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Abstract In this contributionwe show that fractional diffusion emerges from a simple
Markovian Gaussian random walk when the medium displays a power-law hetero-
geneity. Within the framework of the continuos time random walk, the heterogeneity
of the medium is represented by the selection, at any jump, of a different time-scale
for an exponential survival probability. The resulting process is a non-Markovian
non-Gaussian random walk. In particular, for a power-law distribution of the time-
scales, the resulting random walk corresponds to a time-fractional diffusion process.
We relates the power-law of the medium heterogeneity to the fractional order of the
diffusion. This relation provides an interpretation and an estimation of the fractional
order of derivation in terms of environment heterogeneity. The results are supported
by simulations.

Key words: Continuos time random walk, medium heterogeneity, anomalous dif-
fusion, time-fractional diffusion.

1 Introduction and Motivation

Fractional diffusion is characterized by non-Gaussian statistics and nonlinear scaling
in time of themean-squared displacement [28, 20, 22, 21].Many different approaches
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have been implemented and extensively analyzed to reproduce this type of diffusion,
see, e.g., [10, 9, 2]. In particular, we recall the continuous time randomwalk (CTRW)
[11], where a power-law tailed distribution of the waiting times can be introduced
to generate fractional diffusion processes. This model was introduced to describe
dispersive transport of chargers in amorphous semiconductors [25]. In general, the
CTRW approach can be used to model diffusion in disordered media, which are
characterized by a complex trapping mechanism. Indeed, the main ingredient of
CTRW models is a power-law tailed distribution for the waiting times. A direct
connection between the CTRW and fractional diffusion is provided by a waiting
time probability stated accordingly to the Mittag–Leffler function (ML) [7], which
displays power-law tails.

Systems coming from very different fields have been studied within this frame-
work, from geophysics to biology [17], included neurosciences where the idea of a
distribution of sojourn times has been developed to describe anomalous ions diffu-
sion in spiny dendrites [16, 26].

From a physical point of view, each waiting time can be related to a different
probability of escaping from a trap. In this contribution, we show explicitly how
complex escaping probabilities that generate fractional diffusion emerge from the
combination of space heterogeneity andMarkovian exponential escaping probability.
The main mathematical hint behind this work is the interpretation of the ML as a
weighted superposition of exponential functions [19]. In particular, we can map
different trap depths into different time-scales of the exponential probability. In this
way, if classical diffusion is characterised by a homogeneous landscape of traps,
i.e., a constant value for the time-scale, anomalous diffusion emerges when a strong
heterogeneity appears in the trap landscape, that is when a population of time-scales
is introduced.

This interpretation is advantageous and more suitable for real applications, be-
cause it does not introduce complex trapping mechanism, instead it considers a large
heterogeneity of simple and standardmechanisms of trapping [1].Moreover, with the
approach presented in this work, medium properties can be inferred by the statistics
of the diffusing particles.

Hence, this contribution aims to provide a new andmore physical interpretation of
the heterogeneity described by CTRWwith power-law distributed waiting times. The
work is structured as follows. First, we show how the memory kernel characteristic
of the CTRW model can be related to the space heterogeneity. Then we present the
emergence of fractional diffusion and finally we check our results against numerical
simulations.

2 Markovian RandomWalk in a Heterogeneous Medium

The CTRW is a successful approach to study stochastic processes [7, 8, 18, 3, 5,
15, 24, 11]. The corresponding random walk goes on according to the following
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iteration procedure

xn = xn−1 + δxn , tn = t0 +
n∑
j=1

τj , (1)

where xn and xn−1 are the walker positions at the instants tn and tn−1, respectively,
such that the n-generated random jump δxn is driven by the pdf λ(δx), and the
corresponding random waiting-time τn = tn − tn−1 is generated by the pdf ψ(τ).
Since the probability that at least one jump is made in the temporal interval (0, τ) is

given by the integral
∫ τ

0
ψ(ξ) dξ, then the probability that the duration of a given

waiting-interval between two successive steps is strictly greater than τ, i.e., the

survival probability, is Ψ(τ) = 1 −
∫ τ

0
ψ(ξ) dξ and it holds [23, 27, 15]

ψ(τ) = −
dΨ
dτ

. (2)

The simplest case of CTRW is the uncoupled one, i.e., the case when the jumps
and the waiting times are statistically independent, and the governing equation of
the process is [15]∫ t

0
Φ(t − τ)

∂p
∂τ

dτ = −p(x, t) +
∑
x′

λ(x − x ′)p(x ′, t) , (3)

with

Φ̃(s) =
1 − ψ̃(s)

s ψ̃(s)
=
Ψ̃(s)

ψ̃(s)
=

Ψ̃(s)

1 − s Ψ̃(s)
, (4)

where the symbol ·̃ marks the Laplace transformed function and s is the corre-
sponding variable. As it follows from (3), the auxiliary function Φ(τ) is a memory
kernel. Hence, a Markovian model is obtained whenΦ(τ) = δ(τ), which implies that
Φ̃(s) = 1 and then from (4) it results Ψ̃(s) = ψ̃(s) and also Ψ(τ) = ψ(τ). Functions
Ψ(τ) and ψ(τ) are related by formula (2), then a CTRW model is Markovian if
Ψ(τ) = e−τ . On the contrary, when Ψ(τ) is different from an exponential function
the resulting CTRW model is non-Markovian.

For the following porpuses, let us write the survival probability and waiting-time
pdf in the Markovian case as

ΨM(τ
M) = e−τ

M/T 0
, ψM(τ

M) =
1

T0 e−τ
M/T 0

, (5)

where the index M reminds the Markovian setting and the time-scale T0 is constant
if the medium is homogeneous.

Consider now a complex heterogeneous medium, such that in any position xn
the walkers stay for a waiting time τn characterized by the medium heterogeneity.



4 Vittoria Sposini, Silvia Vitali, Paolo Paradisi and Gianni Pagnini

Hence, at any iteration n the waiting-time τn is characterized by a local time-scale
Tn. Since Tn is the time-scale locally experienced by the particle in position xn, the
distribution of Tn describes the spatial heterogeneity of the medium. However, if the
walker lands twice in the same point then the two values of Tn are different because
independently generated. This means that the partitioning of the heterogeneity of the
medium is not constant.

In this case the random walk still goes on according to the iteration procedure (1)
with the same meaning for the symbols, but the probability of the waiting-time τn
at the iteration n is affected by the local time-scale Tn. If the motion of the walker is
again assummed to be Markovian, the conditioned survival probability is

Ψ(τn |Tn) = e−τn/Tn . (6)

Comparing (5) and (6) we observe that τM/T0 and τn/Tn have the same proba-
bility. By setting

τM

T0 =
τn
Tn
= χ , (7)

then in formulae,

P

(
τM

T0

)
= P

(
τn
Tn

)
= P(χ) = e−χ , (8)

and the waiting-time τn at the iteration n is given by the product

τn =
τM

T0 Tn . (9)

By remembering the formulae for computing the pdf of the quotient and product
of independent variables, i.e.,∫ ∞

0
b pA(zb)pB(b) db , Z = A/B , (10)∫ ∞

0
pA

( z
b

)
pB(b)

db
b
, Z = AB , (11)

and by reminding that T0 is constant and then distributed as f (T0) = δ(T0 − T∗), the
marginal pdf of τ is

ψ(τ) =

∫ ∞

0
e−τ/T f (T)

dT
T
, (12)

and the corresponding survival probability is

Ψ(τ) =

∫ ∞

0
e−τ/T f (T) dT . (13)

The memory kernel Φ(t) in the governing equation (3) is determined by the
heterogeneity and, from formula (4), its Laplace transform is
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Φ̃(s) =

∫ ∞

0

f (T)
1 + sT

dT∫ ∞

0

f (T)
1 + sT

T dT
. (14)

For a proper choice of the memory kernel Φ(t), the governing equation (3) results in
a time-fractional diffusion equation.

3 The Emerging of Fractional Diffusion

In 1995 Hilfer & Anton [7] showed that CTRW is driven by the following fractional
non-Markovian master equation

∂βp
∂tβ
= −p(x, t) +

∑
x′

λ(x − x ′)p(x ′, t) , 0 < β < 1 , (15)

where
∂β

∂tβ
can be the fractional derivative both in the Riemann–Liouville and in the

Caputo sense [4], if the survival probability Ψ(τ) is a Mittag–Leffler function [6, 12,
Appendix E], i.e.,

Ψ(τ) = Eβ(−τβ) , Eβ(z) =
∞∑
n=0

zn

Γ(βn + 1)
, z ∈ C , 0 < β < 1 . (16)

It is well-known that a survival probability of the Mittag–Leffler type (16), when
0 < β < 1, decreases asymptotically for τ → ∞ with the power-law τ−β [13]. The
Markovian case is recovered from the special case E1(−z) = e−z . With reference to
formula (13), the survival probability of Mittag–Leffler type (16) is obtained when
it holds ∫ ∞

0
e−ty Kβ(y) dy = Eβ(−tβ) , 0 < β < 1 , (17)

with [4, 12]

Kβ(y) =
1
π

yβ−1 sin(βπ)
1 + 2yβ cos(βπ) + y2β . (18)

Hence, by comparing (13) and (17), the distribution of time-scales Tn is

f (T) =
1

T2 Kβ

(
1
T

)
. (19)

The asymptotic behaviour of f (T) can be estimated by formula (18). Actually, it
results that when T →∞ then f (T) ∼ T−(1+β), and we have the following:
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If the medium heterogeneity follows a distribution displaying a power-law
behaviour T−(1+β), for T → ∞ and 0 < β < 1, then the random walk results
in a time-fractional diffusion process of order β. This relation provides an
interpretation and an estimation of the fractional order of derivation.

In the limit β → 1, it holds Kβ(y) = sin π/[π (y − 1)2] → δ(y − 1) and a single
time-scale follows and the Markovian case is recovered. When the distribution of
the time-scales is non-stationary, i.e, f (T) = f (T, t), such distribution is non-unique
[19].

To conclude, when the fractional derivative in equation (15) is in the Caputo
sense, the initial condition is p(x, 0) = δ(x), and it holds λ̂(κ) ∼ 1 − κ2, where the
symbol ·̂ marks the Fourier transformed function and κ the corresponding variable,
then the pdf of the particle displacement is

p(x, t) =
1

2tβ/2
Mβ/2

(
|x |

tβ/2

)
, 0 < β < 1 , (20)

where Mν(y), 0 < ν < 1, is the M-Wright/Mainardi function defined as [12, Ap-
pendix F]

Mν(y) =

∞∑
n=1

(−y)n

n!Γ[−νn + (1 − ν)]
. (21)

For completeness, the asymptotic behaviour of the pdf of the particle displace-
ment (20) is here reported. In particular, the M-Wright/Mainardi function displays
stretched exponential tails in space [14]:

Mν(y) ∼ A0 Yν−1/2 e−Y , y →∞ , (22)

with A0 =
[√

2π(1 − ν)νν2ν−1
]−1

and Y = (1 − ν)(ννy)1/(1−ν), and power-law decay
in time:

1
rν

Mν

( c
rν

)
∼

1
rν
, r →∞ . (23)

This last scaling law follows from the relation between the M-Wright/Mainardi
function and the extremal Lévy density [14], i.e.,

1
rν

Mν

( c
rν

)
=

r
νc(1+ν)/ν

L−νν

(
r

c1/ν

)
. (24)
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4 Numerical Simulations and Discussion

Weprovide numerical results as additional proof of the result obtained in the previous
section. The numerical simulations are performed in C++ according to the scheme
in (1).

For numerical purposes the waiting times τn are not extracted directly from the
pdf defined in (12), instead we make use of the identity in (9), where it is shown that
each τn can be defined as a product of two random variables. Namely, we have

τn = ξ · Tn , (25)

where ξ is an exponentially distributed random variable and Tn is the random time-
scale drawn from (19). For the randomgeneration of ξ andTn, we used the cumulative
function method. That is, starting fromTn, we define F(T) as the cumulative function
of (19) and we obtain

F(T) =
∫ T

0
f (t) dt =

1
βπ

arctan
[
Tβ − 1
Tβ + 1

tan
(
βπ

2

)]
+

1
2
. (26)

Then, we consider F(T) to be a uniform random variable between 0 and 1, i.e.,
F(T) = u, where u d

= U(0, 1). Finally, after substituting u in (26), we get

T =
[
1 + A(u)
1 − A(u)

]1/β
, A(u) =

1
tan(βπ/2)

tan
(
βπ

(
u −

1
2

))
. (27)

For exponentially distributed random variables, with the same procedure we can
obtain the well known result

ξ = − log(u) , u d
= U(0, 1). (28)

Concerning the jump length, we consider a walker that, after each waiting time
τn, performs a jump of fixed length j0 either to the left or to the right with equal
probability, namely the Binomial random walk. In terms of CTRW notations this
corresponds to a jump length pdf

λ(δx) =
1
2
[δ (δx − j0) + δ (δx + j0)] , (29)

where δ(x) is the Dirac delta function, and it is straightforward to check that

λ̂(κ) =
1
2

(
eiκ j0 + e−iκ j0

)
∼ 1 −

j2
0
2
κ2 , κ j0 � 1 . (30)

We simulated 104 trajectories with initial condition x0 = 0, jump length j0 = 1
and three different values of β = 0.25, 0.5, 0.75. Few trajectories were stored at 104

observation times, distributed linearly in the interval [0, 103]. In order to perform
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histograms and study the pdfs, the positions of all trajectories were stored at 10
moments within the time interval [104, 105]. The variance was computed for 102

points, distributed linearly in the time interval [0, 105].
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Fig. 1 Left: example of trajectories for each value of β. Right: variance for three values of β =
0.25, 0.5, 0.75. The black dashed lines represent the expected behaviour, the exponents obtained
from the best fit analysis are also reported for comparison.

In figure 1 we report single trajectories and the variance for three values of β.
Starting from the former, we can directly observe that when β gets closer to 1,
the waiting times become smaller and smaller. For the study of the variance we
performed linear fits using the logarithm of the data. The results reported in the
figure show that the subdifussive trend of the variance is properly recovered:

〈x2〉 = σ2(t) =
j2
0

Γ(1 + β)
tβ . (31)

In figure 2 the particle displacement pdfs are shown. For the comparison with the
analytical results we refer to the asymptotic behaviour of the pdf in (20), that results
in a stretched exponential, i.e.,

p(x, t) ∼
1√

4πtβ(2 − β)

(
2
β

) (1−β)/(2−β) (
|x |
√

tβ

)−(1−β)/(2−β)
× exp

[
−

2 − β
2

(
β

2

)β/(2−β) (
|x |
√

tβ

)−1/(1−β/2)
]
, (32)

for |x | �
√

tβ .
We observe a good agreement between numerical and analytical results. Differ-

ences are due to the fact that the jumps are performed by using the Binomial random
walk, such that the convergences occurs in the diffusive limit.

Thus, we can claim that our analysis provides a simple and explicit interpretation
of the CTRW with power-law distributed waiting times as a model for diffusion
in heterogeneous media. Moreover, we introduced a general and operative way to
directly include the heterogeneity in the diffusive model, clarifying the emergence
of non-Markovian behaviour.
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Fig. 2 Numerical results for β = 0.25 (upper panel), β = 0.5 (central panel) and β = 0.75 (lower
panel). The dashed lines on the left panels indicate the analytical result in (32); each color refers
to the time in the legend, respectively. On the right panels the same quantities, rescaled by the
corresponding variance at each time, are shown. The analytical behaviour in (32) rescaled by the
variance is reported in black.

5 Conclusions

In this contribution we show through a simple Markovian Gaussian random walk
how anomalous diffusion emerges from medium heterogeneity. In particular, within
the CTRW framework, the heterogeneity is represented by a random time-scale that
affects the waiting-time interval at any jump. Since in any position a different time-
scale is considered, the distribution of the time-scales is intended as a characterisation
of the spatial heterogeneity of the medium.

Actually, this time-scale is always independently generated, which means that in
the same position, but at different instants, different time-scales may be experienced
by the walkers. That is to say that the heterogeneity of the medium is not constant.

For a proper distribution of the time-scales with a power-law behaviour for large
values, the evolution equation of the density of the walkers’ displacement emerges
to be a time-fractional diffusion equation.
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The present derivation of a time-fractional diffusion process, in terms of medium
heterogeneity through a population of time-scales (19), complements the results
derived in Reference [19]. The study is supported by numerical simulations of the
process. In this respect it is reported that, unlike other algorithms for fractional
processes from the CTRW, the waiting-time distribution is not a priori chosen but
generated through the proposed mechanism based on random time-scales applied to
a Markovian Gaussian random walk. This mechanism defines a framework which is
able to reproduce a large class of diffusion processes, that comes from any possible
medium heterogeneity without changing the algorithm behind the single trap mech-
anisms, which remains a Markovian process. The fractional process emerges as a
particular case in which strong heterogeneity, characterized by power law tail in the
time scales distribution, is considered.

To conclude, we report that through equation (17) we define a relation between
the medium heterogeneity and the fractional order of the diffusion equation, by
the introduction of a population of timescales. Within this approach, the power
law tail of the distribution of the timescales can be estimated from the fractional
order of the diffusion process. This relation establishes an interpretation of the
fractional order that goes beyond the one given in the standard CTRW, providing a
physical interpretation of the variability of the waiting times in terms of environment
heterogeneity without modifying the physical mechanism behind the single trapping
event.
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