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Abstract
In high dimensional datasets, exact indexes are ineffective for proximity queries, and a sequential
scan over the entire dataset is unavoidable. Accepting this, here we present a new approach
employing two-dimensional embeddings. Each database element is mapped to the XY plane
using the four-point property. The caveat is that the mapping is local: in other words, each object
is mapped using a different mapping.

The idea is that each element of the data is associated with a pair of reference objects that
is well-suited to filter that particular object, in cases where it is not relevant to a query. This
maximises the probability of excluding that object from a search. At query time, a query is
compared with a pool of reference objects which allow its mapping to all the planes used by data
objects. Then, for each query/object pair, a lower bound of the actual distance is obtained. The
technique can be applied to any metric space that possesses the four-point property, therefore
including Euclidean, Cosine, Triangular, Jensen-Shannon, and Quadratic Form distances.

Our experiments show that for all the datasets tested, of varying dimensionality, our approach
can filter more objects than a standard metric indexing approach. For low dimensional data this
does not make a good search mechanism in its own right, as it does not scale with the size of the
data: that is, its cost is linear with respect to the data size. However, we also show that it can
be added as a post-filter to other mechanisms, increasing efficiency with little extra cost in space
or time. For high-dimensional data, we show related approximate techniques which, we believe,
give the best known compromise for speeding up the essential sequential scan. The potential
uses of our filtering technique include pure GPU searching, taking advantage of the tiny memory
footprint of the mapping.

Keywords: metric search, extreme pivoting, supermetric space, four-point property, pivot based
index

1. Introduction

In general, metric indexes partition the data on the basis of the distances to one or more
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reference objects (pivots) so that, at query time, some partitions can be included or excluded
from the search without the need to calculate the actual distances between the query and the
data objects within that partition. The triangle inequality used together with the knowledge of
the distances between the pivots and the data/query objects allows computing upper and lower
bounds for these distances.

The concept of local pivoting is to partition a metric space so that each element in the space
is associated with precisely one of a fixed set of pivots. The idea is that each object of the data
set is associated with the pivot that is best suited to filter that particular object if it is not relevant
to a query, maximising the probability of excluding it from a search. The notion does not in itself
lead to a scalable search mechanism, but instead gives a good chance of exclusion based on a
tiny memory footprint and a fast calculation. It is therefore most useful in contexts where main
memory is at a premium, or in conjunction with another, scalable, mechanism.

In this paper we apply similar reasoning to metric spaces that possess the four-point property
[1], which notably include Euclidean, Cosine, Triangular, Jensen-Shannon, and Quadratic Form
spaces. This property allows computing bounds for the the actual distance that are tighter that
than that obtained using the triangle inequality [2]. We show a novel way of exploiting this
situation: each element of the space can be associated with two reference objects, and a four-
point lower-bound property is used instead of the simple triangle inequality. The probability of
exclusion is strictly greater than with simple local pivoting; the space required per object and the
calculation are again tiny in relative terms. Specifically, we store each object using a tuple of
four values, as follows. From a finite metric space S , a relatively small set of reference objects P
is selected. For all p j, pk ∈ P, the distance d(p j, pk) is calculated and stored. For each element si

in S , a single pair of reference objects 〈pi1 , pi2〉 is selected. The distances d(si, pi1 ) and d(si, pi2 )
are calculated and used together with d(pi1 , pi2 ) to isometrically project the objects pi1 ,pi2 , si

in the 2D Euclidean vectors (0, 0),
(
0, d(pi1 , pi2 )

)
, (xsi , ysi ) respectively. The triangle inequality

guarantees that such isometric embedding exists; moreover, the coordinates of vector (xsi , ysi )
can be easily computed by exploiting the distances to the selected pivots (see Section 3 for the
details). Thus the space S is represented as a set of tuples 〈i1, i2, xsi , ysi〉, indexed by i, therefore
requiring only a few bytes per object.

When a query is executed, the distances d(q, p j) for each p j ∈ P are first calculated. At this
point, considering any si ∈ S and the objects q, pi1 , pi2 , it is possible to compute a lower-bound
for the unknown distance d(q, si) with a cheap geometric calculation, without any requirement
to access the original value si ∈ S . By exploiting the knowledge of the distances to the pivots
pi1 , pi2 it is possible to compute the 2D projection (xq,i, yq,i) of the point q with respect to the
pivots pi1 , pi2 . The four-point property guarantees that the Euclidean distance between (xq,i, yq,i)
and (xsi , ysi ) is a lower-bound for the actual distance d(q, si).

We show that the resulting mechanism can be very effective. However, for a selection of
m reference points, there exist

(
m
2

)
pairs from which the representation of each data point can

be selected. This number, of course, becomes rapidly very large even with modest increases in
m. If for each element of S we can find a particularly effective pair pi1 , pi2 , within this large
space, then this tiny representation of S can be used as a powerful threshold query filter. This
exclusion mechanism leads to a sequential scan, which is virtually unavoidable in light of a recent
conditional hardness result in [3] for nearest neighbor search, even in the approximate setup, for
every δ > 0 there exist constants ε, c > 0 such that with preprocessing time O(Nc) computing
a (1 + ε)-approximation to the nearest neighbor requires O(N1−δ) time, with N the size of the
database.
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The above hardness result has been suspected for a long time by the indexing community, and
it has been named the curse of dimensionality. It is known, for example, that a metric inverted
index [4] has high recall rates only if a substantial part of the candidate results is revised. We
aim our approach at this final part of query filtering or re-ranking.

The contributions of this paper are as follows:

1. We show that the outline mechanism is viable. For SISAP benchmark data sets [5] we
show that exclusion rates of over 98% can be achieved using our small memory footprint
and cheap calculations.

2. We use an observation of the mechanism applied in much higher-dimensional spaces which
leads to two different approximate mechanisms which can be applied to range and nearest-
neighbour search respectively. For both mechanisms, for a space which is completely
intractable for metric indexing methods we can achieve a reduction of search cost of around
90%, in order to return around 90% of the correct results.

3. We examine the problem of finding the best pair of reference points per datum; this can
be done well, but expensively, by an exhaustive search of the pair space; however the cost
of this is quadratic with respect to the number of reference objects selected. We show that
much cheaper heuristics are also effective.

4. Finally, we show an example of how the mechanism can be used as a post-filter adjunct to
another mechanism. We describe its incorporation with the List of Clusters index. Using
a pragmatic selection of reference objects it can be ensured that no new distances are
measured at either construction or query time, which can nonetheless lead to a halving of
the overall query cost.

A preliminary version of this work appeared in [6]. The present contribution gives a more
detailed description of the proposed approach and a widely extended experimental evaluation.
Moreover, it investigates the use of our approach also for approximate pre-filtering and ranked
order nearest-neighbour queries.

The rest of the paper is structured as follows. Section 2 reviews related work and gives back-
ground information on the four-point property and lower-bound. Section 3 discuss properties
of the planar projection used in this work to map metric data to 2D Euclidean space. Section
4 presents our proposed search strategies that rely on local embedding of the data into 2D co-
ordinate space. Section 5 present results of a thorough experimental analysis of the proposed
approaches. Section 6 draws conclusions. Table 1 summarises the notation used in this paper.

2. Background and Related Work

Pivot based indexes have populated the metric indexing scene for a long time. A standard
approach is creating a pivot table, obtained by pre-computing and storing the distances between
data objects and some pivots (reference objects). Each object is then represented as the vector of
its distances to the pivots. Therefore, a pivot table is just the direct product of one dimensional
projections obtained from a single pivot at a time. The object-pivot distance constraint [7],
which is a direct consequence of the triangle inequality, ensures that each coordinate gives a
lower bound to the actual distance from database points to the query. The lower bounds are used
to exclude objects from the searching process without explicitly computing their distance to the
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Table 1: Notation used throughout this paper. Some concepts, such as planar projection, are introduced in later sections.

Symbol Definition

| · | size of a set
(U, d) metric space
S ⊆ U finite search space (database)
N = |S | size of the database
o, si ∈ S data objects
q ∈ U query object
P = {p1, . . . , pm} set of pivots (reference objects), p j ∈ U
m number of pivots
t, t1, t2 threshold distance, e.g. radius used in a range query

search
k number of results of a nearest neighbour search
`2 Euclidean distance
< pi1 , pi2 > pair of pivots used as reference points for the object si

(xsi , ysi ) ∈ R2 planar projection of the point si with respect to the pivots
pi1 , pi2

σ(si) = < i1, i2, xsi , ysi > tuple used to represent the data point si

(xq,i, yq,i) ∈ R2 planar projection of the point q with respect to the refer-
ence objects selected for the object si

query. For example, exclusion occurs when the distance between the object and the pivot, which
is pre-calculated, and the distance between the query and the pivot, which is calculated at the
start of a query evaluation, give a lower bound for the actual distance between the query and the
object that is greater than a given threshold. A safe choice is to take the maximum over all the
available lower bounds. In other words, given a set of pivots {p1, . . . , pm}, an object o, and a
query q, the max j |d(o, p j) − d(q, p j)| is a lower-bound for the distance d(o, q).

The most effective algorithm published for searching using a pivot table is AESA [8], which
proceeds as following. All the O(N2) distances between every object in the database of N ele-
ments is pre-computed. With this, every object in the database is a potential pivot. At query time
a subset of the N pivots is selected, one at a time, using a heuristic which consist in selecting the
j + 1 pivot, the closest to the query, using as bound the j pivots known so far and the first pivot at
random. The output of this heuristic is both a set of good pivots for the query, and the nearest ob-
ject to it. Two things can be noticed from this basic approach, first, the number of pivots actually
used is much smaller than N, and second, they are tailored for each query on the fly. However
since the space usage is quadratic, the approach is impractical. Also notice that a sequential scan
is implied to obtain the closest next pivot in the interaction. Linear space approaches of the same
idea were used in [9], that stores distances from objects to only a fixed number m of pivots. The
search procedure is nearly the same of AESA, except that not all the objects are used as pivots.
A better heuristic for selecting the next pivot is proposed in [10]. The sequential scan can be
avoided using a tree [11, 12].
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Selecting the best pivot for a given query is not possible offline. A weaker alternative is to
select the best pivot for each database object, increasing the probability of exclusion at query
time. Two options have been explored in the literature, in [13] each pivot in the pool only keep
distances to objects in the extreme of the distribution, those objects near and far the pivot. This
process is sub-optimal and may end with a few objects guarded by many pivots, and many objects
guarded by a few or none pivots. A second alternative, ensuring some fairness in the coverage,
was proposed in [14], this time each object can select the best pivot. This latter approach is called
extreme pivoting. In those heuristics the gain is in filtering power, when the amount of available
memory is fixed. Pivot tables are useful for post filtering in a hierarchical metric index, as in
[15], or they can be used as a stand alone index using directly the table as in [16, 17].

For post-filtering, when a primary index is applied to filter the data and only a small fraction
of the database should be checked against the original metric, a table is useful. A high rate of
exclusion will prevent the use of the more expensive distance computations, and moreover will
require to fetch a smaller number of objects from secondary memory. Hence a small table, with
just a couple of coordinates, is an excellent trade-off because it can be kept in main memory. In
the same spirit as the extreme pivots for unidimensional mapping, in this paper we are aiming at
building a table of small memory footprint using the so-called four point property.

2.1. The Four-Point Property and Supermetric Spaces

Between the end of the 19th century and the beginning of the 20th century various math-
ematicians, including Menger [18], Wilson [19] and Blumenthal [20], founded the basis of the
distance geometry that studies and characterises semimetric spaces based only on given values of
the distances among finite subsets of points. A basic observation is that the triangular inequality
can be expressed as a geometric condition: a semimetric space has the triangle inequality if and
only if any three points of the space can be projected in a 2D Euclidean space while preserving
all the three inter-point distances. In other words, a triangle can be drawn in a 2D plane so that
the lengths of its edges are in one-to-one correspondence with the pairwise distances between
the points. This property is also called the three-point property and the spaces that satisfy it are
referred to as isometrically 3-embeddable in 2-dimensional Euclidean space. It turns out that
a large class of metric spaces also satisfy the four-point property, i.e. they are isometrically 4-
embeddable in 3-dimensional Euclidean space [1, 21, 22]. In a nutshell, for any four points of the
space there exists an isometric embedding that maps those points to the vertices of a tetrahedron
so that all the six pairwise distances between the points are preserved.

More recently we have applied these results in theoretical mathematics to the practical do-
main of metric search [23, 24, 2] and we coined the term supermetric to refer to spaces with
the four-point property as, in terms of metric search, they are significantly more tractable. For
this context, the important result is that the four-point property applies to many commonly-used
distance metrics, including Euclidean, Cosine1, Jensen-Shannon, Triangular and Quadratic Form
distances, all of which can be safely used in conjunction with the mechanisms described here.

One crucial outcome of our work is that in the context of pivot-based techniques the four-
point property allow us to compute upper and lower bounds of the actual distance that are tighter
than those obtained using the triangle inequality.

1for the correct formulation, see [23].
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Figure 1: Example four-point based projection. Two reference objects p1, p2 and two data objects o, q are first isomet-
rically embedded in 3D Euclidean space. The mapped points are indicated with vp1 , vp2 , vo, vq in the graph. By rotating
vq around the edge vp1 vp2 we obtain the points vαq where 0 ≤ α ≤ π is the angle formed with the triangle 4vp1 vp2 vo. A
planar projection is obtained by setting α = 0 or α = π. The euclidean distances `2(v0

q, vo) and `2(vπq , vo) are respectively
a lower bound and an upper bound for the actual distance d(o, q).

2.1.1. The Four-Point Planar Lower Bound
For two points that have not been directly compared, q and o, it is shown in [2] how a lower

bound of their distance can be established by comparing the distances between both points and
two further reference points p1 and p2. In particular, thanks to the four-point property, we know
that there exists an isometric embedding of the points q, o, p1, p2 into a 3-dimensional Euclidean
space. The projected points vq, vo, vp1 , vp2 ∈ R3 form the vertices of a tetrahedron for which we
know the edge lengths of two adjacent faces, i.e. the triangles 4vp1 vp2 vo and 4vp1 vp2 vq with the
common base vp1 vp2 . Because of the four-point property, the unmeasured distance d(q, o) must
form the sixth edge of the tetrahedron.

Since translations, rotations, reflections are isometric transformations, without loss of gener-
ality, we can assume that the triangle 4vp1 vp2 vo lies on the plane {Z = 0}, the points vp1 , vp2 are
plotted on the X-axis (say at positions (0, 0, 0) and (d(p1, p2), 0, 0) respectively), the point vo is
above the X-axis, and the vertex vq is above the plane {Z = 0} (see for example Figure 1). By
knowing the distances d(p1, o) and d(p2, o) we can easily compute the coordinate of the vertex
vo as the intersection of two circumferences in the plane {Z = 0}. However, even if we know
the distance d(p1, q) and d(p2, q) we cannot explicitly compute the coordinates of the vertex vq

because d(q, o) is unknown. In facts, without measuring the actual distance d(q, o) we cannot
determine which is the exact angle formed between the triangle 4vp1 vp2 vq and the semi-plane
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Figure 2: Planar projection of a point o with respect to two pivots p1, p2.

containing the other triangle 4vp1 vp2 vo. Nevertheless, the key observation here is that by rotat-
ing these triangles around the common base until they lie in the same plane (i.e. assuming that
the unknown angle is equal to 0 or π) we can determine upper and lower bounds for the actual
distance d(q, o). In particular, by indicating with v0

q the projection of the point q in the same
semiplane of vp we have that `2(v0

q, vo) is a lower bound of d(q, o). Other choices are possible:
given a fixed angle α we can compute the coordinate of the vertex vαq so that the distances to the
reference points are preserved and the angle formed by the two triangles is α. In that case we
can use the distance `2(vαq , vo) as an approximation of d(q, o) since it is a measure between the
upper and the lower bounds of the actual distance. For example, in [25, 26] the projection based
on α = π/2 is effectively used on different sets of data and search scenarios.

3. Planar Projection and Distribution of Values in the 2D plane

In this work, we use the planar projection based on α = 0, that is we project all the points
in the same 2D plane, since this choice guarantees that the Euclidean distance between two
projected objects is a lower-bound of the actual distance, and thus can be safely used for filtering
purposes. The value of this is that, independently of the size of individual data values and the cost
of the distance metric, any value can be represented, for a fixed choice of reference points, as a
small 2D coordinate, and compared using 2D Euclidean distance. The result of this comparison,
being a lower bound of the true distance, may mean that there is no requirement for the full
comparison to be made. Of course, the value of the method depends heavily upon the probability
of its success.

To visualise this property we use scatter diagrams constructed as follows. The two selected
reference points p1, p2 are plotted on the X-axis according to the distance between them, and
a data set is represented as points in the 2D space plotted above the X-axis, according to their
respective distances from these reference points (for example see Fig. 2). The triangle inequality
property is necessary to guarantee the ability to create such a plot. Specifically, the pivots are
mapped to the points vp1 = (0, 0) and vp2 = (0, d(p1, p2)). Any further data point o is mapped to
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Figure 3: 500 points from a generated Euclidean space plotted against randomly selected reference points. Left and right
plots show the exclusion potential based on simple metric (left) and supermetric (right) properties for the datum s near
the centre of the diagram.

vo = (xo, yo) using simple geometry, i.e.

xo =
d(o, p1)2 − d(o, p2)2

2 · d(p1, p2)
+

d(p1, p2)
2

(1)

yo =

√
d(o, p1)2 − x2

o (2)

Figure 3 shows two versions of such a scatter plot created from a 10 dimensional Euclidean
space, using the same data and reference points. Although the triangle inequality property guar-
antees the ability to create such a plot, the relationship among the plotted points is more subtle.

An example point s is selected from the centre of the diagram, coloured blue. For every other
point plotted in the plane, we then consider whether it might be within a threshold distance t from
this, based only on the distances calculated within the projected 2D plane. Here we have chosen
t = 0.24, representing around one-millionth of the volume of the 10D space.

The diagrams are colour-coded so that those points which may be within that distance, i.e.
those that cannot be excluded from a search, are highlighted, plotted in yellow. The four-point
planar lower bound is illustrated on the right-hand side, clearly represented by a simple exclusion
radius in the 2D plane (Hilbert exclusion [23]). On the left-hand side, only the triangle inequality
property is used, giving much wider bounds (hyperbolic exclusion). Note that in this example,
as the mapped metric space has the four-point property, the right-hand exclusion boundary is a
guarantee. It is quite possible that the same diagram could be drawn using an underlying metric
space which does not have the property, in which case the left-hand exclusion boundary must be
used to guarantee correctness.

To apply these observations towards our goal, we note that if the blue-coloured point repre-
sents a datum, and each of the black points represents an independent query q, then it would be
possible to filter the datum from nearly 70% of these queries based on this particular 2D projec-
tion. The only information required to test for this is the 2D position of the datum within the
projection, and the two distances d(q, p1) and d(q, p2) where p1 and p2 are the reference objects
upon which the projection is based. The next observation is that, if the blue data point was se-
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Figure 4: The same 1,000 points plotted in the 2D plane based on two different projections. The colour-coded points
represent the same values under the different projections. The (X,Y) scatter in both cases is close to an uncorrelated
normal distribution on each axis, but it can be seen that the mapping of an individual point is quite independent. The
red circle represents a typical query threshold around the blue point: this data point cannot be a solution to any query
projected outside this circle.

lected from nearer the periphery of the scatter, the proportion of filtered queries would be higher,
as the density of scattered points is lower.

This observation leads to our outline strategy, as follows. For a set of m reference objects
drawn from a supermetric space (U, d), a set of

(
m
2

)
pivot pairs, and therefore 2D projections,

exist. It is therefore possible to characterise a very large number of projections using a relatively
small number of reference objects. For each element of the finite space S a “good” projection is
determined, i.e. one that gives a relatively good filter ratio from a representative set of queries.
Each datum in S can then be represented only by the identity of these pivots, and its XY coordi-
nates under the projection defined by them. At query time, the m pivot distances are calculated
once per query; then, for each element si of S , it may be possible to avoid the distance calcula-
tion d(q, si) with reference to only these distances and the XY coordinates of si under the chosen
projection.

3.1. Choice of reference objects
It appears that the distribution of objects in the 2D plane with respect to a given pair of

reference points is fairly predictable. However, where individual data points land within the
scatter varies widely.

Figures 4 and 5 show diagrams to illustrate this. In each figure, a single set of data objects is
plotted in the XY plane according to their distances from two randomly-selected reference points;
the left and right sides of each figure represent the same data plotted against a different pair of
reference points. The data is taken respectively from a generated 10-dimensional Euclidean data
set, and the SISAP colors2 benchmark set.

In the two figures, a random selection of five data points has been made and these are high-
lighted in colour; that is, the coloured spots in the left and right sides of the figure represent the
same data point mapped according to the different pair of reference points. It can be seen there

2see Section 5
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Figure 5: 1000 elements from the colors data set are projected onto a 2D plane using different pairs of reference points.
The different coloured spots in each diagram show how the same data elements are projected differently with a different
choice of reference objects. The red ring depicts a near-neighbour threshold distance around the blue point: the right-
hand projection is much better for this element as 99.8% of the set is projected outside this boundary, and can therefore
allow filtering, as opposed to 85.2% in the left-hand projection.

is no strong relationship in the positions where the different coloured dots are plotted. This is to
be expected, as much of the spatial relationship present in the higher dimensions is necessarily
lost when projecting into only two dimensions.

An underlying hypothesis in our work is that the distribution of queries within a metric space
(U, d) will be similar to the distribution of a representative selection taken from the finite space
(S , d) to be queried. Thus, looking at the scatter diagrams in Figures 4 and 5, the plotted points
could represent the distribution of either data or queries with respect to those same reference
points. The probability of successful elimination, for a given q ∈ U and si ∈ S , therefore
depends upon the choice of reference points, and the relative position of both si and q with
respect to them. If the hypothesis is correct, then the notion of a “good” pair of reference points
for an individual si ∈ S corresponds to the (inverse) density of the 2D region where si lands,
within a representative set. The density around a point can be measured precisely with the local
intrinsic dimension [27] or the reverse K-nearest neighbors [28]. Both heuristics are costly and
have additional parameters, a simpler method used here is to count the number of datum inside a
ball around the sample being tested. If query and datum lie further than the query threshold within
the 2D plot, then the datum cannot be a solution to the query; this is most likely to occur when
either query or datum lie within a sparsely populated region of the plane. However of course
only the datum is available for pre-processing. If queries and data follow the same distribution
patterns, then the best pair of reference points per datum can be selected with reference to a
representative set of data points from within S .

In Figures 4 and 5, the reference point pair used for the right-hand side of each figure has
been selected to maximise the “goodness” of the scatter with respect to one of the plotted objects,
coloured in blue. If the other objects plotted in each case are regarded as representative queries,
then it can be seen that the filtering power of the reference points used for the right-hand diagrams
in each case is far greater than that of those used for the left-hand diagram, and these reference
objects are therefore a good choice for this particular datum. To show the concept is quite general,
Figure 6 shows the same data as Figure 4, with further choices of reference object pairs chosen
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Figure 6: In these diagrams, two further projections are made over the same data as that of Figure 4. Here the reference
objects used to construct the projection are chosen to minimise the local density of the projection around the red and
green highlighted points respectively.

to give good scatters for two of the other coloured objects.
To construct these figures3, a random selection of 150 reference points was made, and each of

the 11,175 (i.e.
(

150
2

)
) possible pairs was tested; the selection was made according to the density

of 2D mapping around the area of the object in question. This technique gives unquestionably
good results, but is of course very expensive as the selection must be made independently for
each element of the set S which will be queried. The question of how to make a good pragmatic
choice of reference objects per datum is discussed later in more detail.

One early observation however is that existing reference object selection strategies (e.g. [29,
30]) are not effective in this context. Such strategies aim to find a set of reference objects that give
good overall separation for all queries with respect to a large set of data, while in our mechanism
we aim to find a good pair of reference objects per datum. By considering the above figures,
it can already be seen that the criteria for these purposes are quite different. In Figure 4 for
example, the pair of reference objects which give the best separation for the datum are very close
together, and give a much worse separation for most of the other objects in the rest of the data
set.

4. Local Embedding and Search Strategies

By exploiting the planar projection and the four-point planar lower bound, we propose a
mechanism with the following properties:

• at pre-processing time:

– for a metric space (U, d) and a finite search space S ⊂ U, we first select a distin-
guished set of m reference points P ⊂ U. The value of m is chosen according to
properties of the space, as discussed in Section 5.

3MatLab code is at https://bitbucket.org/richardconnor/low_dim_embedings_is
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– for each of the
(

m
2

)
pairs of points p j, pk ∈ P, the distance d(p j, pk) is calculated and

stored in a lookup table

– for each si ∈ S , we select a specific pair of points < pi1 , pi2 >, where pi1 , pi2 ∈ P, to
act as reference points specifically for that value si – various different strategies can
be used for making this choice, as discussed later

– a 2D Euclidean projection is performed, where the object pi1 is mapped to the Carte-
sian point (0, 0), pi2 is mapped to (d(pi1 , pi2 ), 0) and si is mapped to the unique point
(xsi , ysi ), ysi ≥ 0 which preserves the distances d(si, pi1 ) and d(si, pi2 ) – note that
the coordinates xsi and ysi can be easily computed using Equations (1) and (2) with
o = si, p1 = pi1 , and p2 = pi2

– the representation of the value si, which we refer to asσ(si), is the tuple< i1, i2, xsi , ysi >.

• at query time

– for a given query q, each distance d(q, p j), p j ∈ P is calculated

– for each given value si which is a potential solution:

∗ the tuple σ(si) is retrieved
∗ from the i1, i2 values of the tuple, the distances d(q, pi1 ) and d(q, pi2 ) are retrieved
∗ in conjunction with the retrieved distance d(pi1 , pi2 ), the 2D projection (xq,i, yq,i)

is calculated using Equations (1) and (2) with pi1 , pi2 as pivots and o = q
∗ the Euclidean distance `2((xq,i, yq,i), (xsi , ysi )) is then a lower bound for d(q, si),

which may therefore allow si to be removed from any further consideration dur-
ing evaluation of the query.

Note that the main cost of the mechanism at query time is the calculation of distances to
the elements of P, which is not only relatively small but, important to note, amortised over the
checking of any si ∈ S with respect to a single query q. The size of σ(si) is four numeric
values, and independent of the size of the data. The cost of the lower-bound calculation is purely
algebraic, and inconsequential compared to the typical cost of a distance calculation in a complex
space.

To quantify this as far as possible, it can be noted that the cost of the filtering operation,
for a given datum s and query q, is essentially the cost of assessing whether a tetrahedron can
be formed from six given distances, all of which are known before the filtering calculation oc-
curs. d(p1, p2) is stored in a table; d(p1, s) and d(p2, s) are stored within the representation of s;
d(p1, q) and d(p2, q) are evaluated once at the start of the query process, and t (the filter thresh-
old) is pre-determined. Using distance geometry, this could be determined by evaluation of the
Cayley-Menger determinant using these six distances, which will give a real (i.e. non-complex)
outcome if and only if it is possible to form a tetrahedron. We have measured4 the cost of this
as a little under 0.9µs. We optimise this by storing the (X,Y) coordinates projected for s and
calculating the 2D Euclidean distance to those projected for the query, using optimised versions
of Equations 1 and 2, which brings the cost down to around 0.3µs. Note that this cost is inde-
pendent of either the size of the original data, or the cost of the original metric. To put this in
context, the cost of evaluating Euclidean distance over a 4,096-dimension fc6 layer is around

4Times are measured on 3.1GHz Intel i7 quadcore processor, but will vary with context.
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50µs, without allowing for memory transfers, making the filtering worthwhile even if only 1%
of these calculations are saved.

The mechanism is purely filtering: for any query q, datum si, and distance t, it may be
possible to demonstrate that d(q, si) > t. However that is the extent of its value; the lower-bound
values produced do not comprise a proper metric in their own right, and at the moment we do not
foresee the construction of a scalable search over these values. The value of the mechanism is
that the space requirement is tiny, independent of the size of the original data, and that the cost of
the filtering operation is small. In some contexts, especially with large and/or high dimensional
data, it may be that the best possible query strategy is to first perform a filter over the whole data
set, and then re-check any unfiltered data against the metric space. However the mechanism is
more flexible than this, and may be used in any of the following ways:

exact pre-filter For a given query and threshold distance, the data representations of the full set
can be scanned and any data discovered to be beyond the threshold can be filtered out. The
residual cost of an exact search is then largely dictated by the cost of performing distance
calculations to those unfiltered objects in the original metric space. This strategy is tested
in Section 5.1.

approximate pre-filter A class of approximate searches may be defined by tightening the re-
striction given by the calculated lower bound. If the filtering operation is defined as
`2((xsi , ysi ), (xq,i, yq,i)) ≤ γ t, for some γ < 1, then clearly less unfiltered values will be
returned which will improve the cost of the search. However the geometric guarantee is
no longer in place, and so some correct results may be lost. For this mechanism to be
effective, we have to understand the probabilistic ratio between the calculated lower bound
and the actual small distances within the space. This strategy is tested in Section 5.2.

ranked order nearest-neighbour queries Scanning the entire data, ordering by individual lower-
bound values, will produce an ordering in the database w.r.t. the distance to the query. This
ordering does not necessarily coincide with the ordering in the original metric space, espe-
cially as the values are drawn from many different projected spaces. However if the orders
are close enough, then taking the first k′, computing the exact distances and keeping just
the k < k′ closest, will give us a good approximation of the k-NN. For this mechanism to
be effective, we require to understand the type of order induced by the lower bounds. This
strategy is tested in Section 5.3.

exact post-filter Finally, the lower-bound filter can be incorporated within another, scalable,
mechanism as a post-filtering mechanism. Scalable indexing mechanisms work by ex-
cluding whole subsets of the data from a search, until at some point original distances
require to be checked. In any such mechanism, a significant number of distance calcula-
tions will have been made before this phase of the search, for example to distinguished
reference objects at each node during the navigation of a tree structure. These objects are
known at pre-processing time, and therefore may be re-used as a distinguished set of refer-
ence points for the filtering mechanism. The small σ representations can be stored within
an indexing data structure with little extra cost. Then, whenever the calculation d(q, si) is
required at query time, the filtering operation may be cheaply performed first, in case the
actual distance calculation may be avoided. This strategy is tested in Section 5.5.
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4.1. Selection of Best Reference Pair

It is possible to use a statistical technique to select a good reference point pair per individual
datum. A sample set of data is used, the witness set.

For a query over a finite metric space (S , d), first a set of m objects is taken from S and
used to form a set P comprising numbered reference points pi. For a given set of m reference
objects, each of the

(
m
2

)
pairs pi, p j is considered. For each, a 2D Euclidean space is built, exactly

corresponding to those depicted in the earlier figures. Each space is built using the data from the
witness set, according to the distances of each element to the pair of reference objects. These
spaces may be efficiently searched using normal metric indexing techniques, and as the space is
a genuine 2D space very efficient mechanisms such as the KD-Tree [31] can be used.

Each element of the data set is now considered as a query against each of these
(

m
2

)
metric

indexes, and the one with the least local density is selected to represent that element. There are
various mechanisms for assessing local density, for example the smallest number of results for
a threshold query, or the largest distance in the result set of a kNN query. We tested various
ways over some different data sets and found relatively little difference in the cost or outcome,
and settled on the strategy of picking the pivot pair which gave the largest distance to the third-
nearest 2D point.

While this mechanism is effective, it is of course extremely expensive, with a quadratic cost
according to the number of reference points. In general, for high-dimensional queries, a relatively
large number of reference points will be required. We discuss linear geometric approximations
in Section 5.4.

4.2. Build Cost

The dominant cost is in searching the 2D pair space at build time; the tables show results
up to 150 reference points which of course also requires 150 distance calculations per datum.
However these distance calculations are likely to be amortised within another search mechanism
as shown in Section 5.5.

The cost of searching the pair space however increases quadratically with the number of
reference points, making it infeasible for larger numbers. This cost is almost independent of the
cost of distance calculations or size of data in the metric space: the cost of searching

(
m
2

)
2D

spaces becoming quickly predominant as m increases. The cost is perfectly quadratic, in our
experiments we have measured the cost C(m) = 0.007m2 milliseconds for m pivots; even with
only 150 reference points this is approaching 0.2s per datum.

This leaves an interesting problem. The number of reference points does not typically consti-
tute a performance problem in terms of distance calculations; the large cost is in the exhaustive
search for the best pair of reference points. The reason the cost is high is because there are a huge
number of potential pairs, which is the reason the mechanisms works so well. We have shown
tremendous potential when the best pair of points is calculated from the very large number of
pairs available. If we can find a way of finding these cheaply, ideally in a manner that scales
linearly rather than quadratically with the number of reference points, the mechanism should
become even more useful.

In the context of searching a very large, high-dimensional, data set, then thousands of extra
distance calculations are unlikely to be significant, but this would result in a huge potential space
of reference point pairs that is intractable to search; thus we seek linear-scaling solutions using
geometric analysis instead. For once, it is not reasonable to assume an arbitrary amount of pre-
processing time is acceptable in order to achieve a small improvement in query time.
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Table 2: Data set summary.

name dimensions metric
nasa 20 Euclidean
colors 112 Euclidean
euc10 10 Euclidean
euc20 20 Euclidean
sift 128 Euclidean
gist 480 Jensen-Shannon

5. Experimental Evaluation

To evaluate the potential of the proposed mechanism, experimental evaluation is performed
on the following metric spaces:

nasa, colors The SISAP nasa and colors [5] are two benchmarks for metric indexing and
searching approaches. The nasa set contains 40,150 real vectors of dimension 20, each
obtained from images downloaded from the NASA photo and video archive site. The col-
ors set contains 112,682 feature vectors of dimension 112. Each vector is a color histogram
of a medical image. These data are compared with the Euclidean metric.

euc10, euc20 These are uniform spaces, generated with a Gaussian distribution across 10 and
20 dimensions respectively. They are compared with the Euclidean metric. Their size is
arbitrary, being generated according to experimental need.

sift We use the ANN SIFT1M5 data set that contains one million SIFT [32] image descriptors.
Each descriptor comprises 128 floating point values. These descriptors are `2-normalised
vectors and are normally compared using the Euclidean distance. For this space we have a
pre-generated ground truth for 1,000 queries, for each of which the 100 nearest neighbours
have been calculated.

gist This data is generated from a set of one million images (the MirFlickr collection, [33]). 480-
dimensional GIST descriptors have been previously extracted and are publicly available6.
Previous work [34] has shown that the best metric for searching this data is the Jensen-
Shannon distance, whose cost over this data is around 25 times that of Euclidean distance.
For this space we also have the 100NN ground truth for 1,000 selected queries.

Table 2 gives a summary of the data sets used in the experiments.
As the data sets are diverse, a uniform setup was applied to each to ensure that results are

comparable. For each set, randomly selected non-intersecting subsets were extracted from which
data, queries, and reference points are extracted for each experiment. As most of the experiments
described do not require to show scalability, a data size of only 10,000 values was selected,

5http://corpus-texmex.irisa.fr
6http://press.liacs.nl/mirflickr
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Table 3: The proportion of non-filtered data for each of the experimental spaces, using different-sized pools of reference
objects. The pair used for each datum is selected from all the available pairs, that is

(
m
2

)
for m reference objects.

m
(

m
2

)
nasa colors euc10 euc20 sift gist

2 1 0.133 0.269 0.477 0.957 0.617 0.963
5 10 0.100 0.164 0.328 0.894 0.512 0.942
10 45 0.075 0.094 0.213 0.811 0.511 0.897
25 300 0.039 0.059 0.095 0.659 0.462 0.877
50 1225 0.027 0.043 0.05 0.531 0.416 0.834
75 2775 0.020 0.036 0.037 0.461 0.397 0.829

100 4950 0.017 0.032 0.03 0.419 0.376 0.818
VPT for comparison 0.098 0.127 0.314 0.982 0.498 0.964

against which 1,000 queries are evaluated in each experiment. For the experiments in Section
5.3 the SIFT and GIST spaces are also used with one million objects.

A nearest-neighbour ground truth is also calculated. For each query, the closest values from
the data are calculated and stored. When queries are performed during experiments, the nearest-
neighbour distance is used to conduct a fixed threshold search over the data, therefore returning
a single result per query. This technique is preferable to using a search threshold which is fixed
for all queries, as there is considerable variation among the local densities of the queries, and this
approach would therefore give widely varying numbers of results per query.

All experiments are executed using 64-bit Java v8, executed single-threaded on an Apple
MacBook Pro with a 3.1 GHz Intel Core i7 processor and 16GB of memory, disconnected
from the network when appropriate. The source code is available at https://bitbucket.
org/richardconnor/low_dim_embedings_is or from the authors.

5.1. Exact Pre-Filtered Queries

Our first experiments show the effect of using different numbers of reference points, from
which the “best” pair (as described in Section 4.1) is chosen from each of the

(
m
2

)
combinations

that are available for a selection of m reference points. Table 3 shows, for each data set, the
proportion of the data which requires to be accessed (this is, which is not pre-filtered) after
executing the filtering mechanism. Each row shows this value when the reference points are
selected from different sized sets. Notice that the value m is the number of available reference
objects; the number of available pairs is of course generally much greater.

The same queries were executed using a balanced Vantage Point Tree (VPT, [35]), to give
a comparison with a common indexing approach. While in all cases the VPT accesses more
data with even a small number of reference points, this is not a fair comparison in terms of
overall efficiency, as in cases where the VPT accesses a relatively small proportion of the data,
the scalability of the indexing will dominate for larger data collections. However for the spaces
on the right hand side of the table, the proportion of access is too high for such mechanisms to
work, and a sequential scan becomes faster than indexing. In these cases, our mechanism should
give the advantage.
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Figure 7: The left-hand graph shows the proportion of non-filtered data varying the number of available reference pairs.
The right-hand graph shows the build cost varying the number of reference points.

Figure 7 shows the same data in a line graph. The plot is made against the number of pairs
available, rather than the number of reference points. It can be seen that, as the number of
potential reference pairs becomes greater, the mechanisms becomes more effective. However
this seems to asymptotically approach a limit depending on characteristics of the space itself.

Figure 7 also shows the build cost, which as previously mentioned is quadratic with respect to
the size of the data and does require to be taken into account; even with these small data sets (10k
elements) the cost of evaluating the best pairs from 100 reference objects is around 15 minutes.
These measurements are taken from the colors data set, however the cost is almost completely
independent of the data size and metric cost. In Section 5.4 we examine ways of reducing this
when a smaller cost is pragmatically required.

Considering the two sides of Figure 7, it is clear that the choice of m depends on the context
of use. In general, a high value for m leads to a much higher pre-processing cost, while at some
point does not detract much from the query cost. The choice therefore will depend very much on
the relative importance of these two costs, as well as the characteristics of the space itself.

It is worth noting that cost of the pre-filter mechanism itself is effectively constant: the dif-
ference between 2 and 100 initial distance measurements is almost immaterial in any of these
searches. As noted above, the core query-time mechanism takes only around 0.3 microseconds
per datum, and so the majority of the cost of a sequential search is directly proportional to the
number of distance calculations required within the original space.

5.2. Approximation by Reduced Lower Bound

The lower bound described up to this point gives a mathematically safe way of excluding
data elements from a search. As has been seen, in some cases it is extremely effective and allows
a very large proportion of the data to be filtered, but in other cases it is less effective; as always,
in the spaces with higher dimensionality.

While this is the tightest lower bound justified by the analysis presented so far, there is
experimental evidence that in pragmatic terms the bound is sometimes larger than necessary.
Figure 8 shows one such piece of evidence.

The figure shows the 2D projection of objects taken from the SIFT metric space. An arbitrar-
ily selected reference pair are plotted along the X axis, and a query with a known ground truth
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Figure 8: 2D projection of objects taken from the SIFT metric space with respect to two randomly selected pivots.
The pivots are plotted in the X axis. A query point (blue square in the graph) is plotted in the plane. The 100 nearest
neighbours to the query from within a set of one million object are coloured in red. A further 100 randomly selected
objects from the set are coloured in black.

is plotted in the plane at the centre of the circles (blue square in the graph). The ground truth
gives the 100 nearest neighbours from within a set of one million objects. The 2D projections
of the 100 nearest neighbours are coloured in red in the graph. Another set of 100 randomly
selected objects from the SIFT metric space are projected in the same plane and are coloured in
black. Around the query two circles are drawn. The larger circle has a radius t1 corresponding
to the actual distance from the query to its one-hundredth nearest neighbour (i.e. the distance
calculated in the original SIFT metric space). The smaller circle has a radius t2 corresponding
to the maximum Euclidean distance between the planar projection of the query and the planar
projections of its 100 nearest neighbours (i.e. the largest lower-bound calculation from all 100
of the near-neighbour objects).

The different spread of the two sets of objects is very clear; the near-neighbours are tightly
clustered towards the centre, while the others are spread much more widely. Using the exact
pre-filtering mechanism, none of these objects could be safely filtered as they all lie within the
outer circle, which represents the geometric guarantee given by the four-point lower bound. In
other words, the Euclidean distance between the 2D projected points is a lower-bound of the
actual distance and thus, in theory, it can be exploited to filter the search results (points in the
2D plane with distance to the query greater than the t1 can be filtered out). However, in the
example shown in Figure 8, none of the considered points can be excluded from the search using
this lower-bound because their planar projections are within distance t1 to the planar projection
of the query. However it is clear that, for this pair of reference objects and query at least, a
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Table 4: Results for approximate pre-filtering. For each data set and factor γ we measured the proportion of not-filtered
data (access) and the proportion of correct objects which are correctly returned (recall).

colors nasa euc10 euc20 sift gist
γ access recall access recall access recall access recall access recall access recall
1 0.032 1 0.017 1 0.03 1 0.419 1 0.376 1 0.818 1

0.9 0.023 1 0.012 0.99 0.02 1 0.307 1 0.319 1 0.741 1
0.8 0.016 0.98 0.008 0.95 0.014 0.96 0.206 1 0.26 1 0.638 1
0.7 0.011 0.91 0.005 0.89 0.009 0.87 0.127 0.99 0.2 1 0.51 1
0.6 0.007 0.79 0.003 0.74 0.005 0.74 0.07 0.93 0.141 1 0.366 1
0.5 0.004 0.63 0.002 0.61 0.003 0.57 0.035 0.8 0.087 0.99 0.225 0.99
0.4 0.002 0.45 0.001 0.43 0.002 0.39 0.015 0.58 0.045 0.95 0.113 0.89
0.3 0.001 0.26 0.001 0.28 0.001 0.25 0.006 0.33 0.018 0.77 0.043 0.63
0.2 0 0.11 0 0.13 0 0.11 0.002 0.14 0.005 0.47 0.011 0.29
0.1 0 0.03 0 0.03 0 0.03 0 0.03 0.001 0.13 0.002 0.06

much smaller pragmatic bound could be used which would allow useful filtering but without
erroneously filtering any correct results (e.g, using a threshold distance equal to t2 instead of t1
when searching in the 2D plane).

Having made this observation, the next experiment shows the effect of reducing the effective
lower-bound radius. Specifically, an object si is filtered out if `2((xsi , ysi ), (xq,i, yq,i)) > γ t1, for
some factor γ < 1. For each data set, decreasing values of the lower bound threshold are selected
as the filter radius. Specifically, we tested decreasing the factor γ, between 1.0 and 0.1 in intervals
of 0.1. Two outcomes are measured: the proportion of the whose data set which is not filtered (i.e.
accessed data), and the proportion of correct object, out of the 100 known nearest neighbours,
which are correctly returned (i.e. the recall). Results are reported in Table 4.

The results show that the observed effect exists in the general case, and furthermore is more
pronounced in the higher dimensional spaces. In particular GIST, which is the least tractable
space, allows a value almost as low as half the deduced lower bound to be used whilst still
achieving full recall. The interesting observation here is that, for the first time, we see some
significant reduction in cost, saving 75% of the distance calculations which would be required
for an exhaustive scan of the data. The results for SIFT also show the same reduction is possible,
in this case allowing all the correct results to be returned for a cost saving of over 90%. Of course
the drawback is that this mechanism does not guarantee to give all correct results for any value
of γ < 1.0 and thus the results are essentially approximate, albeit with a seemingly very high
probability of success.

5.3. Ranked Order Nearest-Neighbour Queries

The observations of the previous section also give rise to a further hypothesis, which is that
a correlation may exist between the lower-bound filter distance and the true distance from the
original metric space. Once again there is no geometric guarantee of this, but it may happen if
objects that are closer in the metric space fall closer to the centre of the circle in the 2D projection.
In fact there is less geometric justification that we know of for this situation: when reducing the
effective lower bound as in Section 5.2 all of the objects with which we are dealing have been
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Figure 9: Ranked order results for SIFT and GIST collections of 1M data objects. For each of 1,000 queries, the four-
point lower bound is used as a filter to find a fixed-size set of promising candidates, which are then checked within the
original space. The X-axis gives the percentage of the 1M data which is accessed, the Y-axis shows a boxplot of the
percentage recall, for a 100 nearest-neighbour ground truth, across all queries.

projected from one metric space to another. We now propose to compare the distances between
objects that have been projected into different spaces.

The strategy is to perform an approximate k-nearest neighbour search as follows. For a query
q, a scan is made over the full data and the four-point lower-bound is calculated for each d(q, si).
For some k′ > k, the k′ objects with the smallest lower-bound values are returned. These k′

objects are then checked against the query in the original metric space, and the k closest objects
from these are returned. As a scan of the very small data representations may be made at rela-
tively low cost, this will give a viable mechanism for an approximate k-nearest neighbour query
if there is a good correlation between the lower-bound distances, independent of the projected
space, and the true distances.

To test this hypothesis, the SIFT and GIST spaces were used. To perform a useful exper-
iment a larger data set is required, in order to accommodate a significant number of useful
nearest-neighbour objects for each query. For each of these data collections one million ob-
jects is available, along with a ground truth of 1,000 queries. For each query, the ground truth
makes available the 100 nearest neighbours within the collection.

Figure 9 shows the outcome for these 1,000 queries over the SIFT and GIST data sets. For
each query, for values of k′ between 10,000 and 100,000, the k′ smallest lower-bound values are
returned from an initial scan of the data representations. These object identifiers returned repre-
sent respectively between 1% and 10% of the data which requires to be accessed to determine
the 100 smallest true distances. For each object identifier returned, a check is made to determine
if it was in the 100 nearest neighbours for that query as given by the ground truth. The number
that are in the 100NN is then treated as a percentage of the correct recall. Individual results were
kept for each of the 1,000 queries to allow the distribution of outcomes to be determined. These
are displayed in Figure 9 as a series of box plots, showing the recall when between 1% to 10%
of the lower-bound calculations are retained.

As can seem from the Figure, for SIFT it is the case that with only 10% of the distance
calculations being made, the mechanism gives a mean recall of 0.99, with the lower quartile at
0.97. At the other end of the scale, if the situation demands that only 2% of the distances can be
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afforded, then this still yields a median of 0.72 and a lower quartile at 0.63 recall.
Results for GIST are not quite so good, but this is not surprising given the previous results

over this high-dimensional set. Once again it is possible to obtain 90% of the correct results
while performing only 10% of the distance calculations required for an exhaustive search.

One final point in this section is that, while the results in terms of percentage access vs. recall
are similar in outline to those shown in the previous experiment (Section 5.2), the mechanism de-
scribed here has the significant advantage that the search performed in a pure nearest-neighbour
search, while for the previous results a query threshold is required to be known before the start
of the query.

5.4. A Geometric Approach to Reference Pair Selection

A number of intuitively-derived methods for the selection of first and second reference points
were tested. In all cases, sets of 10, 50, 150 and 500 objects were chosen to act as reference
points, and these were scanned linearly in two passes according to the following strategies. The
intent is to find a strategy that gradually improves with respect to the number of reference points,
but where the construction cost remains linear.

The strategies used for each of two linear-cost scans were as follows:

1. random, to act as a benchmark

2. for each data point, associate the closest reference point

3. for each data point, associate the farthest reference point

4. for each of the m reference points, associate it with the 1
m closest subset of the data (and

do not consider these data points again)

5. for each of the m reference points, associate it with the 1
m farthest subset of the data (and

do not consider these data points again)

6. having selected a first reference point, choose the second to minimise the altitude (Y-
coordinate) of the plotted 2D apex point

7. having selected a first reference point, choose the second to minimise the horizontal dis-
placement (X-coordinate) of the plotted 2D apex point

The first five strategies were tried for each of first and second reference point choice, whereas
the last two were used only for the choice of the second point; thus a total of 35 different strategies
were tested.

Methods (2) and (3) in any combination proved no better than random, and actually be-
came slightly worse with a larger number of reference points; we believe this is because of
non-uniformity within the sets and the presence of outliers in the reference points. This problem
was fixed by use of methods (4) and (5), where the closest or farthest 1

m of the data is associated
with each reference point.

Table 5 shows a few of the results. The first row shows a purely random choice for com-
parison. The second shows method (4) used for the first pivot, and method (6) for the second.
Finally the third row shows the use of method (4) for the first pivot and method (5) for the second,
which gives the best compromise for these data sets and thresholds. The final effect of achieving
97% exclusion – as much as is achieved by a very sophisticated indexing structure over the full
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Table 5: Results shown only for the lowest standard threshold of the colors data set (i.e. t = 0.052 which return 0.01%
of the data), other results are consistent. We give the build cost (msec per object) and exclusion rate for some of the
strategies tested.

Pivot strategy Number of Pivots
First Second 10 50 150 500

random random build cost 0.0008 0.0008 0.0010 0.0016
exclusion 0.929 0.925 0.926 0.924

low dist low alt build cost 0.014 0.022 0.045 0.124
exclusion 0.930 0.958 0.967 0.966

low dist high dist build cost 0.023 0.030 0.045 0.089
exclusion 0.946 0.962 0.971 0.973

data set – through a linear cost construction of a 10-byte data representation is really a significant
achievement. Note that in the cost comparisons, the “random” benchmark cost is effectively zero;
at 500 pivots the cost of either mechanisms is restricted to around 0.1ms per datum independent
of the size of the data set, when the thorough search described in Section 4.1 would have cost
1.75s.

5.5. Incorporation within List of Clusters

Finally, we report results where our mechanism is incorporated with another, scalable, in-
dexing mechanism. We have chosen a well-known indexing structure, and give a very simple
technique which extends this using the four-point exclusion mechanism as a post-filter. That is,
the mechanism is embedded within the original structure to act as an internal filter, avoiding the
calculation of original-space distances where the lower-bound calculation makes this unneces-
sary.

For this purpose we choose the List of Clusters [36], generally regarded as the most scal-
able mechanism known. We have measured this, with and without our optimisation, over the
SISAP benchmark data sets colors and nasa, to perform theshold search using the three standard
benchmark thresholds7; we show a very significant improvement in performance.

As the list of clusters is built, at each node a pivot point is selected and a fixed number of
objects, those being closest to this pivot point, are stored in an associated “bucket”. Especially
towards the start of this process, the cover radius of these objects from the pivot point is likely to
be very small, therefore maximising the probability of the bucket being excluded from a search.
When each cluster is constructed, the distances between every object in that cluster, and every
pivot point from the root to that point in the list, will have been to be calculated as a part of the
construction algorithm.

To this structure, we add only our small representations of the objects within each bucket,
and cause no extra distance calculations at either build or query time. The local pivot point is

7threshold values which return 0.01%, 0.1% and 1% of the data sets respectively. For the SISAP colors, the thresh-
olds are t0.01% = 0.052, t0.1% = 0.083, t1% = 0.131. For the SISAP nasa, the thresholds are t0.01% = 0.12, t0.1% =

0.285, t1% = 0.53.
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Table 6: Improvement shown on List of Clusters using four-point post-filtering. Values given are mean number of
distance calculations per query.

standard optimised
threshold t0.01% t0.1% t1% t0.01% t0.1% t1%

SISAP colors 5645 11649 24401 2256 3987 10402
SISAP nasa 1381 3258 8790 1007 1402 3384

Figure 10: SISAP benchmark space results with and without optimisation

used as the first reference point, and the furthest pivot from the so-far constructed spine of the
tree as the second. This gives an approximation to the geometric technique (low dist, high dist)
described in Section 5.4, and the only extra construction-time cost is the calculation of the 2D
coordinate from these distances; in experiments, this was literally undetectable. The extra space
cost is 10 bytes per object, for the colors data set representing an increase of around 1%.

At query time, the mechanism is used in the normal way based on the measured distance
between the query and each pivot point down the spine of the list. In cases where the local
“cluster” requires to be searched, then the four-point representations are first checked. The four-
point representation of the query requires only the calculation of the 2D representative point, as
all of the distances required have already been measured as the query algorithm progresses down
the spine of the list. The lower-bound computation then comprises a 2-dimensional `2 distance.
If the lower-bound distance is greater than the query threshold, there is no requirement to access
the corresponding object and check its true distance against the query object. This saves not only
an expensive distance calculation, but also the movement of the object within memory.

Table 6 shows the number of distance calculations made against the original data sets, along
with the percentage improvement shown; the same values are plotted in Figure 10. It can be seen
in almost all cases that the query cost is better than halved, in return for only a small increase in
memory size.
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6. Conclusions

We presented a method to obtain good distance bounds between a query and all the database
elements using a minimally-sized representation comprising only two reference object identi-
fiers, and two floating point values, per database object. The two floating point values are the
coordinates in a two-dimensional Euclidean space where a lower-bound for the actual distance
to a query can be efficiently computed. The combination of the very large space of object pairs
available from a relatively small set of reference objects, and the observation that each pair gives
a significantly different projection of the space, combines to allow a very high rate of successful
exclusion for a typical range search, with exclusion rates of 99.6% and 99.9% obtained respec-
tively for the SISAP benchmark colors and nasa data sets, with only 150 reference objects being
used. For a data size of around 10 bytes per object and a cheap arithmetic check these results are
impressive.

We also applied our mechanism in much higher dimensional spaces in conjunction with either
range or nearest-neighbour search. Our results are promising, for example on SIFT data our
mechanism gives a mean recall of 0.99 with only 10% of the distance calculations being made.

The mechanism we describe is well-suited to a CUDA implementation which should give an
effective small constant runtime on a GPU. The memory footprint required for the data set is ten
bytes per object: two short integers to identify the reference objects8, and two single-precision
floats for the XY coordinates. This gives a runtime memory requirement of only 10 MBytes per
million objects in the data set.

This memory represents the data to be queried and is thus invariant per query, therefore the
cost of loading this memory from the CPU host to the GPU device is not a part of the per-query
cost. Modern CUDA standards have the capability to influence persistence of data in the L2
cache, where this data could be placed to give higher bandwidth and lower latency. To perform
a query, data passed from host to device is just the distances between the query and each of
the reference objects; in our example we used a maximum of 100 of these, implying a per-
query transfer of less than 0.5 KBytes before the parallel computation starts. The result, in the
simplest possible implementation, is an array of bits, one per data object, where a bit would be
set if the corresponding object is a potential solution; this represents 125 KBytes per million
objects. Typical modern GPU processors give latency of around some ten of microseconds, with
bandwidth around 1GB per second. The actual cost of the SIMD computation is a relatively
small number of 2D Euclidean distance calculations per processor, where this number is the size
of the data divided by the number of available processors.

In summary, since it is theoretically impossible to avoid a sequential scan for nearest neigh-
bour search, even in the approximate sense, a cheap exclusion mechanism that is easily parallelis-
able is competitive. We remark that this mechanism can be used in conjunction with probabilistic
methods requiring post-filtering or re-ranking, like metric inverted files. We have given one suc-
cessful example of this: for an almost immeasurably small increase in build cost and memory, the
performance of the List of Clusters indexing structure has been shown to be radically improved.
It is likely that many similar examples exist.

8assuming no more than 256 reference objects are used
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