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Abstract. This paper investigates the mechanical behaviour of heritage structures subjected 
to seasonal temperature variations. To this end, the constitutive equation of masonry-like 
materials, which has been embedded in the finite element code NOSA-ITACA 
(www.nosaitaca.it), is used to model the static and dynamic behaviour of simple arched 
masonry structures subjected to thermal loads. 

1 INTRODUCTION 
Unlike linear elastic materials whose mechanical behaviour in the presence of thermal 

variations has been investigated in-depth [1], masonry materials under non-isothermal 
conditions are scarcely explored. A first contribution in this regard was provided in [2], which 
studied the influence of temperature changes on the displacements and stresses of masonry 
bridges. More recently, finite element simulations of the static behaviour of the Basilica of 
San Vitale in Ravenna have been conducted [3], taking seasonal thermal variations into 
account. Several papers report the presence of cracks in masonry monuments and bridges, 
which can be ascribed to thermal fluctuations [4, 5]. Moreover, numerous experimental 
campaigns[6, 7, 8, 9, 10, 11] have demonstrated that the presence of thermal strains affects 
not only the static behaviour of masonry structures, but also their dynamical properties. 
Long–term ambient vibration monitoring on masonry towers has proved the influence of 
environmental parameters such as temperature and humidity on the measured natural 
frequencies, which generally tend to increase with temperature. Such behaviour is often 
attributed to the closing of micro–cracks in masonry, due to thermal expansion. Similar 
effects were also detected in the Mallorca Cathedral and described in [11],which reports 
frequencies variations on the order of 10 - 20%. 

2. THE CONSTITUTIVE EQUATION OF NO-TENSION MATERIALS UNDER 
NON-ISOTHERMAL CONDITIONS

Masonry is modelled herein as an isotropic nonlinear elastic material with zero tensile 
strength and infinite compressive strength [12]. This constitutive equation has been 
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generalized in order to take into account the presence of thermal dilatation, the goal being to 
model the influence of temperature variations on the stress fields, crack distribution, and 
modal properties of the structure. Indeed, there are many engineering problems in which the 
presence of thermal dilatation must be taken into account; relevant examples range from daily 
and seasonal thermal variations affecting the stress field in masonry constructions, to the 
thermo-mechanical behaviour of masonry structures under elevated temperatures, such as the 
refractory linings of vessels and ladles used in the iron and steel industry.  

Let us denote by 𝜃𝜃𝜃𝜃 ∈ [𝜃𝜃𝜃𝜃1,𝜃𝜃𝜃𝜃2] the temperature and by 𝜃𝜃𝜃𝜃0 ∈ [𝜃𝜃𝜃𝜃1,𝜃𝜃𝜃𝜃2] the reference 
temperature. We assume that the thermal dilatation due to the temperature variation Δ𝜃𝜃𝜃𝜃 = 𝜃𝜃𝜃𝜃 −
𝜃𝜃𝜃𝜃0 is the spherical tensor 𝛼𝛼𝛼𝛼(𝜃𝜃𝜃𝜃 − 𝜃𝜃𝜃𝜃0)𝐈𝐈𝐈𝐈, where 𝛼𝛼𝛼𝛼 is the linear coefficient of thermal expansion 
and I the identity tensor. It is possible to prove that for every infinitesimal strain tensor E and 
𝜃𝜃𝜃𝜃 ∈ [𝜃𝜃𝜃𝜃1,𝜃𝜃𝜃𝜃2], there exists a unique triplet (𝐓𝐓𝐓𝐓,𝐄𝐄𝐄𝐄𝑒𝑒𝑒𝑒 ,𝐄𝐄𝐄𝐄𝑓𝑓𝑓𝑓) of symmetric tensors such that 𝐄𝐄𝐄𝐄 −
𝛼𝛼𝛼𝛼(𝜃𝜃𝜃𝜃 − 𝜃𝜃𝜃𝜃0)𝐈𝐈𝐈𝐈 is the sum of the elastic strain 𝐄𝐄𝐄𝐄𝑒𝑒𝑒𝑒 and the positive semidefinite fracture strain 𝐄𝐄𝐄𝐄𝑓𝑓𝑓𝑓, 
and that the Cauchy stress T, negative semi-definite and orthogonal to 𝐄𝐄𝐄𝐄𝑓𝑓𝑓𝑓, depends linearly 
and isotropically on 𝐄𝐄𝐄𝐄𝑒𝑒𝑒𝑒, through Young’s modulus E and Poisson’s ratio ν[13]. Here, in view 
of the modest amplitude of the temperature range considered in the analysis, the elastic 
constants E and  ν,  which are generally functions of temperature [14], do not depend on 𝜃𝜃𝜃𝜃. T 
is the stress corresponding to strain E and temperature 𝜃𝜃𝜃𝜃, and masonry-like materials are then 
characterized by the stress function 𝐓𝐓𝐓𝐓� given by 

𝐓𝐓𝐓𝐓�(𝐄𝐄𝐄𝐄,𝜃𝜃𝜃𝜃) = 𝐓𝐓𝐓𝐓,  for E symmetric tensor and 𝜃𝜃𝜃𝜃 ∈ [𝜃𝜃𝜃𝜃1,𝜃𝜃𝜃𝜃2],   (1) 

whose explicit expression is reported in [13], along with its derivative 𝐓𝐓𝐓𝐓�𝐄𝐄𝐄𝐄(𝐄𝐄𝐄𝐄,𝜃𝜃𝜃𝜃)with respect to 
E.  

The equilibrium problem of masonry-like solids subjected to both mechanical and thermal 
loads is specifically addressed in [13], which describes the procedure implemented in the 
finite element code NOSA-ITACA (www.nosaitaca.it) with the aim of determining its 
numerical solution. With regard to the influence of thermal loads on the natural frequencies of 
masonry constructions, this paper adopts the algorithm presented in [15] and implemented in 
NOSA-ITACA, which enables calculating the frequencies and mode shapes of masonry 
constructions while taking into account the presence of cracks due to mechanical and thermal 
loads. More precisely, given a masonry structure, discretized into finite elements, and given 
its materials properties, together with the kinematic constraints and loads (both mechanical 
and thermal), the algorithm is based on a linear perturbation about the solution to the 
equilibrium problem and calculates the frequencies of the cracked structures by taking into 
account the tangent stiffness matrix, which is symmetric and positive definite. The algorithm 
has proved to be able to reproduce the changes measured in the frequencies of masonry 
structures subjected to reinforcement operations, such as for example, the Mogadouro tower 
(Portugal) addressed in [16]. Also, the algorithm has been successfully used in [17, 18]to 
model the changes measured in the frequencies of two masonry towers in Lucca, likely related 
to seasonal thermal variations. For both the towers considered, frequencies tend to increase 
with increasing temperature, a trend which was also recognized in numerous experimental 
campaigns regarding ancient masonry towers [6, 8, 10]. 

In the following section, we present some analyses conducted on two simple masonry arch 
models: the first (Model 1) is a round arch with a three-meter span, the second (Model 2) a 
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masonry arch bridge spanning about 45 m and with a rise-to-span ratio of about 1/7. The 
influence of temperature variations is examined with regard to both the static and the dynamic 
behaviour of these structures. 

 
3. MASONRY ARCHES SUBJECTED TO THERMAL LOADS 

3.1 Model 1: A round arch 
Let us consider the masonry round arch shown in Figure 1, with a span of 3 m and 

thickness of about 20 cm. It is discretized into 1200 thick shell elements (element 10 of the 
NOSA-ITACA library), for a total number of 7878 degrees of freedom. The masonry 
material, which is assumed to have null tensile strength and infinite compressive strength, has 
Young's modulus E = 3 109 Pa, Poisson's ratio 𝜐𝜐𝜐𝜐 = 0.2, mass density  = 1800 kg/m3 and a 
linear coefficient of thermal expansion 𝛼𝛼𝛼𝛼 = 6 ∙ 10−6°C−1. The mass density of the infill, 
whose thickness over the arch crown is 0.3 m, is  = 1000 kg/m3. The arch, with fixed 
springers, is first subjected to permanent loads (masonry and infill weights), and then to 
temperature variations Δ𝜃𝜃𝜃𝜃 ranging from -15° C to +15° C. For the sake of comparison, the 
results obtained via the NOSA-ITACA code are validated against the commercial code 
MARC [19], using the constitutive law of low tensile materials and setting Es= 2.0∙104 N/m2 
[16]. Figures 2 and 3 represent the plot of the normal force N and the bending moment M 
(assumed positive if the intrados is stretched) per unit width versus the arc length varying 
from 0 to πR, with R=1.5 m the mean radius of the arch, for the three load conditions (∆𝜃𝜃𝜃𝜃 =
0°C is for the permanent loads only). The curves are shown for both the masonry-like 
(continuous line) and the linear elastic (dashed line) case. Figure 4 instead plots the 
eccentricity e = M/N in the arch sections vs. the arc length for the masonry-like (continuous) 
and the linear elastic case. It is worth noting that the effects of temperature are substantially 
mitigated by the material nonlinearity, which causes a significant reduction in the stiffness of 
the arch sections, thus reducing the stresses in the arch with respect to the linear elastic case. 
This effect is particularly evident for negative thermal variations (cyan lines) and is in 
agreement with similar results from other studies [20]. 

 

 

Figure 1: Model 1. Geometry and finite element mesh of the arch. 
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Figure 2: Model 1. Normal force per unit width N [N/m] versus the arc length[m] for ∆𝜃𝜃𝜃𝜃 = 0°C (yellow), ∆𝜃𝜃𝜃𝜃 =
−15°C (cyan) and ∆𝜃𝜃𝜃𝜃 = +15°C (red); linear elastic material (dashed) and masonry-like material (continuous). 

 

 

Figure 3.Model 1. Bending moment per unit width M [N m/m] versus the arc length [m] for ∆𝜃𝜃𝜃𝜃 = 0°C (yellow), 
∆θ = −15°C (cyan) and ∆𝜃𝜃𝜃𝜃 = +15°C (red); linear elastic material (dashed) and masonry-like material 

(continuous). 
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Figure 4. Model 1: Eccentricity e [m] versus the arc length [m] for ∆𝜃𝜃𝜃𝜃 = 0°C (yellow line), ∆𝜃𝜃𝜃𝜃 = −15°C (cyan) 

and ∆𝜃𝜃𝜃𝜃 = +15°C (red); linear elastic material (dashed) and masonry-like material (continuous). 

To investigate how temperature variations affect the dynamic properties of the arch, the 
procedure described in Section 2 has been followed. Table 1 summarizes the arch frequencies 
in the linear elastic (fl) and the nonlinear case (fnl), calculated after application of the 
permanent loads. The relative differences � f/fl reported in the table are about8% for the 
fundamental frequency and 15% for the second frequency. The MACM value [15] measures 
the correlation between the linear elastic mode shape and the corresponding mode shape of 
the cracked structure; values close to one indicate that, when transitioning from the linear to 
the nonlinear case, the eigenvectors remain substantially parallel.  

After application of the permanent loads, the arch is subjected to thermal variations Δ𝜃𝜃𝜃𝜃, 
and the first four natural frequencies are calculated, as reported in Table 2. Figure 5 shows a 
plot of the four frequencies vs. Δ𝜃𝜃𝜃𝜃. The second, third and fourth frequencies tend to increase 
with temperature. The curve of the first frequency, instead, shows a maximum for Δ𝜃𝜃𝜃𝜃 = 0 and 
decreases for positive values of Δ𝜃𝜃𝜃𝜃. In this case, as shown by the red curves in Figure 4, 
increasing values of temperature tend to diminish the eccentricity in the central portions of the 
arch and increase the nonlinearity at the springings. The global result is a decrease inarch 
stiffness with respect to the horizontal displacements, which are involved particularly in the 
first mode shape (Figure 6). In general, mode shapes appear much less affected by 
temperature than frequencies, as proved by the values of the MACM indicator reported in 
Figure 6 (evaluated for each mode shape between the linear and the corresponding nonlinear 
eigenvector): all these values are close to one.  

Finally, Table 3 shows, for different temperature increments, a comparison between the 
frequencies calculated by NOSA-ITACA and those calculated using MARC. The small 
differences at Δ𝜃𝜃𝜃𝜃 = 0 (on the order of 5%) are attributable to the small tensile strength (not nil 
as in NOSA-ITACA) assumed in MARC. As shown in the table, despite the different 
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constitutive equations adopted by the two codes, their results coincide after application of the 
thermal loads. 

 
 

Table 1. Model 1. Comparison between linear (fl) and nonlinear case (fnl); permanent loads (��= 0). 

 

 
 
 

Table 2. Model 1. Effects of temperature variations on the first four mode shapes of the arch.  
� fi(��) = (fi(��) - fi(0))/ fi(0).  

�� 
[°C] 

f1 

[Hz] 

� f1 
[%] 

f2 

[Hz] 
� f2 
[%] 

f3 

[Hz] 
� f3 
[%] 

f4 

[Hz] 
� f4 
[%] 

-15 12.932 -4,52 24.347 -9.97 42.235 -17.85 57.033 -11.44 
0 13.545 0.00 27.044 0.00 51.409 0.00 64.401 0.00 

+15 12.164 -10,20 28.730 6.23 53.050 3.19 72.669 12.83 
 

 

Table 3. Model 1. Comparison of the results obtained via the NOSA-ITACA and the MARC codes for the 
first four frequencies. For the i-th frequency, δi,NM = |fi,NOSA– fi,MARC|/ fi,NOSA. 

∆θ 
[°C] 

δ1,NM 
[%] 

δ2,NM 
[%] 

δ3,NM 
[%] 

δ4,NM 
[%] 

-15 3.52 1.87 0.57 1.02 
-10 2.00 0.12 0.69 0.92 
-5 1.73 0.08 0.53 1.17 
0 3.60 7.64 5.76 5.17 
5 2.67 2.55 0.37 0.69 
10 3.62 1.80 0.49 0.37 
15 0.14 0.19 0.81 0.52 

 

 

 

 fl 
[Hz] 

fnl 
[Hz] 

� f/fl 
[%] 

MACM 

Mode 1 14.704 13.545 7.88 0.999 
Mode 2 31.991 27.044 15.46 0.991 
Mode 3 57.138 51.409 10.03 0.993 
Mode 4 73.048 64.401 11.84 0.976 
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Figure 5. Model 1. The first four arch frequencies [Hz] vs. temperature variations ∆𝜃𝜃𝜃𝜃 [°C]. 

 

Figure 6. Model 1.The first four mode shapes of the arch. 
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3.2 Model 2: A masonry arch bridge 
Let us consider the masonry arch bridge shown in Figure 7, with a length of 44 m, rise of 

about 6 m and constant thickness of 1.5 m. It is discretized into 2160 thick shell elements, for 
a total number of 13650 degrees of freedom. The masonry properties are: Young's modulus E 
= 4 109 Pa, Poisson's ratio 𝜐𝜐𝜐𝜐 = 0.2, mass density  = 2000 kg/m3 and linear thermal 
expansion coefficient𝛼𝛼𝛼𝛼 = 1 ∙ 10−5°C−1. The mass density of the infill, whose thickness over 
the arch crown is 0.4 m, is = 2000 kg/m3. The arch, with fixed springers, is first subjected 
to permanent loads (masonry and infill weights) and then to temperature 
variations Δ𝜃𝜃𝜃𝜃 ranging from -10° to +15°. 

 

Figure 7.  Model 2. Geometry of the masonry arch bridge. 

Figure 8shows a plot of the eccentricity e vs. the arc length for the masonry-like case. The 
arch remains substantially in the linear elastic field, with the exception of the springings, 
where the eccentricity exceeds one-sixth of the section’s height. For a positive thermal 
variation of 15°, the eccentricity in the mid-section of the arch increases (in absolute value) by 
about 40%, passing from -9 cm to -13 cm. Correspondingly, the arch’s mid-section rises by 
about 0.5 cm. For Δ𝜃𝜃𝜃𝜃 = −10°, representing winter conditions, the eccentricity in the mid-
section falls from -9 cm to -6.8 cm (24%), and the arch crown undergoes a lowering of about 
2.6 cm. Thus, the total displacement of the arch mid-section produced by the considered 
thermal variations is about 3 cm. These data are in agreement with the experimental evidence, 
as described in [2], which reports on different cases of masonry arch bridges that present 
lowering of the crown during winter and its rising during summer. Comparison between 
Figures 4 and 8 also highlights the role of the span-to-rise ratio on the arches’ static 
behaviour. In fact, Model 1 and Model 2 exhibit very different behaviours even for permanent 
loads, with opposite signs of the eccentricity. 

Regarding the influence of thermal variations on the bridge’s modal properties, Table 4 
reports the bridge frequencies for different temperature increments. Frequencies at Δ𝜃𝜃𝜃𝜃 = 0 are 
calculated for the permanent loads only. The trend evident in the table is similar to that found 
for masonry towers: all frequencies tend to increase with increasing temperatures. The 
frequency variations range from 11% for the fundamental frequency to 0.16 % for the third 
frequency. As a general remark, the frequency values seem to be more influenced by positive 
values of Δ𝜃𝜃𝜃𝜃: this trend is clearly shown by Figure 9, where the graphs of the four frequencies 
are plotted vs. temperature increments. As shown in Figure 8, positive values of Δ𝜃𝜃𝜃𝜃 tend to 
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reduce the eccentricity at the springers, which represent the only portions of the arch in the 
nonlinear field, and thus the structure quickly approaches linear elastic behaviour. Finally, 
Figure 9 shows the arch’s first four mode shapes. As for Model 1, mode shapes are less 
affected by temperature than frequency, and the values of the MACM indicator (evaluated for 
each mode shape between the linear and the corresponding nonlinear eigenvector) are all 
close to one. 

 

 
Figure 8. Model 2. Eccentricity e [m] versus the arc length[m] for ∆𝜃𝜃𝜃𝜃 = 0°C (yellow), ∆𝜃𝜃𝜃𝜃 = −10°C (cyan) and 

∆𝜃𝜃𝜃𝜃 = +15°C (red), masonry-like material. 

 
Table 4. Model 2. Effects of temperature variations on the arch’s first four frequencies; 

� fi(��) = (fi(��) - fi(0))/ fi(0).  

�� 
[°C] 

f1 

[Hz] 

� f1 
[%] 

f2 

[Hz] 
� f2 
[%] 

f3 

[Hz] 
� f3 
[%] 

f4 

[Hz] 
� f4 
[%] 

-10 1.435 -1.37 2.758 -1.71 3.624 -0.60 4.813 -1.51 
-5 1.444 -0.76 2.788 -0.64 3.645 -0.03 4.869 -0.37 
0 1.455 0.00 2.806 0.00 3.646 0.00 4.887 0.00 

+5 1.519 4.40 2.885 2.82 3.647 0.03 4.997 2.25 
+10 1.535 5.50 2.900 3.35 3.648 0.05 5.016 2.64 
+15 1.619 11.27 3.018 7.56 3.652 0.16 5.198 6.36 
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Figure 9. Model 2. The first four frequencies [Hz] of the arch bridge vs. temperature variations  ∆𝜃𝜃𝜃𝜃 [°C]. 

 

 
 

Figure 10. Model 2. The first four mode shapes of the arch bridge.  
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4 CONCLUSIONS 
The paper presents some analyses conducted via the NOSA-ITACA code to assess the 

influence of temperature variations on the static and dynamic behaviour of masonry 
structures. The paper extends previous results obtained by the authors on masonry towers 
subjected to thermal loads. 

The case studies analysed in the paper are a round arch and an arch bridge, two structural 
elements very common in the worldwide architectural heritage. The effects of thermal loads 
are discussed in terms of the consequent variations in eccentricities and modal properties, 
with particular regard to natural frequencies. In both cases, when the masonry’s scarce 
capacity to withstand tensile stresses is taken into account (zero or very small tensile 
strength), thermal loads do not seem to significantly affect the static equilibrium of the arches. 
In fact, cracking due to the thermal strains causes a reduction in structural stiffness, with 
consequent mitigation of the stresses induced by the thermal variations. These changes in 
stiffness in turn affect the arches’ modal properties, thus giving rise to significant changes in 
their natural frequencies.  

The numerical results shown in the paper are in agreement with similar outcomes 
presented in the limited literature available on the topic. Comparisons between numerical and 
experimental results would be necessary to validate and corroborate the numerical 
simulations. Experimental tests aimed at investigating the influence of temperature variations 
on the structural behaviour of masonry arches are being planned for the near future. 
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