2M(x)u(x). (4)

The ultimate goal is to determine the optimal value of x that minimizes190

the objective function φ(x) defined by191

φ(x) =

q∑
i=1

w2
i [fi(x)− f̂i]2 (5)
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within box Ω.192

The objective function involves the frequencies and therefore depends193

nonlinearly on x. We denote by f̂ the vector of the q experimental fre-194

quencies to match, and by f(x) = 1
2π

√
Λ(x) the vector of the numerical195

frequencies, with Λ(x) being the vector containing the smallest q eigenvalues196

of Eq. (4), increasingly ordered according to their magnitude. The number197

p of parameters to be optimized is expected to be no greater than q. The198

vector w in Eq. (5) encodes the weight that should be given to each fre-199

quency in the optimization scheme. If the goal is to minimize the distance200

between the vectors of the measured and computed frequencies in the usual201

Euclidean norm, wi = 1, should be chosen. If, instead, relative accuracy on202

the frequencies is desired, wi = f̂−1i is a natural choice. If some frequencies203

are to be ignored, it is possible to set the corresponding component of w to204

zero. To keep the scaling uniform, the weight vector is always normalized in205

order to have its norm equal to 1.206

A numerical method to find a local minimum point of the objective func-207

tion φ(x), which may have several local minima in set Ω, is proposed in [37]208

and [38], where the authors describe a new algorithm based on construction209

of local parametric reduced-order models embedded in a trust-region scheme,210

along with its implementation into the FE code NOSA-ITACA. When the211

FE model depends on parameters, as in Eq. (4), and the number n of degrees212

of freedom is very large, it is convenient to build small-sized, reduced models213

able to efficiently approximate the behaviour of the original model for all214
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parameter values. Such reduced models have been obtained in [37] and [38]215

through modification of the Lanczos projection scheme used to compute the216

first eigenvalues and eigenvectors in Eq. (4) and to create a local model of217

objective function (5) that is not costly to evaluate and is at least first-order218

accurate. This local model is then used in the region in which it is accurate219

enough to provide useful information on the descent directions; this can be220

guaranteed by suitably resizing the trust region, if necessary. It has been221

be proved that, when the local models are accurate, convergence to a local222

minimizer is guaranteed.223

2.2. Searching for global minima224

Several approaches can be adopted to minimize the objective function225

(5) in the feasible set Ω. They can be summarized as follows, ordered by226

increasing difficulty:227

1. Find a local minimum point of the objective function in Ω.228

2. Search for the global minimum point of the objective function in Ω.229

3. Identify all the local minimum points in Ω and hence, by assuming they230

are isolated, recover the global minimum as well.231

In engineering applications the third approach is the most desirable. Not232

only does it guarantee discovering the most ”likely” parameters, but also233

provides other values that might be equally acceptable in terms of matching234

the structure’s frequencies. Engineering judgment, something complicated235

to insert into an objective function, will then guide the choice of the most236

11

Prep
rin

t s
ub

mitte
d t

o M
ec

ha
nic

al 
Sys

tem
  a

nd
 Sign

al 
Proc

es
sin

g



likely parameter values. In practice, the first approach is easier and also237

computationally less demanding than both the others, so it is often opted238

for.239

Herein we propose a heuristic strategy to improve the globalization prop-240

erty of the method introduced in [37] and recalled in the preceding subsec-241

tion. The goal is to improve the robustness of the method, while partially242

addressing approaches 2 and 3, without increasing the computational cost243

excessively. Due to the heuristic nature of the method, from a theoretical244

point of view, it is impossible to guarantee that all the local minima will be245

found, but the effectiveness and robustness of the method can be demon-246

strated through a few practical examples, which are described in the next247

section.248

The proposed algorithm implemented in NOSA–ITACA code can be sum-249

marized in the following steps:250

(a) A local minimum is calculated on the original feasible set Ω = [a1, b1]×251

. . .× [ap, bp], using the method from [37] and assuming the mid-point of252

Ω as starting point .253

(b) For j = 1, ..., p, let us define mj = 1
2
(aj + bj) and decompose the box Ω254

into the union of 2p sets of the type255

Ω̄ = I1 × . . .× Ip (6)
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with256

Ij ∈ {[aj,mj], [mj, bj]}, j = 1, ..., p. (7)

(c) A local minimum point is then calculated on each of the subsets defined257

above (which have disjoint inner parts), starting at their mid-points. If258

in all the subproblems, the minima coincide with that calculated at step259

(a), or are on the boundary, then the method stops. Otherwise, the260

recursion continues on the subsets where new local minima have been261

identified by following the process described in step (b).262

The method proposed here can run into difficulties when considering a263

large number of parameters, as the number of subproblems to solve grows264

exponentially. However, the following numerical experiments will show that265

it is still feasible for several cases of interest.266

Multi-start optimization approaches are commonly used to find global267

minima, for example in [32] the starting points are determined via a Latin268

Hypercube Sampling method and a set of local minimum points found, among269

which the global minimum point is identified. The algorithm proposed here270

does not execute a fixed number of runs, one for each starting point, but is271

based on a recursive procedure, which stops according to a given criterion.272

Like multi-start methods, the proposed procedure provides a set of local273

minimum points, including the global one.274

The steps laid out above omit one aspect that is rather subtle and requires275

careful treatment: how to identify two minimum points. When working in276
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floating-point arithmetic, and using a stopping criterion linked to a specified277

tolerance, two different approximations x0 and x1 can be obtained starting278

from two different values for the parameters, even in the case of a single279

minimum point. It is therefore essential to be able to distinguish situations in280

which these parameters represent two different minimum points from when281

instead they are just small perturbations of the same minimum point, as282

explained in detail in the following subsection.283

2.3. Recognizing the same minimum points and related sensitivity issues284

This section is devoted to the open question posed in the foregoing, that285

is, how to recognise when two minimum points “coincide”, up to some tol-286

erance. To answer this question, it is necessary to specify this concept more287

clearly. Before addressing this issue, it is worth recalling that the problem of288

minimizing function φ in set Ω is a particular inverse problem, as it aims to289

calculate the unknown parameters of the FE model of the structure under ex-290

amination using measurements carried out on it. Analysing minimum points291

provides a measure of how reliably each parameter has been determined, and292

can identify (at the first order) those parameters which only weakly influence293

the numerical frequencies, and as such, cannot be reliably determined by the294

inverse problem.295

According to (5) and neglecting vector w for the sake of simplicity, the296
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objective function under consideration has the form,297

φ(x) = ‖f(x)− f̂‖22, with f(x) =


f1(x)

...

fq(x)

 . (8)

Let x0 be a local minimum point of the objective function and assume, up298

to performing a parameter rescaling, that x0 is the vector with all components299

equal to 1.300

Assuming that the objective function is sufficiently regular, the first-order301

conditions for x0 to be a local minimum point imply ∇φ(x0) = 0, where302

∇φ(x0) is the Jacobian of φ(x) at x = x0. However, in practical situations303

vector f is known only approximately, with a tolerance ε, so it is possible to304

introduce a definition of pseudominimum set which is robust to perturbation.305

Given x0 such that ∇φ(x0) = 0, we define the ε-pseudominimum set at306

x0 as follows307

Pε(φ,x0) = {x | ∃δf ∈ Rq with ‖δf‖2 ≤ ε, ∇φδf (x) = 0} , (9)

where308

φδf (x) = ‖f(x)− f̂ − δf‖22, (10)

which is equivalent to considering the set of minimum points of the objective309

function for close-by frequency configurations, which are acceptable given a310

certain tolerance, ε, chosen by the user.311
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In other words, given two local minimum points x0 and x1 calculated312

via the scheme described in the foregoing, the two points actually represent313

the same “numerical” minimum if x1 ∈ Pε(φ,x0). Note that this relation is314

symmetric1, that is, x1 ∈ Pε(φ,x0) ⇐⇒ x0 ∈ Pε(φ,x1), so this definition is315

consistent.316

Considering that ‖x0 − x1‖2 is expected to be small and using a first–317

order expansion2 of function f(x) around x0, make it possible to calculate318

Pε(φ,x0)319

Pε(φ,x0) =
{
x | ∃‖δf‖2 ≤ ε, ∇f(x0)

T∇f(x0)(x− x0) = ∇f(x0)
T δf
}
, (11)

where ∇f(x0) denotes the Jacobian of f(x) at x = x0.320

Let UΣVT = ∇f(x0)
T be the singular value decomposition (SVD) of321

∇f(x0)
T . By virtue of the fact that δf is arbitrary, and the multiplication322

by unitary matrices leaves the Euclidean norm unchanged, it is possible to323

rewrite the set in (11) as follows324

Pε(φ,x0) =
{
x | ‖ΣUT (x− x0)‖2 ≤ ε

}
. (12)

A SVD can be compute with O(q2p) flops, assuming q ≥ p, and is therefore325

1It is however not transitive, so it does not define an equivalence relation.
2The dependency of the eigenvalues on the parameters is analytic almost everywhere

in the domain, hence the Taylor expansion performed here can be rigorously justified.
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a negligible cost in the proposed algorithm. Note in particular that the cost326

of computing this set is independent of n, the degrees of freedom in the FE327

model. Hence, (12) is easily verifiable in practice, and has been implemented328

as a test in the algorithm described in the foregoing. The algorithm returns329

the matrices Σ and U, which can be used to construct the ellipsoid Pε(φ,x0),330

which describes, at the first-order, the level of accuracy attained in the space331

of parameters. In addition, the SVD of the Jacobian can be used to compute,332

for each parameter xj, the quantities ζj and ηj, as described in the next333

subsection.334

2.4. Assessing the quality of the parameters335

Generally, experimental frequencies may not be accurate, since they are336

derived by analyzing measured data that may be contaminated by environ-337

mental noise. Thus, when minimizing objective function (5), one has to338

ensure that the optimal parameters are well-defined and robust to perturba-339

tions in the data f̂ .340

This analysis is only relevant in a neighbourhood of the minimum point:341

the behaviour of the objective function elsewhere does not influence the con-342

ditioning of the optimization problem.343

A complete description of the parameters space and the directions where344

the problem is well- or ill-defined can be given by computing the SVD of the345

Jacobian, as is widely referenced in the numerical optimization literature and346

pointed out for the problem at hand in [38]. Nevertheless, if the dimension of347
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the parameter space is greater than three, giving a meaningful interpretation348

to these directions can be difficult; hence, we introduce two quantities which349

are easier to interpret and convey the same information.350

Let x̂ be a local minimum point of the nonlinear objective function (5).351

We assume that function f(x) has been properly scaled so that both x̂ and f̂352

are vectors of all ones, and we replace f(x) with its first-order expansion at353

x = x̂. We may now define the following parameters for each j = 1, . . . , p354

ζj :=

∥∥∥∥ ∂f

∂xj

∥∥∥∥
2

. ηj := min
v∈Sj

∥∥∥∥ ∂f

∂v

∥∥∥∥
2

, (13)

where ∂f
∂v

denotes the directional derivative, and set Sj is defined as follows355

Sj :=




v1

1

v2

 ∈ Rp |

∥∥∥∥∥∥∥
v1

v2


∥∥∥∥∥∥∥
2

≤ 1, v1 ∈ Rj−1, v2 ∈ Rp−j

 . (14)

Note that set Sj contains, in particular, the j-th vector ej of the canonical356

basis of Rp , and therefore it must hold that ηj ≤ ζj. Intuitively, Sj is the set357

of directions where the j− th parameter is forced to change at “unit speed”,358

while the others can change at some other speed, but are still bounded in359

the Euclidean norm by 1. Taking the minimum of the directional derivatives360

in Sj is equivalent to finding the direction in the parameter space with the361

slowest growth of f(x), in which parameter xj is involved.362

Hence, we can make the following remarks:363
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• If ηj is small (i.e., ηj � 1), then there exists a direction in which xj364

is forced to change, but f(x) varies slowly; hence, determination of xj365

might be subject to noise. If, on the other hand, ηj � 0, then its366

determination through the optimization problem is robust to noise.367

• If ζj is small, then when xj changes, the frequencies are nearly unaf-368

fected; hence, there is no information on xj that can be obtained by369

solving the optimization problem. On the other hand, if ζj is large,370

then it cannot be guaranteed that xj is not affected by noise, but there371

is at least one direction in the parameter space involving xj that can372

be reliably determined.373

The direction mentioned above can be determined from the SVD of the374

Jacobian ∇f(x̂) = UΣVT , as described in [38]. However, parameters ζj and375

ηj are easier to read, and we have the following trichotomy:376

(i) ηj ≤ ζj � 1: parameter xj cannot be reliably determined, as no infor-377

mation on it is encoded in the optimization problem.378

(ii) 0 � ηj ≤ ζj: parameter xj can be reliably determined from the data,379

even if it is subject to noise. The amount of noise that can be tolerated380

is bounded in norm by ηj.381

(iii) ηj � 1, but ζj � 0: there is some information on parameter xj en-382

coded in the problem, but the result will not be free of noise. To find383

the directions which can be “trusted”, one has to look at the right sin-384

gular vectors corresponding to large singular values in the SVD of the385
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Jacobian.386

It is immediately clear that ζj can be computed directly by taking the387

norms of the columns of the Jacobian. Computing ηj, on the other hand,388

requires some more effort. Let us temporarily drop the requirement that389

‖[vT1 vT2 ]‖2 < 1 in (14). Thus, the minimizer v can be found by solving an390

unconstrained linear least square problem, and in particular we have391

v =


v1

1

v2

 , with

v1

v2

 = −∇f(x̂)†j∇f(x̂)ej, (15)

where ∇f(x̂)j is the Jacobian without the j-th column, and the symbol †392

denotes the Moore-Penrose pseudoinverse. If ‖[vT1 vT2 ]‖2 is less than 1,393

then v in (15) is the minimizer for the constrained problem in (13) as well.394

Otherwise, an explicit formula is not available and we use the orthogonal395

projection of the computed v onto Sj as a starting point and determine the396

solution by solving a constrained nonlinear least square problem. For solution397

of this problem, we rely on the SQP algorithm described in Chapter 18 of398

[55].399

3. Application to simulated case studies400

In order to test the method described in section 2, two artificial examples401

have been proposed. In both cases, the structure’s free parameters are as-402

signed, and a preliminary numerical modal analysis is performed to evaluate403
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the corresponding frequencies and mode shapes. Subsequently, the numer-404

ical frequencies are employed as input to the model updating procedure to405

recover the original parameters. The first example highlights the ability of406

the NOSA–ITACA code to discover more minimum points as compared to a407

generic genetic algorithm used to solve the same problem, which is unable to408

find more than one point. The second example shows some of the code’s fea-409

tures, which can help users to choose the most suitable optimal parameters410

characterized by the greatest reliability.411

The tests, conducted with NOSA-ITACA and MATLAB R2018b, were412

run on a computer with an Intel Core i7-8700 running at 3.20 GHz, with413

64GB of RAM clocked at 2133MHz.414

The weight vector w is always chosen to be wi = f̂−1i , which ensures415

relative accuracy of the recovered frequency.416

3.1. A masonry tower417

As a first example, we considered the tower shown in Figure 1. The418

20 m-high structure has a rectangular cross section of 5 m× 10 m and walls419

of 1 m constant thickness. The tower, clamped at its base, is discretized420

into 2080 eight–node quadrilateral thin shell elements (element number 5 of421

the NOSA-ITACA library [39]) for a total of 6344 nodes and 25376 degrees422

of freedom. A preliminary modal analysis is performed to evaluate the fre-423

quencies and mode shapes under the assumptions that the tower is made of a424

homogeneous material with Young’s moduli E1 = E2 = 3.00 GPa (see Figure425
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1), Poisson’s ratio ν = 0.2 and mass density ρ = 1835.5 kg/m3. The vector426

of the corresponding natural frequencies obtained with the above parameters427

is428

f̂ = [2.670, 4.737, 6.571] Hz. (16)

Figure 1 shows the mode shapes corresponding to the first three tower’s429

frequencies: the first two modes are bending movements along X and Y430

respectively, while the third is a torsional mode shape.431
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Figure 1: The masonry tower: geometry (length in meters); model created by NOSA-
ITACA code; the first three mode shapes.

The algorithm described in this paper is used to determine the Young’s432

moduli E1 and E2 of the structure. Putting x = [E1, E2], with the parameters433

varying within the interval434

1.00 GPa ≤ E1, E2 ≤ 10.00 GPa, (17)

model updating is conducted considering frequencies f̂1 and f̂2 in case (a),435

and f̂1, f̂2 and f̂3 in case (b).436

The same problems are also addressed with a generic genetic algorithm437
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(denoted by GA) available in MATLAB R2018b, using NOSA–ITACA as438

a black box, with the aim of comparing the results of the two approaches439

and test the reliability and robustness of the numerical procedure proposed.440

Table 1 summarizes the results related to case (a). Note firstly that NOSA–441

ITACA code finds two minimum points, which correspond to the exact values442

of the known frequencies, while the genetic algorithm calculates only one443

minimum, which is expected be the global minimum point. The existence of444

two minimum points is shown in Figure 2, where the plot of the objective445

function φ(x) defined in Eq. (5) is reported in log–scale, as the two elastic446

moduli vary. Regarding computation times and the number of evaluations447

of the objective function, the numerical procedure implemented in NOSA–448

ITACA appears to be much more efficient.449

NOSA–ITACA GA
Minimum 1 [3.00; 3.00] GPa [3.02; 2.95] GPa
Frequencies [2.670, 4.737] Hz [2.671, 4.732] Hz
Minimum 2 [4.49; 1.34] GPa –
Frequencies [2.670, 4.737] Hz –

Computation time 11.50 s 465.03 s
Number of evaluations 41 2600

Table 1: Case (a) – Optimization results, two frequencies and two parameters.

24

Prep
rin

t s
ub

mitte
d t

o M
ec

ha
nic

al 
Sys

tem
  a

nd
 Sign

al 
Proc

es
sin

g



Figure 2: Case (a) – On the left a 3D plot of the objective function vs. E1 and E2. On
the right a contour plot of the same objective function where the two local minimum are
clearly visible.

Regarding case (b), the results summarized in table 2 clearly show the450

superior performance of the NOSA–ITACA code in terms of both computa-451

tion time and accuracy. Figure 3 shows the plot of the objective function452

φ(x), defined in Eq. (5) and reported in log–scale, which in this case exhibits453

one global minimum point.454
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NOSA–ITACA GA
Minimum 1 [3.00; 3.00] GPa [3.00; 2.99] GPa
Frequencies [2.670, 4.737, 6.571] Hz [2.670, 4.737, 6.571] Hz

Computation time 7.72 s 497.63 s
Number of evaluations 27 2600

Table 2: Case (b) – Optimization results, three frequencies and two parameters.

Figure 3: Case (b) – On the left a 3D plot of the objective function vs. E1 and E2. On
the right a contour plot of the same objective function where the only one local minimum
is clearly depicted.

Table 3 shows, for each minimum point of cases (a) and (b), the param-455

eters values ζj and ηj defined in subsection 2.4. In all cases, 0 � ηj � ζj,456

which means that every parameter Ej has been determined reliably (as is457
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evident in tables 1 and 2) from the data, even if subject to noise. The table458

also report ζ−1j and η−1j , quantities which provide an estimate of the order459

of magnitude of the minimum and maximum percentage error (at the first-460

order) inherent in estimating the parameters under the hypothesis of a 1%461

error in the assessment of the experimental frequencies. From the table it is462

clear that, in the worst-case scenario, parameter estimation will be affected,463

at most, by a 6.2% error in both cases (a) and (b).464

Case Minimum xj ζj ηj ζ−1j η−1j

(a)
1

E1 1.0582 0.5061 0.945 1.976
E2 0.6001 0.1605 1.667 6.230

2
E1 1.1257 0.6513 0.888 1.535
E2 0.5405 0.1946 1.850 5.138

(b) 1
E1 1.2482 0.6255 0.801 1.598
E2 0.6630 0.1597 1.508 6.261

Table 3: Parameters ζj and ηj for the cases (a) and (b).

3.2. A domed temple465

Let us now consider the domed temple, depicted in Figure 4, consisting466

of a 5 m high octagonal shaped cloister vault resting on a drum inscribed467

on a 10 m × 11 m rectangle. The structure, clamped at its base, is made of468

4 different materials (Figure 5): material 1 for the dome (orange), material469

2 for the upper part of the drum (cyan), material 3 for the bottom part of470

the drum (violet) and material 4 for the columns (green). The finite element471

model, shown in Figure 5, is composed of 31052 hexahedron brick elements472

and 41245 nodes for a total number of 123735 degrees of freedom.473
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Figure 4: Geometry of the domed temple (length in meters).
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Figure 5: Domed temple, mesh and materials. Each color corresponds to a different
material, orange (1), cyan (2), violet (3) and green (4).

A preliminary modal analysis is performed to evaluate the structure’s474

frequencies assuming the material properties reported in table 4. The vector475

of the first eight natural frequencies is476

f̂ = [2.19, 2.23, 3.76, 3.83, 4.32, 4.60, 4.72, 8.26] Hz. (18)
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Material Temple portion ρ[kg/m3] E[GPa] ν
1 (orange) dome 1800.0 3.00 0.25
2 (violet) drum (top) 1900.0 3.50 0.25
3 (cyan) drum (bottom) 2000.0 4.00 0.25
4 (green) pillars 2200.0 5.00 0.25

Table 4: Values of the material properties.

The optimization code implemented in NOSA–ITACA and a generic ge-477

netic algorithm were run setting x = [E1, ρ1, E2, E3, ρ3, E4, ρ4], with the fol-478

lowing bounds479

2.00 GPa ≤ Ej ≤ 10.00 GPa, j = 1, ..., 4, (19)

1600.0 kg/m3 ≤ ρj ≤ 2400.0 kg/m3, j = 1, 3, 4. (20)

This choice leaves seven parameters to be optimized, with the sole exception480

of ρ2, which was set to the fixed value reported in table 4. Tables 5 and481

6 summarize the results obtained by NOSA–ITACA code and the genetic482

algorithm in terms of optimal parameter values, frequencies, relative errors483

|∆xj | and |∆f |, computation time and number of evaluations of the objective484

function.485
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Real value NOSA–ITACA |∆xj |[%] GA |∆xj |[%]
E1[GPa] 3.000 2.996 0.13 4.1431 38.10
ρ1[kg/m3] 1800.0 1908.9 6.05 1988.6 10.47
E2[GPa] 3.500 4.085 16.72 4.0335 15.24
E3[GPa] 4.000 4.177 4.43 3.8357 4.11
ρ3[kg/m3] 2000.0 2115.9 5.80 2340.1 17.00
E4[GPa] 5.000 5.132 2.63 5.6213 12.43
ρ4[kg/m3] 2200.0 2272.7 3.30 2397.8 9.00

Computation time [s] 14019 103250
Number of evaluations 671 10500

Table 5: Optimal parameter values calculated by NOSA–ITACA code and a genetic algo-
rithm.

Real value NOSA–ITACA |∆f |[%] GA |∆f |[%]
f1[Hz] 2.19 2.18 0.46 2.18 0.46
f2[Hz] 2.23 2.22 0.45 2.22 0.45
f3[Hz] 3.76 3.75 0.27 3.77 0.27
f4[Hz] 3.83 3.83 0.00 3.83 0.00
f5[Hz] 4.32 4.31 0.23 4.31 0.23
f6[Hz] 4.60 4.60 0.00 4.61 0.22
f7[Hz] 4.72 4.72 0.00 4.72 0.00
f8[Hz] 8.26 8.25 0.12 8.24 0.24

Table 6: Frequencies values corresponding to the parameters’ optimal values recovered by
NOSA–ITACA code and a genetic algorithm.

The results above highlight that: (i) the numerical procedure imple-486

mented in NOSA–ITACA is less time–consuming than the genetic algorithm,487

the computation time of the former being ten times lower than that of the488

latter; (ii) the optimal values of the Young’s moduli calculated by NOSA–489

ITACA are affected by a maximum relative error of 17%, against 38% of490

the genetic algorithm; (iii) the maximum relative error on mass density is491
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about 6% for NOSA–ITACA and 17% for the genetic algorithm; (iv) even492

though the optimal value of some mechanical characteristics is affected by493

high error, the maximum relative error on the frequencies is about 0.5% for494

both numerical methods.495

To investigate the robustness and reliability of the solution found, the496

parameters values ζj and ηj defined in subsection 2.4 are reported in table 7497

with their respective inverse values and the relative error |∆xj | calculated in498

table 5.499

ζj ηj ζ−1j η−1j |∆xj |[%]

E1 5.8216 · 10−2 2.4242 · 10−2 17.177 41.250 0.13
ρ1 1.7265 · 10−1 1.0859 · 10−1 5.792 9.209 6.05
E2 7.4616 · 10−2 2.6615 · 10−2 13.402 37.573 16.72
E3 3.5101 · 10−1 2.4958 · 10−1 2.849 4.007 4.43
ρ3 3.3679 · 10−1 1.6885 · 10−1 2.969 5.922 5.80
E4 1.2272 9.2428 · 10−1 0.815 1.082 2.63
ρ4 1.1730 8.6633 · 10−1 0.853 1.154 3.30

Table 7: Parameters ζj and ηj calculated by NOSA–ITACA.

The above table shows that the Young’s moduli of materials 1 and 2 (the500

dome and the upper part of the drum) seem to be irrelevant in the opti-501

mization process. This fact can be explained by observing the mode shapes502

related to the first eight frequencies, which mainly involve displacement of503

the pillars. It is also interesting to note that the objective function is more504

heavily influenced by the dome’s mass density than by its elastic modulus505

(ζ1 = 5.8216 · 10−2 versus ζ2 = 1.7265 · 10−1), in line with the fact that the506

dynamic behavior of the structure is comparable to a cantilever beam with a507
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mass concentrated at the free end. The Young’s moduli and mass density of508

materials 3 and 4 seem more reliable than the others, as shown by the values509

of ζj and ηj. Finally, note that the relative error |∆xj | made in estimating510

the optimal values of the parameters is always close to the range defined by511

ζ−1j and η−1j (at the first-order, under the hypothesis of a maximum error of512

1% in the assessment of the experimental frequencies).513

Further information can be achieved by calculating, at the minimum514

point, the scaled Jacobian matrix described in subsection 2.4,515



7.32 · 10−3 −9.34 · 10−2 2.61 · 10−2 1.09 · 10−1 −1.23 · 10−1 3.57 · 10−1 −1.77 · 10−1

6.93 · 10−3 −9.05 · 10−2 2.70 · 10−2 1.07 · 10−1 −1.23 · 10−1 3.60 · 10−1 −1.81 · 10−1

1.03 · 10−2 −7.88 · 10−4 2.02 · 10−2 8.53 · 10−2 −2.74 · 10−2 3.84 · 10−1 −4.66 · 10−1

1.03 · 10−2 −4.82 · 10−2 2.01 · 10−2 9.77 · 10−2 −1.53 · 10−1 3.75 · 10−1 −1.77 · 10−1

6.15 · 10−4 −6.26 · 10−5 1.32 · 10−2 1.12 · 10−1 −3.15 · 10−3 3.74 · 10−1 −4.97 · 10−1

1.58 · 10−3 −3.13 · 10−2 1.39 · 10−2 1.02 · 10−1 −2.61 · 10−2 3.83 · 10−1 −4.10 · 10−1

1.05 · 10−3 −2.85 · 10−2 1.03 · 10−2 1.06 · 10−1 −2.65 · 10−2 3.83 · 10−1 −4.14 · 10−1

4.63 · 10−2 −9.64 · 10−3 3.54 · 10−2 1.15 · 10−1 −1.57 · 10−1 3.04 · 10−1 −2.78 · 10−1


(21)

The numbers reported in the first three columns of the matrix confirms516

that the temple’s frequencies are weakly dependent on materials 1 and 2.517

Restricting the attention to the last two columns in matrix (21) (containing518

the partial derivatives of the frequencies with respect to E4 and ρ4) furnishes519

more information about the minimum point. The SVD of the restricted520
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matrix yields the results summarized in table 8, with the singular values521

σ1 > σ2 reported in the first columns, and the corresponding right singular522

vectors in the second and third columns. The objective function is expected523

to have a direction with a weaker influence on the frequencies parallel to z(2)
524

(with constant ratio E4/ρ4), which corresponds to the smallest singular value525

σ2 = 2.5063 · 10−1.526

σ z(1) z(2)

1.4087 -7.2408 · 10−1 -6.8971 · 10−1

2.5063 · 10−1 6.8971 · 10−1 -7.2408 · 10−1

Table 8: Singular values and right singular vectors of the scaled restricted Jacobian matrix.

To investigate how variation in the input (Young’s moduli and the mass527

densities of the domed temple’s four constituent materials) influence the out-528

put of the numerical model (the natural frequencies), and thereby test the529

sensitivity analysis implemented in the NOSA–ITACA code, a Global Sen-530

sitivity Analysis (GSA) has been performed through the SAFE Toolbox [8],531

[56] and [57].532

The SAFE Toolbox, an open–source code implemented in MATLAB, can533

be easily linked to simulation models running outside the MATLAB environ-534

ment, such as the NOSA-ITACA code in the example at hand. The Elemen-535

tary Effects Test (EET method [58]) is used to evaluate the sensitivity indices536

assuming that the eight input parameters (Young’s moduli and the mass den-537

sities of the four materials) have a uniform probability distribution function,538

and adopting the Latin Hypercube method [35] as sampling strategy. From539
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Figure 6, where the sensitivity indices calculated via the EET method are540

plotted, it is possible to deduce that the Young’s moduli of materials 3 and 4541

affect the numerical frequencies much more than the remaining parameters.542

These results confirm the information recovered by the quantities ζj and ηj543

calculated by NOSA–ITACA and reported in table 7.544

Figure 6: EET sensitivity indices for the first nine frequencies and eight parameters.

Sensitivity analysis, similar to the one reported in Figure 6, is generally545

performed to choose the number of updating parameters and to exclude some546

uncertain parameters from the model updating process. It is interesting to547

observe that the results confirm the information obtained on the quality of548
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the optimal parameters. It is also worth noting that the computational cost549

of such a global sensitivity analysis is very high (Figures 6 is the results of550

1260 FE modal analysis runs) with respect to the cost of the minimization551

procedure implemented in NOSA-ITACA, which provides both the global552

minimum point and an assessment of its reliability.553

4. Application to a real example: the Matilde donjon in Livorno554

4.1. Experimental tests and dynamic identification555

The Matilde donjon is a fortified keep belonging to the Fortezza Vecchia556

(Old Fortress), near the ancient Medici Port of Livorno, Italy (Figure 7).557

Figure 7: The “Old Fortress”(photo taken from www.livornoportcenter.it).

The 26 m–high cylindrical tower shown in Figures 8 and 9 has a cross-558

section with a mean outer radius of 6 m and walls of 2.5 m constant thick-559
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ness along height [59]. Although no precise information is available on its560

mechanical properties of the constituent materials, by visual inspection the561

tower appears to be made of mixed brick-stone masonry with an internal562

layer made of clay bricks and mortar joints, and the outer, more irregular563

layer of stone blocks and bricks. The tower’s interior hosts four vaulted rooms564

(Figure 10). At its base there is a large cistern, about 6 m high, for collecting565

rainwater. A helicoidal staircase is found within the tower’s wall, starting566

from the so-called “Captains” room at level 0 (see section Figure 10) and567

allows reaching the upper floor and the roof terrace, crowned by cantilevered568

merlons. The tower is tightly connected to the Old Fortress’ external walls569

for a height of about 9 m from the level of the lower galleries (see Figures 8570

and 9).571
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Figure 8: The Matilde donjon (view 1, 2).
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Figure 9: The Matilde donjon (view 3).

In October 2017, an ambient vibration monitoring experiment was carried572

out on the tower (see Figure 10, 11, 12). The ambient vibrations were moni-573

tored for a few hours via SARA SS20 seismometric stations (https://www.sara.pg.it/)574

arranged in different layouts. During the five tests (T1 to T5), each lasting575

about thirty minutes, two sensors were kept in a fixed position– one at the576

base (level -2) and the other on the roof terrace (level 2)– while the re-577

maining sensors were moved to different positions along the tower’s height578

and surrounding area in order to obtain information on the mode shapes579

and degree of connection between the Old Fortress’ structures and the tower580

itself. The sampling rate was set at 100 Hz. All data recorded have been di-581
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vided into short sequences, each lasting 1000 seconds (a time window greater582

than the structure’s fundamental period estimated by preliminary FE modal583

analysis), and processed by two different operational modal analysis (OMA)584

techniques, through which the tower’ modal parameters were estimated: the585

Stochastic Subspace Identification covariance driven method (SSI–cov) [60]586

implemented in MACEC code [61] and the Enhanced Frequency Domain De-587

composition method (EFDD) [62] implemented by ISTI–CNR in Trudi code588

[63].589

Figure 10: Transverse sections of the tower.
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Figure 11: Sensor layout October 2017 – test T1, T2, T3.
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Figure 12: Sensor layout October 2017 – test T4, T5.

In total, six vibration modes were identified in the frequency range of590

2-13 Hz. Table 9 summarizes the results in terms of natural frequencies591

f , damping ratios ξ, and MAC (Modal Assurance Criterion)3 values [64]592

calculated between the corresponding mode shapes estimated via the two593

OMA techniques.594

For the sake of brevity, the values shown in the tables correspond to the595

average values of the estimated parameters during each test, all of which are596

3MAC is the scalar quantity which expresses the correlation between two mode shapes,
varying from from 0 to 1.
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characterized by a MPC (Modal Phase Collinearity)4 value [65] greater than597

0.9.598

fSSI-cov[Hz] ξSSI-cov[%] fEFDD[Hz] ξEFDD[%] MACSSI-ref,EFDD

Mode 1 2.68 3.47 2.69 2.97 0.99
Mode 2 3.37 3.90 3.35 4.11 0.99
Mode 3 6.21 1.44 – – –
Mode 4 8.10 4.63 8.15 1.14 0.97
Mode 5 10.04 5.69 10.06 – 0.97
Mode 6 11.95 1.15 12.24 – 0.99

Table 9: Modal parameters of the tower, October 2017.

The two first mode shapes are bending mode along the west-east direction599

and north–south direction, respectively, while the third mode corresponds to600

torsional movement of the tower and a deflection of the two lateral walls601

connected to its south–west portion. The other experimental mode shapes602

are more uncertain: the fourth one is likely a torsion mode shape mixed with603

bending along north-east/south-west direction, and the fifth and sixth are604

higher–order bending mode shapes.605

4.2. FE model updating606

In this subsection, the procedure described in Section 2 is applied to the607

Matilde donjon. The FE mesh of the tower, shown in Figure 13, consists of608

52560 isoparametric eight-node brick elements and 64380 nodes, for a total609

of 193140 degrees of freedom. The model, as shown in the Figure, includes610

4MPC is a parameter ranging from 0 to 1 that quantifies the complexity of an eigen-
vector; MPC is 1 for real vectors.

43

Prep
rin

t s
ub

mitte
d t

o M
ec

ha
nic

al 
Sys

tem
  a

nd
 Sign

al 
Proc

es
sin

g



a portion of the surrounding walls. The bases of the tower and lateral walls611

are fixed, and the ends of the walls are prevented from moving along the X612

and Y directions.613

Figure 13: FE model of the Matilde donjon.

The numerical procedure has been used to estimate the values of the614

Young’s modulus of the inner and outer layers (Et,i = Et,e = Et) of the615

tower’s walls, and Young’s moduli (Em,i) of the masonry constituting the616

Fortress’ walls (Figure 14), with x = [Et, Em,1, Em,2, Em,3]. These parame-617

ters have been allowed to vary within the intervals [66], [67]618

619

44

Prep
rin

t s
ub

mitte
d t

o M
ec

ha
nic

al 
Sys

tem
  a

nd
 Sign

al 
Proc

es
sin

g



1.00 GPa ≤ Et ≤ 5.00 GPa, (22)

1.00 GPa ≤ Em,1, Em,2, Em,3 ≤ 6.00 GPa. (23)

Figure 14: Designated tower materials.

The Poisson’s ratio of masonry is fixed at 0.2, the mass density of the620

tower’s walls is fixed at 1800 kg/m3 and 2000 kg/m3 for the inner and outer621

layer, respectively, and the mass density of the side walls is taken to be622

2000 kg/m3. The experimental frequencies estimated by the SSI–cov method623
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are used in the optimization process, hence624

f̂ = [2.68, 3.37, 6.21, 8.10, 10.04, 11.95] Hz. (24)

The optimal parameters are reported in table 10: the values of ζ and η625

guarantee the reliability of Et and Em,1, while the constituent materials the626

remaining walls are marked by uncertainty. The values obtained can be627

considered acceptable as the greatest uncertainty affects a part of the struc-628

ture, the right sidewall, whose geometric characteristics (thickness, height,629

composition), connection degree with the tower and dynamic properties are630

unknown. Anyway, the optimal parameter values obtained can describe the631

global dynamic behaviour of the tower. The total computation time for the632

model updating procedure was 8468.9 s, and the number of evaluations 131.633

xj ζj ηj ζ−1j η−1j
Et[GPa] 2.152 1.627 1.557 0.615 0.642
Em,1[GPa] 5.808 9.577 · 10−1 9.017 · 10−1 1.044 1.109
Em,2[GPa] 5.532 6.409 · 10−2 1.139 · 10−2 15.603 71.942
Em,3[GPa] 2.095 6.845 · 10−2 4.445 · 10−2 14.609 22.471

Table 10: Optimal parameter values calculated by NOSA–ITACA.

Table 11 summarizes the numerical frequencies of the tower corresponding634

to the optimal parameters and their relative errors |∆f | with respect to the635

experimental counterparts; |∆f | varies between 2 and 3%, except for the636

third and sixth frequencies.637
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f̂i [Hz] fi [Hz] |∆f |[%]
mode 1 2.68 2.76 2.99
mode 2 3.37 3.33 1.19
mode 3 6.21 6.51 4.83
mode 4 8.10 7.90 2.47
mode 5 10.04 9.81 2.29
mode 6 11.95 11.10 7.11

Table 11: Experimental frequencies f̂ and numerical frequencies f calculated for the opti-
mal values of the parameters recovered by NOSA–ITACA.

As for the simulated example, a GSA has been performed to validate638

the results of the sensitivity analysis achieved by NOSA–ITACA. The EET639

method is used to evaluate the sensitivity indices assuming a uniform proba-640

bility distribution function, for the nine input factors (Young’s modulus and641

mass density of each material), and the Latin Hypercube as sampling strat-642

egy; 500 FE modal analyses were carried out. Figure 15 shows that the elastic643

moduli of the tower and wall 1 strongly influence the frequency variation as644

compared to the others. In particular, the tower’s Young’s modulus impacts645

all frequencies except for the third, which is instead heavily affected by elastic646

modulus Em,1, as confirmed by the experimental mode shape which exhibits647

a large displacement component corresponding to an out-of-plane deflection648

of the wall. The GSA analysis confirms the reliability of the NOSA–ITACA649

results.650
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Figure 15: EET sensitivity indices for the first sixth frequencies and nine parameters.

5. Conclusions651

The present paper proposes an improved numerical method to solve the652

constrained minimum problem encountered in FE model updating and cal-653

culate a global minimum point of the objective function in the feasible set.654

The global optimization method, consisting of a recursive procedure based655

on construction of local parametric reduced-order models embedded in a656

trust-region scheme, is integrated into the FE code NOSA-ITACA, a soft-657

ware developed in house by the authors. Along with the global optimization658

method, some issues related to the reliability of the recovered solution are659
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presented and discussed. In particular, once the optimal parameter vector has660

been calculated, two quantities involving the Jacobian of the numerical fre-661

quencies provide a measure of how trustworthy the single parameter is. The662

numerical method has been tested on two simulated examples, a masonry663

tower and a domed temple, in order to highlight the capabilities and features664

of the proposed global optimization algorithm. The results of the test cases,665

validated via a generic genetic algorithm and a global sensitivity analysis,666

prove the method’s efficiency and robustness. The objective function may667

have multiple local minimum points, and the first example highlights that668

the proposed procedure, unlike a genetic algorithm, can provide a set of local669

minimum points, including the global one. The second example shows some670

features of the code, which can help users to choose the most suitable optimal671

parameters characterized by higher reliability. Comparison of the computa-672

tion time and number of objective function evaluations highlights that the673

NOSA-ITACA code performs better than the genetic algorithm. Regard-674

ing how the parameter variations can influence the frequencies of the FE675

model, the numerical method seems to provide the same information given676

by a global sensitivity analysis. Finally, the paper has addressed a real case677

study the Matilde donjon in Livorno. The experimental dynamic properties678

of the historic tower monitored under operational conditions were used in679

the model updating procedure to estimate the mechanical properties of its680

constituent materials. The optimal parameter values obtained can describe681

the global dynamic behaviour of the tower with a maximum error of 5% on682
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all the frequencies, except for the sixth.683
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