Monitoring Traffic Flows via Unsupervised Domain Adaptation

Luca Ciampi, Claudio Gennaro, Giuseppe Amato

23 September 2020 I-CiTies 2020

Outine

VISUAL TRAFFIC FLOWS MONITORING IN SMART CITIES Introduction, Challenges and Existing Approaches

2

PROPOSED SOLUTION

An Unsupervised Domain Adaptation Technique for Traffic Density Estimation and Counting

RESULTS **Preliminary Results and Conclusions**

THE PROBLEM

CRUCIAL TO IMPROVE URBAN ENVIRONMENT AND LIFE OF CITIZENS CITY MOBILITY POLLUTION MONITORING INFRASTUCTURE MANAGEMENT

VISUAL COUNTING AND DENSITY ESTIMATION OF TRAFFIC FLOWS

Current Approaches

Detection Based

- Supervised Technique
- Localize instances and count them
 - Not feasible in every scenario!

Regression Based

- Supervised Technique
- Regression from image features to total number or to density map (that is then integrated)

It works in very crowded scenario!

DOMAIN SHIFT PROBLEM

- ⇒ A massive amount of labeled data is needed to train these algorithms
- ⇒ In many real-world applications there is a large Domain Shift between the distribution of the train (source) and test (target) domains
 - ⇒ Significant drop in performance at inference time
- ⇒ Different smart cameras across the city are subject to various visual conditions (luminance, position, context)
 - **Different performances for each of them**
 - ⇒ Unfeasible to collect and label data for every different scenarios
 - ⇒ Difficult to effectively scale-up the system as new cameras are added

Ground Truth Generation

- Gaussian over each object
- Spread estimated with some heuristic
- Background to zero
- Summing up pixel values → number of objects

⇒ Lot of human effort ⇒ Just an approximation

PROPOSED SOLUTION

UNSUPERVISED DOMAIN ADAPTATION (UDA)

- \Rightarrow UDA \rightarrow class of techniques that aims to mitigate the Domain Shift problem without the need of labeled data in the target domain
- ⇒ CNN-based UDA algorithm for traffic density estimation and counting ⇒ Adversarial Learning in the output space
- ⇒ Experiments considering different types of Domain Shift:
 - Day2Night Domain Shift \rightarrow day images for training and night images for test
 - \Rightarrow Camera2Camera Domain Shift \rightarrow different cameras in train and test phases \Rightarrow Synthetic2Real Domain Shift \rightarrow synthetic images for training and real images for test

The WebCamT Dataset

- 5,000 images belonging to **10 different cameras of** urban scenarios
- Low-resolution, large perspectives, heavily occluded
- Manual annotated with **bounding boxes**
- Camera2Camera Domain Shift \rightarrow 7 cameras for training, 3 for testing

The Night and Day Instance Segmented Park Dataset (NDISPark)

- ~250 images of cars in parking lots
- Manually annotated with instance segmentation labels

 Accurate density maps
- Manual annotated with bounding boxes
- Images taken during the day and the night, showing utterly different lighting conditions -> Day2Night Domain Shift

Gathering labeled training data from virtual worlds

Grand Traffic Auto Dataset

- ~15.000 high congested traffic scenes
- Collected from Grand Theft Auto videogame -> Synthetic2Real Domain Shift
- Many different perspectives, illumination, contexts
- Automatically annotated
- Per-pixel labels → Accurate Density Maps

For a total of ...

automatically labelled vehicles in urban scenarios (after some cleanup)

Considered Domain Shifts - Recap

Day2Night

Synthetic2Real

The Architecture

Density Loss

Unlabeled Target Domain

Adversarial Loss

PRELIMINARY RESULTS

Metrics

Results

➡ MAE: Mean Absolute Error

$$\frac{1}{N}\sum_{n=1}^{N} |c_n^{gt} - c_n^{pred}|$$

RMSE: Root Mean Squared Error

$$\sqrt{\frac{1}{N}\sum_{n=1}^{N} (c_n^{gt} - c_n^{pred})^2}$$

ARE: Average Relative Error MAE / num_cars

Baseline (without Discriminator)

Our Method (with Discriminator)

Camera2Camera Domain Shift	Day2Night Domain Shift	Synthetic2Rea Domain Shift
3,24	1,70	4,10
2,86	1,45	3,88

Output Predictions - Examples

GT Count: 56

Pred Count: 53

GT Count: 12

Pred Count: 11

GT Count: 13

Pred Count: 14

CONCLUSIONS

- \Rightarrow We achieve this generalization by adversarial learning, whereby a target and source domains
- the model without domain adaptation

⇒ Building on a CNN-based density estimator, the proposed methodology can generalize to new sources of data for which there are no annotations available

discriminator attached to the output forces similar density distribution in the

 \Rightarrow Experiments show a significant improvement relative to the performance of

Thanks for your attention!

Questions?

Luca Ciampi < luca.ciampi@isti.cnr.it>

