An Osmotic Ecosystem for Data Streaming Applications
in Smart Cities

Emanuele Carlini*
CNR-ISTI, National Research Council
Pisa, Italy
emanuele.carlini@isti.cnr.it

Lorenzo Carnevale
University of Messina
Messina, Italy
Icarnevale@unime.it

Massimo Coppola
CNR-ISTI, National Research Council
Pisa, Italy
massimo.coppola@isti.cnr.it

Patrizio Dazzi Gabriele Mencagli Domenico Talia
CNR-ISTI, National Research Council University of Pisa University of Calabria
Pisa, Italy Pisa, Italy Rende, Italy

patrizio.dazzi@isti.cnr.it

mencagli@di.unipi.it

talia@dimes.unical.it

Massimo Villari
University of Messina
Messina, Italy
massimo.villari@unime.it

ABSTRACT

Modern multi-tier Cloud-Edge-IoT computational platforms seam-
lessly map with the distributed and hierarchical nature of smart
cities infrastructure. However, classical tools and methodologies
to organise data as well as computational and network resources
are poorly equipped to tackle the dynamic and heterogeneous en-
vironments of smart cities. In this paper we propose a reference
architecture that aims to establish a unified approach for the orches-
tration of modern Cloud-Edge-IoT infrastructures and resources
specifically tailored for data streaming applications in smart-cities.
Stemming from the proposed reference architecture, we also discuss
a series of open challenges, which we believe represent relevant
research directions in the nearest future.

CCS CONCEPTS

« Computer systems organization — Cloud computing; Peer-
to-peer architectures; Self-organizing autonomic computing; Sen-
sor networks; Architectures; « Information systems — Data
stream mining; Data analytics; Sensor networks; « Security and
privacy — Data anonymization and sanitization.
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1 INTRODUCTION

The pace of technological changes is growing rapidly and so are the
demands for new functions and systems able to improve the quality
of life and generate value for our society. Several technological ar-
eas are the protagonists underlying this change: Internet of Things
(IoT), Edge and Cloud Computing, Artificial Intelligence (Al) are rev-
olutionising our lives, especially in large urban centers. As a matter
of fact, today’s urban centers are growing rapidly: the percentages
of people living in cities went from the 29% of 1950 to the 50% of
2008, and it is expected to reach 65% in 2040 [26]. This massive
population density makes urban environments valuable platforms
(i.e. Smart Cities) to build instantaneous, life-enhancing services
demanded by digital citizens: transportation, decision making, and
real-time alerting services are few examples of this.

Edge computing is a key technology to enrich smart cities with
distributed and widely available computing capabilities, suitable for
those services that are interactive and require a fast computation
to enable some form of decision making, such as video surveillance
[19] and parking organization [6]. We argue that, in the smart
cities of the future, the classical definition of Edge resources can be
stretched to include even the more fine-grained IoT resources, such
as CCTV cameras, traffic lights, sensors and many others. Such
devices are often located in the key elements of the urban area (e.g.
main squares or streets, prominent city buildings, and underground
metro stations) and are often equipped with small computational
capabilities (such as single-board computers) and can also make
use of different hardware accelerators available as small low-power
System-on-Chip devices.
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With such computational capabilities available, there is the need
to explore solutions that advance the state of the art when perform-
ing distributed data-intensive tasks. Such tasks present complex re-
quirements: to handle multiple streams of data coming from various
sensors, to perform distributed data-analysis tasks and to organize
computational resources [8]. Further, the computational infrastruc-
ture available in a smart city is often composed by a rather volatile
and “sparse” pool of low-latency, highly heterogeneous edge and
IoT devices eventually paired with Cloud Computing resources
in a so-called Cloud-Edge-IoT continuum. A key characteristic of
such infrastructure is the frequent fluctuations in computational
capacity as well as the network performance both in time and space
terms. This characteristic will inevitably lead to challenges regard-
ing the support of data streaming applications, and guarantee their
availability, reliability, and performance.

In this paper we propose a reference high-level architecture to
tackle the scenarios defined above. The architecture is based on
the concept of the Osmotic Computing [31] and frames the tech-
nological context and the necessary computational environment
targeting data-intensive applications. By starting from the reference
architecture, we describe a series of open research challenges and
directions that need to be addressed toward an actual realisation of
the proposed systems.

2 THE OSMOTIC ECOSYSTEM

We define an integrated ecosystem (called the Osmotic Ecosystem,
see Figure 1), of services and methodologies aimed at the defini-
tion of Cloud-IoT-Edge workflows and the orchestration of com-
putational resources and data, specifically designed for smart-city
infrastructures and data streaming applications. . The core idea
of the osmotic ecosystem is to support the translation of a mono-
lithic application [24] towards the decomposition of separated non-
monolithic micro elements (defined here as MELs) that need to
be logically orchestrated, distributed, configured, deployed, and
monitored via a comprehensive set of policies [31, 32]. The osmotic
ecosystem goes beyond simple elastic management of deployed
services, since deployment and migration strategies are related to
requirements of both infrastructure (e.g. load balancing, reliability,
availability) and applications (e.g. sensing/actuation capabilities,
context awareness, proximity, performance and user experience),
and can change over time.

The proposed osmotic ecosystem is composed of three main
macro building blocks built on top of the Cloud-Edge-IoT contin-
uum. These main blocks are described in the following sections.

2.1 Osmotic Computing Workflow

The first block is dedicated to the definition of the Osmotic Com-
puting Workflow that abstracts resources and applications, also
defining a programming model. This block provides programming
constructs and high-level interfaces to define a collection of MELs
capable of encapsulating microservices, microdata, microcompu-
tations or microactuators. It also supports specific abstractions to
connect MELs in complex Cloud-Edge-IoT workflows, enriched
with meta information to drive the orchestration and deployment
in the computing environment.

2.2 Osmotic Computing Environment

The Osmotic Computing Environment provides a set of services and
methodologies that abstract the underlying heterogeneous compu-
tational infrastructures (Edge, IoT, Cloud) to the above computing
workflow. These services can be logically divided into two layers.

The Application Facilities layer encompasses those services tai-
lored toward the applications, and are mostly related to the manage-
ment of the data streams. These include the indexing and querying
of streams, for fast retrieval and search of data streaming sources.
Also, it contains methods for streaming data analysis based on
composable parallel building blocks, which are to be selected in
order to exploit at best the computational capabilities offered at
the edge, with optimization techniques to balance efficiency and
performance with memory and energy constraints. Low-overhead,
memory-constrained data provenance methods can be employed to
automatically enrich streaming analysis outcomes with trustwor-
thiness and privacy-related information [25].

The Computing Infrastructure layer tackles those challenges re-
lated to the logical organization, elastic control and configuration
of MELs, as well as their monitoring, workload contention, interfer-
ence evaluation and re-deployment actions. This layer also includes
the abstractions and implementations of cloud-edge network over-
lays [13] that connect a distributed set of resources or services
that have common semantic features. Overlays are built by con-
sidering both static or dynamic properties, as well as individual
properties (e.g. available memory) or collective ones (e.g. mutual
interconnection properties).

2.3 Privacy and Security

A key concern that expands across applications, edge- and cloud-
based services and down to data processing is related to Privacy
and Security. The growth of aggregated data magnifies privacy chal-
lenges to limit access to certain types of data and prevent unautho-
rised access (confidentiality) by protecting data from being modified
or corrupted without detection. The following methodologies and
techniques toward the security and privacy are considered in the
osmotic ecosystem: (i) adherence to the General Data Protection
Regulation (GDPR) in the various phases of data management; (ii)
privacy-preserving data processing, with a focus on distributed
machine learning based on homomorphic cryptography, which al-
lows to infer conclusions on encrypted data without having access
to the original input data; (iii) secure and privacy-aware resource
orchestration, by borrowing the methodologies from the concept
of Software Defined Membranes [32].

3 OPEN CHALLENGES AND RESEARCH
DIRECTIONS

The implementation of the osmotic ecosystem vision into a realistic
setting raises a number of challenges, which in turn open several
research directions. Without any claim of completion, in the next
sections we present those directions we argue are the most relevant
in the current landscape of research.
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Figure 1: The Osmotic Ecosystem

3.1 Novel Programming Models for IoT
workflows

The benefits of integrating different computing paradigms for sup-
porting novel IoT applications have already been acknowledged by
academic and industry-based initiatives, including Cisco, Amazon
AWS, and the OpenFog Consortium [33]. Examples of edge applica-
tions applied in smart cities are discussed [2], where an intelligent
offloading method for collaborative services is proposed. However,
the full convergence of several computing systems aimed at making
the best of the IoT has not been investigated yet. The programming
model we are looking for should guarantee openness, interoper-
ability, and programmability, possibly leveraging and extending
existing workflows descriptors like the TOSCA standard [5].

To this end, a programming model for Cloud-Edge-IoT workflows
should allow the development of data transformation applications
as composition of existing components seamlessly integrated to
leverage distributed infrastructures like smart cities. This poses
several challenges for developers that need to be aware of the
heterogeneity at different levels: resources (IoT, edge or cloud), vir-
tualization technologies (container or hypervisor), runtime imple-
mentations of data analysis tasks (streamed or batched), geographic
distribution, and network uncertainties.

As in any workflow language, an application must be developed
as a graph of interconnected activities independently developed
using different tools. With respect to our architecture, each activity
is encapsulated in a separate MEL with uniform interfaces help-
ing their interconnection. However, besides the generality of the
content of each MEL, the programming model should allow the de-
veloper to provide the necessary meta information required to drive
the deployment and orchestration support of the MELs workflow.

3.2 Services Organization and Orchestration

Production systems of smart cities will be often reconfigured in
the future as part of the engineering processes. This aspect needs
to achieve the adequate orchestration and security levels in an
automated way, reducing the current static procedures and manual
efforts [15]. Indeed, even though several automated deployment
of applications have been developed, the management of deployed

applications in a multi-cloud and/or IoT-Edge environment is only
partially covered by existing approaches [17].

The adoption of the Osmotic Computing methodology in our
proposed architecture aims to harmonize the resource provisioning
and services deployment over both cloud and edge, proposing a
new de-facto standard based on cost functions driven by Al-models
[30-32]. The MEL abstractions enable the support of a virtual envi-
ronment that can be adapted on the basis of the available hardware
equipment, where each MEL is autonomous from a development
and deployment standpoint. Scaling and managing these types of
systems in smart-city environments, given the resource hetero-
geneity and the privacy and security constraints, is complex, so
a novel orchestrator is necessary to leverage such dynamic and
heterogeneous computing infrastructures.

Therefore one should extend the traditional “cloud-only” no-
tion of runtime control and reconfiguration to resources that are
deployed and available at the Cloud-Edge-IoT continuum. This pos-
sibly requires the study of machine learning techniques for develop-
ing predictive models to forecast workload inputs and performance
metrics across multiple, co-located MELs on Cloud-Edge-IoT re-
sources, in order to understand the nature of their composition and
decide which MELs can coexist and can be deployed together.

3.3 Distributed Data Analysis in the
Cloud-Edge-IoT Continuum

The exploitation of different distributed computing paradigms and
systems can effectively enable new ways to implement scalable data
analysis in IoT/Edge environments [20]. Decentralized scenarios
may offer useful solutions in many application fields. In order to
reach this goal, we need innovative decentralized models, integrated
architectures, scalable software frameworks and distributed data
mining algorithms for managing and analyzing data between edge
and cloud systems [4, 11, 12, 21-23, 29]. In particular, there is the
need for new data mining and machine learning strategies like
federated learning, collective data mining and ensemble learning
[28].

Furthermore, data management and analysis systems must be
designed to process data and produce knowledge by leveraging edge
nodes and IoT resources not only for gathering raw data, but also



directly using their computational capabilities in a way to satisfy
the requirements given the nature of the data analysis tasks and the
capabilities of the utilized resources. This requires distributed data
processing tasks able to extract useful patterns and learn models.
They must be suitably designed to be decomposed and profitably
executed on the Cloud-Edge-IoT continuum.

Therefore, our vision is based on the definition of new method-
ologies for designing data analysis and machine learning algorithms
by specializing the XaaS (Everything as a Service) stack into a Data
Analysis as a Service (DAaaS) model. According to this approach,
every data analysis element will be provided as a service and it can
be composed/orchestrated in a distributed workflow of services
and microservices running on the different hardware nodes. This
approach will make possible the implementation of distributed data
analysis applications based on federated and ensemble learning
services running in the Cloud-Edge-IoT continuum.

3.4 Cutting-edge Methodologies for Online
Streaming Analysis on Edge/IoT

Smart-city environments produce a huge volume of data available
in the form of information streams. A central requirement of these
applications is to be able to process and analyse these streams
in a timely fashion. However, although data stream processing
is a paradigm with a long tradition [1], traditional systems like
Apache Storm and Flink, which have a wide popularity and support
continuous streaming, target homogeneous clusters and clouds and
are not designed for the edge [14].

As a matter of fact, the shift to the Edge/IoT advocates new soft-
ware engineering techniques to develop efficient streaming runtime
systems, which should exhibit a high-degree of reconfigurability
of the underlying implementation to leverage different kinds of
resource-constrained hardware components in an efficient way
and in face of dynamic workload, networking and energy condi-
tions. Recent attempts [16] enhance traditional systems to fit the
constraints of edge resources, by re-implementing parts of their
runtime system introducing explicit scheduling of streamed data
analysis tasks using custom scheduling policies. However, they rep-
resent custom prototypes which require to be maintained together
with the standard code base of the traditional systems.

Therefore, our vision aims to identify parallel/concurrent build-
ing blocks that can be composed to build complex streaming appli-
cations, and whose internal implementation can leverage different
kinds of resources transparently to the end user. This idea perco-
lates the consolidated approach of Parallel Patterns and Algorithmic
Skeletons [27] at the implementation level of the runtime system
design of a framework, where each block describes a recurrent com-
putation or communication pattern, which can be implemented
with efficient mechanisms and with special focus on the constraints
of embedded devices.

3.5 Overlays-as-a-Service for Cloud-Edge-IoT
Continuum

The osmotic ecosystem vision is built on top of network abstrac-
tions that spawn from cloud to edge and vice versa, and which
has the aim of improving the performance of the communication

among the various resources of the platform. The combined activi-
ties of these abstractions shall enable resources characterisation,
indexing, querying and even their organisation. In addition, they
should offer useful solutions for supporting application-specific
processing of data (between edge and datacenter) and providing
network management abstraction (i.e. network overlays) indepen-
dent of the underlying technology. Several recent works in this
direction propose either general purpose distributed approaches,
such as for service allocation [10] information aggregation, [13],
and service discovery [3, 7, 9] or targeting specific smart city appli-
cations, such as video surveillance [18] and parking [6]. At the best
of our knowledge, those and many other research works assume
that overlay are statically designed and created.

Here we envision the creation of an overlay-as-a-service method-
ology, in which different overlay networks can be created on-
demand according to specific contexts, applications requirements,
and status of available computational resources. The goal is to sup-
port the osmotic ecosystem in a twofold fashion. First, with the
creation of overlays to effectively support a scalable indexing and
retrieval of computational resources and data streams. Second, by
providing application and support services with the creation of
on-demand ephemeral or permanent overlay networks among all
resources in the Cloud-Edge-IoT continuum, to be used both for
gathering data as well as for disseminating alerts and notifications
to end users.

4 CONCLUSIONS

This position paper presents the architecture of the Osmotic Ecosys-
tem, an integrated set of services and methodologies aimed at the
orchestration of computational resources and data streaming appli-
cations in the smart city context. The Osmotic Ecosystem design
considers the deployment and migration strategies strictly related
to the dynamic and heterogeneous requirements of the network and
computational smart city infrastructure as well as the one of the
applications. The reference architecture is used as a starting point
to discuss several relevant open research directions that would
shape the work toward the realisation of the Osmotic Ecosystem
vision in the future.
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