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Abstract. The tool VoxLogicA merges the state-of-the-art library of
computational imaging algorithms ITK with the combination of declara-
tive specification and optimised execution provided by spatial logic model
checking. The analysis of an existing benchmark for segmentation of
brain tumours via a simple logical specification reached state-of-the-art
accuracy. We present a new, GPU-based version of VoxLogicA and dis-
cuss its implementation, scalability, and applications.
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1 Introduction

Spatial and Spatio-temporal model checking have gained an increasing inter-
est in recent years in various application domains, including collective adap-
tive [13,18] and networked systems [5], runtime monitoring [26,4], modelling of
cyber-physical systems [31] and medical imaging images [24,3]. Current research
in this field has its origin in the topological approach to spatial logics, whose
early theoretical foundations have been extended to encompass reasoning about
discrete spatial structures, such as graphs and images [16], and reasoning over
space-time [19,31,26], with related model checking algorithms and tools [14,10,6].

Introduced in [10], continuing the research line of [8,3,7], VoxLogicA (Voxel-
based Logical Analyser)3 caters for a novel,declarative approach to (medical) im-
age segmentation, supported by spatial model checking. Therein, the main case
study was brain tumour segmentation for radiotherapy (see e.g., [23,34,21,30,22]),
using the BraTS 2017 dataset (a publicly available set of benchmark MRI images
for brain tumour segmentation including high-quality ground truth: see [2]). A
simple high-level specification for glioblastoma segmentation was proposed and
tested using VoxLogicA. The procedure competes in accuracy with state-of-the-
art techniques, most of which based on machine learning. This work presents a

? Research partially supported by the MIUR Project PRIN 2017FTXR7S “IT- MaT-
TerS”. The authors are thankful to Raffaele Perego, Franco Maria Nardini and the
High Performance Computing Laboratory at ISTI-CNR for providing access to the
powerful machine used in our tests in Section 4. The authors also acknowledge fruit-
ful discussions with Gina Belmonte, Diego Latella, and Mieke Massink.

3 VoxLogicA: see https://github.com/vincenzoml/VoxLogicA
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variant of VoxLogicA, named VoxLogicA-GPU, that implements the core logical
primitives in GPU. The motivation is shared with a recent trend on theory and
implementation of formal methods in GPU (see [11,32,33,25,28,27]): to take ad-
vantage of the availability of high-performance, massively parallel computational
devices, in order to increase the size of tractable problems. We describe the tool
implementation, architecture, and issues (in particular, connected component
labelling in GPU). We compared the CPU and GPU implementations, both on
artificial test cases consisting of very large formulas, and on the brain tumour
segmentation case study. Results aimed at checking scalability on large formulas
are very encouraging, as the command pipeline of the GPU is fully exploited,
and there is a considerable speed-up with respect to using the CPU. On the
case study, the current limitations of VoxLogicA-GPU (namely, the restriction to
2D images and the smaller number of primitive operations that has been im-
plemented) forbid a direct comparison with [10], but the GPU version was still
able to outperform the CPU on a simplified experiment, which is particularly
relevant, as the CPU algorithms rely on a state-of-the-art imaging library.

2 The Spatial Logic SLCS

In this section, we briefly review the syntax of the spatial logic SLCS, defined in
[15,16], and its interpretation, restricted to the case of two-dimensional images
which is currently handled by VoxLogicA-GPU. For the general definition on so-
called closure spaces, and the link between (multi-dimensional) images, graphs,
closure spaces and topological spatial logics we refer the reader to [16,3,10]. The
syntax of the logic we use in this paper is its most up-to-date rendition, where
the surrounded connective from [16] is a derived one, whereas reachability is
primitive, as in [4,17,20]. Given set P of atomic predicates, with p ∈ P , the
syntax of the logic is described by the following grammar:

φ ::= p | ¬φ | φ1 ∧ φ2 | Nφ | ρ φ1[φ2] (1)

The logic is interpreted on the pixels of an imageM of fixed dimensions. The
truth values of a formula φ on all the pixels can be rendered as a binary image
of the same dimensions of M. Therefore, in particular, atomic propositions
correspond to binary images. To get an intuition, consider that typical atomic
propositions are numeric constraints (thresholds) on imaging features, such as
intensity, or red, green, blue colour components. Boolean operators are defined
pixel-wise: ¬φ is the complement of the binary image representing φ, and φ1∧φ2
is binary image intersection. The modal formula Nφ is interpreted as the set
of pixels that share a vertex or an edge with any of the pixels that satisfy φ
(adopting the so-called Moore neighbourhood); in imaging terminology, this is
the dilation of the binary image corresponding to φ. The reachability formula
ρ φ1[φ2] is interpreted as the set of pixels x such that there is a pixel y, a path π
and an index ` such that π0 = x, π` = y, y satisfies φ1, and all the intermediate
pixels π1, . . . , π`−1 (if any) satisfy φ2.
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From the basic operators, several interesting notions can be derived, such
as interior (corresponding to the imaging primitive of erosion), surroundedness,
contact between regions (see also [17], encoding the discrete Region Calculus
RCC8D of [29] in a variant of SLCS).

3 The tool VoxLogicA-GPU

VoxLogicA-GPU is a global, explicit state model checker for the logic SLCS de-
fined in [16] , aiming at high efficiency and maximum portability VoxLogicA-GPU

is implemented in FSharp, using the NET Core infrastructure, and the General-
Purpose GPU computing library OpenCL.4 Efficiency is one of the major chal-
lenges, as outperforming VoxLogicA inherently means designing in-GPU imag-
ing primitives faster than the state-of-the-art library ITK. The focus of the first
release of VoxLogicA-GPU is on the implementation and early dissemination of
a free and open source infrastructure to experiment with GPU-based spatial
model checking, and demonstrate its scalability. Thus, development has been
narrowed to a core implementation that is powerful enough to reach the stated
objectives, although not as feature-complete as VoxLogicA. IN particular, the
implemented primitives are those of SLCS, plus basic arithmetic. More com-
plex operations (normalization, distance transform, statistical texture analysis)
are yet to be implemented. Furthermore, in the first release, computation is re-
stricted to 2D images and 16 bit unsigned integers5; this eased development, as
a separate kernel is needed for each dimensionality and each numeric type.

3.1 Syntax

VoxLogicA-GPU is a command-line tool. It takes only one parameter, a text file
(usually, with .imgql extension) containing the specification to be executed.
In the following, f, x1,..., xN, x are identifiers, "s" is a string, and e1,

..., eN, e are expressions (to be detailed later). A specification consists of a
text file containing a sequence of commands (see Section 4.2 for an example).
Five commands are currently implemented: let, load, save, print, import.
For the scope of this work, it suffices to describe the first three. The command
let f(x1,...,xN) = e is function declaration (let f = e declares a constant)
with a special syntax for infix operators; the command load x = "s" loads an
image from file "s" and binds it to x for subsequent usage; the command save

"s" e stores the image resulting from evaluation of expression e to file "s".
VoxLogicA-GPU comes equipped with built-in arithmetic operators and logic
primitives. Furthermore, a “standard library” is provided containing short-hands
for commonly used functions, and for derived operators. An expression may
be a number (with no distinction between floating point and integer constants),
an identifier (e.g. x), a function application (e.g. f(x1,x2)), an infix operator
application (e.g. x1 + x2), or a parenthesized expression (e.g. (x1 + x2)).

4 FSharp: see https://fsharp.org. NET Core: see https://dotnet.microsoft.com.
OpenCL: see https://www.khronos.org/opencl. ITK: see https://itk.org.

5 The precision of 16 bits is needed for the BraTS dataset, see Section 4.

https://fsharp.org
https://dotnet.microsoft.com
https://www.khronos.org/opencl
https://itk.org
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3.2 Implementation details

The core model-checking algorithm of VoxLogicA-GPU is in common with VoxLogicA.
After parsing, imported libraries are resolved, load instructions are executed, and
parametric macros are expanded, avoiding to duplicate sub-expressions (see [10]
for more details). The result is a directed acyclic graph, where each node contains
a task to execute, after the tasks from which it depends (denoted by edges) are
completed. A task can be either an operator of the language, or an output in-
struction. The semantics of operators is delegated to the specific implementation
of the VoxLogicA API, which must define the type Value, on which tasks oper-
ate. Operators are implemented in a module running on CPU that launches one
or more kernels (i.e. functions running on GPU), executed in an asynchronous
way. As the execution order is not known a priori, the desired kernel is retrieved
at runtime and passed to an auxiliary module that performs the actual call to
the GPU code. This module is also in charge of setting the actual parameters
(i.e. image buffers or numeric values) of the kernel. The type Value is used to
describe information about the type of data stored in the GPU memory (a bi-
nary or numeric image, or a number). More precisely, it contains a pointer to
an OpenCL buffer stored in the GPU memory, the pixel type of the image and
the number of components per pixel. These information are needed in order to
have fully composable operators, as the image type may vary during computa-
tion (e.g. when computing connected components labelling). Providing a pointer
to the OpenCL buffers minimises data transferring between host and device, as
data is retrieved from the CPU only when it is strictly necessary to continue
execution. The correct execution order is preserved using OpenCL events, i.e.
objects that communicate the status of a command. Due to asynchronicity, ker-
nels are pushed in a command queue that may also contain global barriers or
read/write to the GPU memory. Each time a command is added to the queue,
a new event is added to the event list and will be eventually fired at the com-
mand completion. Events can be chained, and the CPU can wait for an event to
complete and read the result of an associated computation from the GPU. Wait
instructions are only used in the implementation of reachability-based logical
primitives, in order to check if the GPU reported termination of an iterative
algorithm, and when saving results, achieving very high GPU usage. Just like in
VoxLogicA, the reachability operator ρ φ1[φ2] is implemented using connected
components labelling, which makes the implementation such operation in GPU
very relevant for this paper.In order to get an intuition about this, consider a
binary image I whose non-zero points are the points satisfying φ2. Consider any
pixel z in a connected component of I that has a point in common with the
dilation of φ1. By construction there is a path π and an index `, with π0 = z, π`
satisfying φ1, and all the pixels π0, . . . , π`−1 satisfying φ2. Therefore the points
in the dilation of the set of all z in such situation satisfies ρ φ1[φ2], as well as
the pixels satisfying Nφ1; there are no other pixels satisfying ρ φ1[φ2].
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3.3 Connected components labelling in VoxLogicA-GPU

The current, iterative algorithm for connected component labelling is based on
the pointer jumping technique, and it has been designed to balance implementa-
tion simplicity with performance. A more detailed investigation of this and other
algorithms is left for future research. Algorithm 1 presents the pseudo-code of
the kernels (termination checking is omitted); see Figure 1 for an example.

Algorithm 1: Pseudocode for connected components labelling

1 initialization(start: image of bool, output: image of int × int )
2 for (i, j) ∈ Coords do
3 if start(i,j) then
4 output(i, j) = (i, j) // null otherwise

5 mainIteration(start: image of bool, input, output: image of int × int)
6 for (i, j) ∈ Coords do
7 if start(i,j) then
8 (i′, j′) = input(i, j)
9 output(i, j) = maxNeighbour(input, i′, j′)

10 reconnect(start: image of bool, input, output: image of int × int)
11 for (i, j) ∈ Coords do
12 if start(i,j) then
13 (i′, j′) = input(i, j)
14 (a, b) = maxNeighbour(input, i, j)
15 (c, d) = input(i′, j′)
16 if (a, b) > (c, d) then
17 output(i′, j′) = (a, b) // Requires atomic write

The algorithm uses coordinates (x, y) as labels. Starting from a binary image
I, the algorithm initialises the output image (a two-dimensional array of pairs)
by labelling each non-zero pixel of I with its coordinates. At each iteration,
in parallel on the GPU, for each p at (x, y) which is non-zero in I, containing
(x′, y′), the Moore neighbourhood of (x′, y′) is inspected to find a maximum
value (x′′, y′′); the lexicographic order is used (possibly, (x′′, y′′) = (x′, y′)). The
value (x′′, y′′) is written at (x, y). See Figure 1 for an example.

Such algorithm converges in a logarithmic number of iterations with respect
to the number of pixels due to pointer jumping. The algorithm may fail to label
uniquely those connected components that contain a particular type of “concave
corner”, namely a pixel at coordinates (a, b), together with the pixels at (a+1, b),
(a, b+ 1), but not the pixel at (a+ 1, b+ 1).

To overcome this, each k main iterations (with k very small, k = 16 in the
current implementation) the algorithm employs a reconnect step, that inspects
the neighbourhood of each pixel p, containing (x, y), looking for a pair (x′, y′)
greater than the pair stored at (x, y). In that case, (x′, y′) is written at (x, y),
and the main iterations are restarted, which immediately propagates (x′, y′) to
p, and all other pixels that contain (x′, y′). At this point termination is checked,
by invoking a separate kernel that checks if any pixel which is true in the original
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binary image has a neighbour with a different label (if no pixel is in this situation,
then the connected components have been properly labelled)

By construction, the algorithm exits only if all connected components have
been correctly labelled. An invariant is that after each main iteration, each pixel
p containing (x, y) lays in the same connected component as (x, y). For termina-
tion, call k the number of distinct labels in the image along computation. Clearly,
k does not increase after a main iteration (in most iterations it decreases). After
each reconnect step, there are three possibilities: 1) k decreases; 2) k does not
change, but in the next step, the algorithm terminates; 3) k does not change,
but in the next main iteration, k decreases. Therefore, k always decreases after
a reconnect step and a main iteration, unless the algorithm terminates. Thus,
by the invariant, k converges to a minimum which is the number of connected
components. In practice, convergence is quite fast (usually, logarithmic in the
number of pixels) and suffices to establish the results in Section 4.

Iteration 1 Iteration 5 Iteration 9 Iteration 13

Iteration 17 Iteration 21 Iteration 25 Iteration 29

Fig. 1. CC-labelling algorithm on a test image. Different colours represent different
labels. Reconnect is called every 8 main iterations. At iteration 13, the main iterations
have converged, therefore the image stays unchanged until iteration 16 (reconnect);
iteration 17 shows label propagation after reconnect. Then until iteration 24 (last
reconnect), images do not change again.

4 Tests and Brain Tumour Segmentation Case Study

4.1 Performance on large formulas

We built two kinds of large formulas in order to stress the infrastructure: sequen-
tial forumlas (i.e. formulas of the form f(g(...(x)))), and “random” ones, were all
the operators are composed in various ways and applied over different images. In
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both these cases, VoxLogicA-GPU scales better than the CPU version by a linear
factor as the size of the formula grows. It is worth noting that the CPU version
has better performances on very small formulas in the random test, due to the
overhead needed to set up GPU computation. Figure 4.1 shows how the CPU
and the GPU versions scale differently on growing formulas. As in Section 4.2,
execution times are small. We foresee more important speed-ups on real-world
experiments, in the near future.

Fig. 2. Performance on growing sequential (left) and random (right) formulas

4.2 Brain Tumour Segmentation

The main case study of [10] was brain tumour segmentation for radiotherapy,
achieving accuracy results on par with the state of the art tools. Validation was
performed on the BraTS 2017 dataset6, which provides MRI-flair 3D images
composed by circa 9 millions of voxels (three-dimensional pixels) and manual seg-
mentations for accuracy scores. Given the current restrictions of VoxLogicA-GPU
to 2D images, core logical primitives, and 16-bit unsigned integers (see Section
3), we have extrapolated a simplified dataset and the specification in Figure 3.

The specification uses the operator grow(φ1, φ2), derived from ρ, to identify
pixels that either satisfy φ1, or belong to a region which is in contact with
φ1, and only contains pixels satisfying φ2. The particular simplicity of such
procedure should not raise doubts about its effectiveness, as “semantic noise
removal” is the core of the specification in [10], and contributes to its accuracy
(and computational cost) for the main part; but note that the restriction to
2D images makes the procedure too fast to be measured in smaller images,
requiring artificial up-scaling in order to compare the performance of VoxLogicA
and VoxLogicA-GPU.

To extract a 2D slice out of each 3D MRI-flair scan of the BraTS dataset,
each 3D image is first normalised using the percentiles operator of VoxLogicA,

6 See http://braintumorsegmentation.org

http://braintumorsegmentation.org
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// Load data (16 bit png, normalised)

load img = "normalised-MRI-flair.png"

// 1. Thresholds

let hI = intensity(img) >. 62258 // (62258 = 0.95 * 65535; hyperintense)

let vI = intensity(img) >. 56360 // (56360 = 0.86 * 65535; very intense)

// 2. Semantic noise removal via region growing

let gtv = grow(hI,vI)

// Save the results

save "segmentation.png" gtv

Fig. 3. Brain Tumour Segmentation in VoxLogicA-GPU

in order to remain faithful to the kind of processing done in [10]. The normalised
image has floating point intensity values between 0 and 1; these have been mul-
tiplied by 216 − 1 (the maximum 16-bit unsigned integer) in order to maximise
precision (therefore the thresholds in the specification were also multiplied by
the same number). Finally, the “most significant” slice has been selected as the
one where the manual segmentation has a larger volume, resulting in an image
which contains enough information to test the performance of VoxLogicA-GPU.
Finally, the slice has been up-scaled (with no filtering) in order to obtain a very
large image, (size is 7680× 7680 pixels, that is circa 60 megapixels) in order to
challenge the efficiency of VoxLogicA, where the implementation of most logical
primitives is delegated to the state-of-the-art imaging library ITK7.

We have tested the specification on 4 devices, averaging the measurements on
several runs. The GPU algorithm has been tested with VoxLogicA-GPU on two
different GPUs, namely an Intel HD Graphics 630 (integrated GPU with very
low performance), taking about 3 seconds to complete; and a NVIDIA TITAN
Xp GP102, which is a high-end desktop GPU, taking about 600ms to complete.
The CPU algorithm has been tested with VoxLogicA on the same machine used
in [10], equipped with a Intel Core i7-7700 CPU, taking about 1100 milliseconds,
and on the machine hosting the NVIDIA TITAN Xp, which also has a Intel Xeon
E5-2630 CPU, taking 750 milliseconds. Runtime was measured from the moment
in which the tools print “starting computation” in the log (signifying that all
preparation, parsing, memoization, etc. has been finalised) to the moment in
which the tools print “saving file ...”, meaning that the results have been fully
computed, and transferred from the GPU to the CPU (for VoxLogicA-GPU). The
measured times are quite low, hence not very significant, due to the simplicity
of the procedure and the restriction to 2D images. Doubling the image size is
not possible at the moment as it would not be possible to allocate the needed
memory buffers on the devices available at the moment. Obviously, larger and

7 The Insight Toolkit, see https://itk.org/.

https://itk.org/
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more complex specifications, such as the gray and white matter segmentation
in [9], which takes minutes to complete in CPU, will benefit more of the GPU
implementation (as discussed in Section 4.1). More relevant tests will be possible
when the tool will support 3D images (which are more challenging for the CPU)
and after the implementation of further, heavy operations of VoxLogicA such as
local histogram analysis. It is noteworthy that the GPU implementation already
outperforms the CPU in this case study (on the available devices), and that
both implementations achieve impressive practical results, by segmenting a brain
tumour on such a large image in less than one second. In CPU, this is due to
the state-of-the art implementation of primitives in the ITK library. In GPU,
the connected components algorithm that we designed yields very good results.

5 Conclusions

Our preliminary evaluation of spatial model checking in GPU is encouraging:
large formulas benefit most of the GPU, with significant speed-ups. Connected
components labelling should be a focus for future work; indeed, the topic is
very active, and our simple algorithm, that we used as a proof-of-concept, may
as well be entirely replaced by state-of-the-art, more complex procedures (see
e.g. the recent work [1]). Making VoxLogicA-GPU feature-complete with respect
to VoxLogicA is also a stated goal for future development. In this respect, we
remark that although in this work we decided to go through the “GPU-only”
route, future development will also consider a hybrid execution mode with some
operations executed on the CPU, so that existing primitives in VoxLogicA can
be run in parallel with those that already have a GPU implementation. Usability
of VoxLogicA-GPU would be greatly enhanced by an user interface; however, un-
derstanding modal logical formulas is generally considered a difficult task, and
the novel combination of declarative programming and domain-specific med-
ical image analysis concepts may hinder applicability of the methodology, as
cognitive/human aspects may become predominant with respect to technolog-
ical concerns. In this respect, we plan to investigate the application of formal
methodologies (see e.g. [12]).
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