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ABSTRACT

HDR-VDP 2 has convincingly shown to be a reliable met-
ric for image quality assessment, and it is currently playing a
remarkable role in the evaluation of complex image process-
ing algorithms. However, HDR-VDP 2 is known to be com-
putationally expensive (both in terms of time and memory)
and is constrained to the availability of a ground-truth im-
age (the so-called reference) against to which the quality of a
processed imaged is quantified. These aspects impose severe
limitations on the applicability of HDR-VDP 2 to real-world
scenarios involving large quantities of data or requiring real-
time responses. To address these issues, we propose Deep
No-Reference Quality Metric (DNR-QM), a deep-learning ap-
proach that learns to predict the global image quality feature
(i.e., the mean-opinion-score index Q) that HDR-VDP 2 com-
putes. DNR-QM is no-reference (i.e., it operates without a
ground truth reference) and its computational cost is substan-
tially lower when compared to HDR-VDP 2 (by more than
an order of magnitude). We demonstrate the performance of
DNR-QM in a variety of scenarios, including the optimization
of parameters of a denoiser and JPEG-XT.

Index Terms— HDR-VDP 2, Objective metric, No-
reference, Deep-learning, Image quality assessment.

1. INTRODUCTION

In computer vision and related tasks, the quality of synthetic
images is commonly assessed either through user studies or
through objective metrics. Despite the former being more re-
liable, the large number of users and images typically required
by subjective studies makes the adoption of objective metrics
more attractive in applicative scenarios. For this reason, the
community is devoting a great deal of effort to the study of
new sophisticated objective metrics [1]. Objective metrics are
nonetheless very reliable, and especially so when focusing on
the simulation of complex aspects of the Human Visual Sys-
tem (HVS); something which, however, comes at a high com-
putational cost. Yet another limitation is to be found in the
so-called Fully-Reference (FR) metrics, a class of objective
metrics that, as their name suggests, require the availability
of a ground truth image (i.e., a version of the image being
evaluated that contains no artifacts) — an unaffordable price

for many practical scenarios. For all these reasons, the study
of reliable No-Reference (NR) metrics is nowadays gaining
considerable research attention.

Despite being very popular as an objective metric in the
field, the High Dynamic Range Visual Differences Predictor
(HDR-VDP 2) [2] is a good example of the aforementioned
limitations. Its high computation cost, along with the need for
a ground truth reference, precludes HDR-VDP 2 (and related
metrics) from being used in several quality assessment sce-
narios such as standardization, real-time quality assessment,
etc. This altogether motivates the need for more efficient, yet
effective, objective metrics that can predict visual significant
differences of test images without relying on ground truth ref-
erences.

In this paper, we investigate practical solutions to counter
these issues. The main contribution of this paper concerns
the study and evaluation of a deep-learning-based alternative
to the popular HDR-VDP 2 [2] implementation. We pro-
pose Deep No-Reference Quality Metric (DNR-QM), a model
which (i) is able to predict visual metric features that are
believed to be well correlated with the mean-opinion-score
(MOS) (e.g., the quality index Q of HDR-VDP 2 – [2]), that
(ii) does so at a fraction of the time HDR-VDP 2 demands
(more than an order of magnitude faster), and (iii) without the
need of a ground truth reference.

We tested DNR-QM on a variety of scenarios designed to
demonstrate its robustness and flexibility. DNR-QM performs
in real-time and is thus suitable to be integrated as the main
optimization component into different applications, which we
tested in our experiments. These include a denoiser for Stan-
dard Dynamic Range (SDR) images, and a High Dynamic
Range (HDR) encoder. Finally, our framework has very low
computational costs. This would be very helpful for standard-
ization bodies (e.g., JPEG and MPEG) to use it for extremely
large datasets.

2. RELATED WORK

When the original image is available, it can directly be used
by Fully-Reference (FR) metrics to assess the quality of a
processed (e.g., distorted, compressed) version of it. In such
cases, the original image is typically called the ground truth
or the reference, meaning that the quality score (whichever
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Fig. 1. The proposed architecture for computing HDR-VDP 2.

the definition) should be higher as the processed image ap-
proaches the ground truth. However, in many practical ap-
plications, it is often the case that a ground truth does not
exist or is not accessible. No-Reference metrics (NR), a.k.a.
Objective-Blind metrics, are used in such contexts, i.e., met-
rics that perform Image Quality Assessment (IQA) without
any prior knowledge about the original (distortion-free) im-
age.

Several NR metrics have been described in the literature,
paying special attention to the difficulties that the absence of
a proper reference imposes to the model of evaluation. A
possible idea to overcome this limitation is to extract some
statistics from the distorted image and compare them against
similar statistics previously extracted from natural undistorted
images [3, 4, 5]. Another approach consists of extracting spe-
cific characteristics of the distortion when the type of artifact
is known beforehand. Some approaches following this intu-
ition use local gradient [6], saliency map and Support Vector
Regression (SVR) [7], or measure the power of the blocking
signal [8].

Convolutional Neural Networks (CNN) are continuously
showing impressive performance in many computer vision
tasks, and IQA is by no means an exception. Most of the
recently proposed CNN-based models focus on the FR case.
Among those, [9] compares feature maps extracted from the
CNN layers of test and reference images, [10] learns the
HVS behavior from the underlying data distribution of IQA
databases, and [11] fuses scores obtained from multiple qual-
ity indices into one score. Other proposed metrics are data-
driven [12], or train a model to learn perceptual transforms
[13, 14]. CNN-based approaches that tackle the NR prob-
lem also exist. Some examples include purely data-driven
approaches [15], approaches that learn rules from linguistic
descriptions [16], others that extract different gradient-based
features [17, 18], or approaches modeling the perceptual
masking effects in distorted HDR images [19].

3. DEEP NO-REFERENCE QUALITY METRIC

Our goal is to predict the quality value (Q) of HDR-VDP 2 [2]
given exclusively a distorted image as input (i.e., in the ab-
sence of reference). Although HDR-VDP 2 generates addi-
tional outputs, such as a threshold normalized contrast map
(Cmap) and its maximum value, we restrict our attention to

the quality value in this research. The reason why we avoid
the prediction of theCmap responds to the fact that such maps
turn out to be of limited help in applicative scenarios like stan-
dardization committees (e.g., JPEG and MPEG) since, when
analyzing large datasets [14], a single value is typically pre-
ferred.

As the model architecture, we adopted a CNN model [20],
since such architectures have provided high-quality results in
several computer vision/imaging tasks while at the same time
run very efficiently on GPUs. Specifically, we take an already
existing architecture [14] as a starting point, which is based
on a modified version of the U-Net [21].

We tweaked this network by taking a single image as input
(thus removing the part of the network dealing with the ref-
erence) and removing the max-pooling operator from the net-
work. The reason behind getting rid of the max-pooling layer
is to retain as much information as possible when detecting
distortions (pooling strategies are known to discard informa-
tion). During preliminary experiments, we indeed observed
that removing the max-pooling layer brings about a 5% of
decrease in the validation loss.

Furthermore, we decided to force the network to work
only on luminance images (i.e., a single channel image) in-
stead of having three color channels. This is because we no-
ticed there was not a drop in the quality of the performance.
Furthermore, we gained a significant speed-up when evaluat-
ing the network, see Section 5.2. Figure 1 shows the scheme
of our network.

3.1. Datasets

We employed two datasets by Artusi et al. [14] to train our
model (those datasets are available upon request). Since our
goal is to have a no-reference HDR-VDP 2, we focused on
Scenario 1 and Scenario 2 (as defined in [14]).

Scenario 1 is a dataset of SDR images presenting different
distortions (e.g., blur, quantization, noise, etc.) and consisting
of 16,002 images. We randomly split the dataset in 80% for
training, 10% for validation, and 10% for testing.

Scenario 2 is a dataset of HDR images with different lev-
els of JPEG-XT [22, 23] compression using all profiles, and it
has 14,418 images. As for Scenario 1, we randomly split the
dataset in 80% for training, 10% for validation, and 10% for
testing.
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(a) DNR-QM for SDR images (Scenario 1).
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Fig. 2. Plots of the training, evaluation, and testing datasets
for each epoch. The minimum Evaluation MSE is 3.6 × 10−5

(Scenario 1) and 1.8 × 10−3 (Scenario 2).

4. TEST CONDITIONS

We trained our model on a Linux machine (Ubuntu 18.04)
equipped with an Intel CPU Core i7-7800X (3.50 GHz) with
64 GB of memory and an NVIDIA GeForce GTX 1080 GPU
with 8 GB of memory. We implemented DNR-QM using Py-
Torch 1.3.1 deep-learning framework.

The pixel values from HDR and SDR images are pre-
processed differently, following the indications in [14]. SDR
images are linearly scaled from the original range [0, 255] to
[0, 1] before feeding them to the network. Instead, we apply
the logarithm to HDR images:

x′ = log10(x+ 1) , (1)

where x is the input pixel value. By doing so, we obtain an
equilibrate scale in the positive only real values that is not bi-
ased towards large differences in high luminance values [24].

We trained the network using mini-batch stochastic gradi-
ent descent and the Adam update rule [25] with the learning
rate set to 0.001. We left the rest of the parameters set to their
default values; i.e., β1 = 0.9, β2 = 0.999, and ε = 1e−8.

As in Artusi et al. [14], we defined the loss function to be
the Mean Square Error (MSE) between the predicted and the
true scores. We initialized all network weights following the
Xavier initialization [26]. We set the batch size of DNR-QM
to 32 samples, which was the largest parameter for which
enough memory could be allocated in our NVIDIA GeForce
GTX 1080 GPU. The training set is shuffled whenever an
epoch is completed to diminish the impact of order-based bi-
ases during training. We set the maximum number of epochs
to 75; the training time varies from approximately 6 hours
to 10 hours depending on the size of the training set. In all
cases, the reported results correspond to the models obtaining
the minimum loss as measured in the validation set.

5. RESULTS

5.1. Quality of Learning

Figure 2 displays the training curves; i.e., the evolution of the
loss as evaluated on the training, validation, and testing1 data.
In both scenarios (i.e., Scenario 1 and Scenario 2), the model
seems to converge to low loss figures around 75 epochs (no
further improvement in validation is observed thereafter).

Figure 3 plots the histograms of errors for the test data
with respect to the ground truth for Scenario 1 (a) and Sce-
nario 2 (b). The predictions our model produces are particu-
larly accurate for Scenario 2 (Figure 3 (a)) i.e., for the case of
HDR images compressed with JPEG-XT distortions, as wit-
nessed by the narrow distribution of test errors around 0 and
the low presence of outliers. Figure 3 (a) shows the model
produces comparatively higher errors in Scenario 1 (i.e., for
SDR images), but the error remains still withing acceptable
margins for many practical applications; in this case, there
are no outliers.

5.2. Timings

Figure 4 reports testing times at different image resolutions
for our method DNR-QM against the ground-truth HDR-
VDP 2 [2] and the deep learning model DIQM [14] (cur-
rently, the state of the art for reproducing HDR-VDP 2 using
CNNs). The implementation we used for HDR-VDP 2 [2]
is the variant proposed in [14] which takes advantage of
the GPU parallel processing via CUDA libraries. All times
reported are clocked in the same machine (see Section 4
for details). Note the size of the input images ranges from
128 × 128 (VGA resolution) to 8-Mpixel resolution. The
most interesting fact that emerges from Figure 4 is that our
method is faster than the competitors. Specifically, it happens
to be 1.5 times faster than DIQM [14]. This is because our
network works on luminance images (one channel) instead
of on RGB (three channels) images as DIQM. Furthermore,

1Test data is, of course, assumed unavailable during model training. We
still report test trends here for demonstrating purposes.



(a) DNR-QM for SDR images (Scenario 1).

(b) DNR-QM for HDR Compression (Scenario 2).

Fig. 3. The histograms of the error distribution between the
ground truth Q value and the predicted value by our network,
Qp, for the testing dataset.

our method is nearly two orders of magnitude faster than (the
CUDA based implementation) HDR-VDP 2 which, in turn,
is unable to process images larger than 4-MPixel due to high
usage of memory.

5.3. Applications

Our proposed metric can be used in different applications in
which not only the efficacy of the estimation of the image
quality, but also the efficiency, are important. In this section,
we demonstrate the performance of DNR-QM in two repre-
sentative applications.

As a first application, we implemented a denoiser based
on the bilateral filter [27]; more sophisticated methods for
denoising exist in literature, but it is merely used here as
an example. This denoiser uses DNR-QM to optimize the
filter parameters; i.e., σr (which controls the smoothing
threshold) and σs (which controls the size of the spatial ker-
nel/neighborhood). Then, we ran it on a 1Mpixel noisy image
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Fig. 4. Testing times for the prediction of the Q value for our
method DNR-QM against the ground-truth HDR-VDP 2 [2]
(CUDA version) and DIQM [14]. Note the log scale.

and we compared the result against DIQM [14]. While both
outputs were similar, our method took 1.34s to run, DIQM
took 1.82s on the same image.

The second application is a companding scheme based on
a parameterized sigmoid function, y(x) = ax/(1 + ax), for
compressing HDR images using JPEG. This application uses
the predictions of DNR-QM to optimize the sigmoid param-
eter a and the JPEG quality parameter for compressing HDR
images in an efficient way. We tested it on a 4Mpixel HDR
image. Again, both outputs were similar. In this case, our
method took 11.67s to run, while DIQM took 18.74s on the
same image.

6. CONCLUSIONS AND FUTURE WORK

In this work, we have shown how to convert and distill HDR-
VDP 2 into a no-reference metric, that we dub DNR-QM,
using a deep learning approach. The results we have ob-
tained show that DNR-QM performs robustly (in terms of er-
ror w.r.t. the ground truth) in scenarios concerning both SDR
and HDR images. Furthermore, our method is computation-
ally efficient, especially when compared to a CUDA-based
implementation of the original HDR-VDP 2.

In future work, we plan to broaden the generalization of
the method by incorporating other types of inputs (e.g., in-
cluding viewing conditions) to our network. This may im-
ply extending the large datasets made available by Artusi et
al. [14]. Finally, we want to extend this work by comparing
the performance of our network against other non-reference
solutions for SDR and HDR distortions.
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[12] Martin Čadı́k, Robert Herzog, Rafal Mantiuk, Radoslaw Man-
tiuk, Karol Myszkowski, and Hans-Peter Seidel, “Learning to
predict localized distortions in rendered images,” Computer
Graphics Forum, 2013.

[13] N. Ye, M. Prez-Ortiz, and R. K. Mantiuk, “Trained perceptual
transform for quality assessment of high dynamic range images
and video,” in 2018 25th IEEE International Conference on
Image Processing (ICIP), Oct 2018, pp. 1718–1722.

[14] Alessandro Artusi, Francesco Banterle, Alejandro Moreo, and
Fabio Carrara, “Efficient evaluation of image quality via deep-
learning approximation of perceptual metrics,” IEEE Transac-
tions on Image Processing, vol. 29, pp. 1843–1855, oct 2019.

[15] Sebastian Bosse, Dominique Maniry, Klaus-Robert Müller,
Thomas Wiegand, and Wojciech Samek, “Deep neural net-
works for no-reference and full-reference image quality assess-
ment,” IEEE Trans. Image Processing, vol. 27, no. 1, pp. 206–
219, 2018.

[16] Weilong Hou, Xinbo Gao, Dacheng Tao, and Xuelong Li,
“Blind image quality assessment via deep learning,” IEEE
Trans. Neural Netw. Learning Syst., vol. 26, no. 6, pp. 1275–
1286, 2015.

[17] Debarati Kundu, Deepti Ghadiyaram, Alan C. Bovik, and
Brian L. Evans, “Large-scale crowdsourced study for tone-
mapped HDR pictures,” IEEE Trans. Image Processing, vol.
26, no. 10, pp. 4725–4740, 2017.

[18] Le Kang, Peng Ye, Yi Li, and David S. Doermann, “Convolu-
tional neural networks for no-reference image quality assess-
ment,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2014, pp. 1733–1740.

[19] N. K. Kottayil, G. Valenzise, F. Dufaux, and I. Cheng, “Blind
quality estimation by disentangling perceptual and noisy fea-
tures in high dynamic range images,” IEEE Transactions on
Image Processing, vol. 27, no. 3, pp. 1512–1525, March 2018.

[20] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton, “Ima-
genet classification with deep convolutional neural networks,”
in Advances in neural information processing systems, 2012,
pp. 1097–1105.

[21] Olaf Ronneberger, Philipp Fischer, and Thomas Brox, “U-net:
Convolutional networks for biomedical image segmentation,”
in International Conference on Medical Image Computing and
Computer-Assisted Intervention. Springer, 2015, pp. 234–241.

[22] Alessandro Artusi, Rafal Mantiuk, Thomas Richter, Pavel Ko-
rshunov, Philippe Hanhart, Touradj Ebrahimi, and Massimil-
iano Agostinelli, “JPEG XT: A Compression Standard for
HDR and WCG Images [Standards in a Nutshell],” IEEE Sig-
nal Processing Magazine, vol. 33, no. 2, pp. 118–124, 2016.

[23] Thomas Richter, Walt Husak, , Niman Ajit, Ten Arkady, Pavel
Korshunov, Touradj Ebrahimi, Alessandro Artusi, Massmil-
iano Agostinelli, Shigetaka Ogawa, Peters Schelkens, Takaaki
Ishikawa, and Tim Bruylants, “JPEG XT information technol-
ogy: Scalable compression and coding of continuous-tone still
images,” .

[24] Gabriel Eilertsen, Joel Kronander, Gyorgy Denes, Rafał K.
Mantiuk, and Jonas Unger, “Hdr image reconstruction from
a single exposure using deep cnns,” ACM Trans. Graph., vol.
36, no. 6, pp. 178:1–178:15, Nov. 2017.

[25] Diederik Kingma and Jimmy Ba, “Adam: A method for
stochastic optimization,” in Proceedings of the 3rd Interna-
tional Conference on Learning Representations (ICLR), 2014.

[26] Xavier Glorot and Yoshua Bengio, “Understanding the diffi-
culty of training deep feedforward neural networks,” in Pro-
ceedings of the Thirteenth International Conference on Artifi-
cial Intelligence and Statistics, 2010, pp. 249–256.

[27] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and
color images,” in Sixth International Conference on Computer
Vision (IEEE Cat. No.98CH36271), Jan 1998, pp. 839–846.


